ON NORMAL GENERAL CONNECTIONS

BY TOMINOSUKE OTSUKI

In a previous paper [7], the author showed that for a space ¥ with a
regular general connection I" which is denoted as

I'=0u; @ (Pyd*u’ + I du’ @ du™)
in terms of local coordinates !, ---, ™ of ¥ and
P=AI)=0u; @ Pidw’

is an isomorphism of the tangent bundle T(X) of ¥, its covariant differential
operator D can be written as product of its basic covariant differential operator
D and the homomorphism ¢ of the tangent tensor bundle of X naturally
derived from P. D operates on contravariant tensors and covariant tensors
as covariant differential operators defined by the contravariant part ‘" and
the covariant part “I" of I respectively, which are both classical affine connec-
tions, that is
AT)y=X"I"=1.

Therefore, the formulas with regard to D are simple and analogous to the
classical ones. These results were obtained chiefly by making use of the re-
gularity of the tensor field P.

In the present paper, the author will show that these concepts can be
generalized in a sense for normal general connections® which are not neces-
sarily regular but include the regular ones.

§1. Normal tensor fields of type (1, 1).

Let X be a differentiable manifold® of dimension n. A tensor field P of
type (1, 1) on X is called normal, if the homomorphism defined by P on the
tangent bundle T(X) of X is an isomorphism on the image P(T.(X)) at each
point z € X and dim P(T.(¥X)) = m is constant.

Let a normal tensor field P of type (1, 1) on X be given. Then the union

1) P@)= U P(T(X))

is naturally regarded as a subbundle of T'(X) whose fibre
P,(X) =P(T«X))
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1) See [7], §3.

2) See [8], §3.

3) In the present paper, we deal with only manifolds, mappings with suitable dif-
ferentiabilities for our purpose.
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is an m-dimensional vector space. Since P is an isomorphism of P(X),

N.(¥X)=kernel of P|T,(¥)
is of dimension n —m and

To(%) = Po(X) @ Nao(X).
The union
(1.2) N(¥X) :xng”(x)

is also regarded as a subbundle of 7(X) and
(1.3) TX)=P(X)®N(¥)
as vector bundles over X.
Let us denote the projections of T'(X) onto P(¥) and N(X) according to the
decomposition (1.8) of T'(X) respectively by
(1.4) A: TX)—>P®E), A|P(X)=1,
(1.5) N: TX—-N®X), N|NX=1.
A and N are also regarded as tensor fields of type (1.1) on X.
If we take a field of frame {V;} of X defined on a neighborhood, such that

{Vi, +++, Vau} is a field of frames of P(¥X)
and
{Vist, -=+, V2} is a field of frames of N(¥X),

then we have easily

P(Vo)=W:iVs, P(V)=0, |[WLl#0,
(1.6) A(Vy) =V, A(V,4) =0,
N(Va)=0’ N(VA)=VA.4)

Let us denote the homomorphisms of the cotangent bundle T*(X) of ¥, which
are the dual mappings of P, A, N at each point x of X, by the same notations
P, A, N respectively. Then, for the field of the dual frames {U?} of {V;},
we have

P(U*=W4U¢, P(U*) =0,
a.mn AU =U-, AU =0,
NU=*) =0, NUH=U

Lastly we define a tensor field @ of type (1.1) by

_ [ P! on P.(¥),
(1.8) Q= { 0 on N,(¥),
then we have
1.9) PQR=QP=A,
4) The indices run as follows:
l,/l,l/,"',’b.,j,h,"'=1,2, y 15
@, By Ts "’Zlf 2, tee, My
A, BC,---=m+1,-,m
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{ AP=PA=P, AQ=QA=Q,
NP=PN=NQ=QN=AN=NA=0.

In the following, we denote the homomorphisms, which are extended onto
any tensor product bundle

1.11) TERPO=TE)QT*X)%,, p, ¢=0,1,2 ---

from P, @, A, N, making use of tensor products of the homomorphisms re-
spectively, by the same symbols. We say that any tensor field V € ¥(T(X)3??)
of X invariant under A or N belongs to P(¥) or N(X) respectively and it may
be denoted as

(1.10)

Ver(PER® o) or P(NX)R?),

because it can be written only in terms of V,, U? or V,, U®.

§ 2. General connections.

Let M2 be the semi-group whose any element is written as a set of real
numbers (a, a%) and its multiplication is given by the formulas: For any ele-
ments «, B € M2, the components of af are

ay(apB) = ai(a)ai(B),
ai(aB) = ai(a) ah(B) + aila) ai(8) ai(B),
and £2 be the subgroup of M2 such that |aya)| #0. Leto: P2 — ML= End(R")
be the natural homomorphism which maps (a}, a%) to (ai). M; is regarded as
a sub-semi-group of M2, identifying (a) with (a3, 0).

A general connection I' of ¥ is by definition a cross-section of the tensor
product bundle T(X) @DH(X)> over X which is written as

(2.2) I'=0ou,® Pid*w +I'dw’ @ du™)

wn terms of local coordinates u* of X¥. Let the coordinates u* be defined on a
neighborhood U, then we have a mapping fy: U— M2 by

(2.1)

2.3) &y fu=Pi, & fo=I"%.
For any two coordinate neighborhoods (U, u%), (V, v%), UUV # ¢, we have
(2.4) (o-9vv)fv=Fvgvu,

where gyy: UNV—% is the coordinate transformation of the vector bundles
FTX)® and D¥(X) over X given by

ov* . o

qur IS Gy

The system {fy} satisfying (2.4) characterizes I'. Since we have from (2.4)
the equation

(2.6) (o-gvo)o- fv)= (o fv)o-gvuv),

5) See [6], §1.

(2.5) a}-gyy =
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Pi are the components of a tangent tensor field of type (1, 1) of X which we
denote by

@.7 A =0u, ® Pidu’ =P.

For I", we define a bundle homomorphism ¢ =¢, which maps any tensor
product bundle composed of the tangent bundles and the cotangent bundles of
order 1 or 2 of ¥ into the one replaced T%X) and D*X) by T(¥) and T*(X)
& T*(¥) respectively and is given by
¢(0u;) = Piou,, @(0%u;1,) =I"50uU.,
o(d?ut) = — A du’ Q du”,

2.8) )= o
¢dur® - - - @ due ® du”) =Pit- - Prdut®---® dwr@du", q=1,
where
) ) 0P
(29) A}n =F}n - W’i'

Making use of ¢, we define the covariant differential operator D =D, of the
general connection I” by
(2.10) D=¢-d.%

Now, let & be the semi-group whose any element is written as a set of
real numbers (ai, a%, p}) such that [a}|+#0 and its multiplication is given by
the formulas: For any elements «, 8 &, the components of af are

aj(aB) = ai(a)a’i(B),
(2.11) a(aB) = aila) aj(B) + aila) pi(B) ai(B),

iapB) = pia) pi(B).
Let us denote the natural homomorphism of & onto Li=GL(n, R) c M} which
maps (a}, ai, pl) to (ai) by the same symbol o. 22 is regarded as a subgroup
of ¥, identifying (ai, %) with (a}, a’, ab).

For each coordinate neighborhood (U, ), we define a mapping fi: U— & by

(2.12) @y fo=08  aufo=An  pyfo=—Pi
Then, for any two coordinate neighborhoods (U, %), (V, v), UNV # ¢, we have
(2.18) gVUfU =fV(d'gVU)17)

which is equivalent to (2.4).

Therefore, that a gemeral conmection I' of X is given s equivalent to that
for each coordinate neighborhood U of ¥ a mapping fu: U—ME (or fr: U—)
is given and the system {fu} (or {fu}) satisfies (2.4) (or (2.13)).

Lastly, we show that I" can be written as

6) See [7], §1.
7) See (2.28) of [7].
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(2.14) I'=6u, ® {d(Pidu’) + A% dw’ @ du™}.

§3. Normal general connections and their contravariant parts and co-
variant parts.

A general connection I' is called normal if A(I")=P is normal.
Let I' be a normal general connection of ¥ and let us make use of the
congideration in §1 for P=A(I).
Let qu: U— M2 be a mapping defined by
3.1) @i qu=@,  @uqu=0.
Since @; are the components of the tensor field @, we have
(o-9vv)qv=qv(o-gvv)

for any coordinate neighborhoods U, V, UNV %= ¢. By means of (2.4), we get
easily

(o-gvuXqufo) =(qvSv)gvu,
hence the system {f'v=quyfy} defines a general connection 'I". Since we have
(3.2) G o= QP =4y @ flo= QN="T",
I'" is locally written as
T'=06u, @ (Ayd*w + T duw’ @ du')
= 0uxQ¥ ® (Pid*w’ + I dw’ @ du™).
We call 'I" the contravariant part of I'. 'I' is clearly normal and A=A(I" )
is the projection of T(¥X) onto P(X).
Next, let qy: U— & be a mapping defined by

(3.3)

@i qu=27;, audv=0, Diqu=qQ;
Then, we have
(6-9v)iv=qv(o-gvov),
here we consider as L!c 2c €2 By means of (2.13), we get easily
9vu(Fudv) = (Frl@v)a-gvo),

hence the system {f”y = fyay} defines a general connection “I". Since we have
(3.4) & fo=38  au fro=AbQi="1h,  Difr=—A4,
the connection “I" can be locally written as
"I=0u, ® (Aid2w’ + "I du’ Q@ du®)

= 0u, ® {d(Ajdu’) + A4Q; dw’ @ du™}
by means of (2.14), hence we have
(3.6) "I'=0u, ® {P:d(Qidu*) + I'(Q}du*) ® du™}
and

(3.5)
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Ve alt i 3 6 5
(3.7 Fa =TI'}Q; +Pka—§;"
We call “I" the covariant part of I'. "I is also a normal general connection
and A=A("T").
Here, for any tensor field M of type (1, 1) on ¥, we define a bundle homo-
morphism ¢y of tensor product bundles of order 1 of ¥ as follows:

ar= (M| T(X))®? on T(X)%7,

3.8
GO w=onr@@eanmeperel o T@Ene,

p=0, ¢=1,
where M| T(X) and M|T*(X) are the homomorphisms induced from M on T'(X)
and T*(X).

Now, we put
90/ =¢r and SD” =¢rr,
which are defined for 'I" and ”I" analogously to (2.8), that is

¢'(0u;) = ¢’ (0u;) = A 0u,,
¢(Oupn) = "T5n0u,, ¢ (0ujn) ="T'n0u,
¢(du’) = —"Adw’ @du®, ¢"(d2u?) =—"Adw @ du”,
¢'(du’) = ¢"(du’) = duw’,
Cdut®- - Qdue @ du”) = " (dut1 @ - - - @ du? ® du’)
=Ap---Agdu @ - Qduw?r@du”, ¢=1.

(3.9)

Clearly, we have
(3.10) ¢=¢"=e¢s  on TEPP»?; pqg=0,1,2---.

THEOREM 38.1.» For a normal general commection I', we define a bundle
homomorphism T by
_ @' on tangent bundles of order 1 or 2,
3.11 =Ty = {
811) “ r ¢ on cotangent bundles of order 1 or 2,

then it holds good

(312) :A-§0=57?',L7,

where ¢ is the restriction of ¢ =¢r on tensor product bundles T(X)2?? of
order 1 and ¢ =¢p.

Proof. By means of (2.8), (3.8), (3.2), (3.4), (1.9) and (1.10), we get

2a0(0u;) = ca(Piou,) =Py A% 0uy = AP 0us = 9 (0u,),
eaP(0%U;n) = ea(Ts0u,) =14 A% 0uy, = TP 0u,
= Q@' (0°u;n) = @H(0%u;n),
caf(dPu?) = cs(— A du’ @ du™) = — A4 AL du* @ du
=—"A4Pldu* @ du = ¢¢"(d*u?) = ¢a(d®u’),
aap(dut) = du' = gu(du’),

8) See Theorem 8.1 of [7].
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cap(dut ® -+ Qdu? @du) = cy(Pit+ - - Pizdu” @ - - - @ du/a ® du'™)
—_-P;'.i. . .ngAlfc;. . .A,chduh@ oo R dufe® du
:A;:. . .A%P,{:. . .P,{gdu’ﬁ R Qdure® du’
=gh(du ® -+ @due @ du"),
hence it must be
tar P =tp A,
We call Z=7r the basic homomorphism of the normal general connec-
tion I'. Putting
(3.13) D=Dr=m-d,
we call this the basic covariant differential operator of I'. By means of
(2.10) and (3.13), we get easily the following

THEOREM 38.2. For the covariant differentiation and the basic covariant
differentiation of a normal gemeral connection I', it holds good

(3.14) [A‘DZIP'D.

§4. Basic covariant differentiations.

For any tensor field V € ¥(T(X)®??) with local components V,‘ll,' . ,';;’, its basic
covariant differential

I—)V=8u”®~-®0um®duh®--'®dum®]__)V;;jjj}§
is given by the formulas:
-DVZ.I...zp:Vz‘I.-.;p duh’

Gyoeda Gyeerdalh
(4.1) oV
= coe o e q
ij"'jﬂh —Ak; kq auh AJl Alq
P
1 A1, .. A%-178 2s+1, ., Aro 7R ED Ara, L A
+82=_1A],;1 A/cs—l FkihAks+1 A’CpVh1~"hqA71 Ajg

(4.2) 7
=AU ARV AL Al A Al Al
which are obtained from (3.9), (3.11) and (3.18).»
Now, from (1.10), (3.2) and (3.4), we get

(4.8) 8 ="T"%, " Ain Al =" A,
hence we have from (3.9)
(4.4) tar A= M.

THEOREM 4.1. For the bastic covariant differentiation of a normal general
conmection I, it holds good
(4.5) ts-D=D
and for any tensor field V¥ (T(X)2»?) we have

9) See (7.4) of [6] and (2.15) of [7].
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VinAY @ du' € T(P(X)3Pa+D),
where DV =V, ® du.

Proof. (4.5) follows immediately from (4.4) and the definition of D. With
regard to the second part, we have

VinA'@dw =(1®A) DV
=(1®A)uDV=18A(A®R1)DV
=(ARA)DV =ADV e T(P(X)®P 1),

where we use the notation A according to the convention stated in §1.

Now, we say that a tensor field V of X is basic or normal if AV=V or
NV =V respectively. We will show that if V is basic, the formula (4.2) be-
comes very simple as the classical one.

At first, (4.2) can be easily rewritten as

deeip 0 kieekp an A
Vj:...jq[h = 5‘?'{/—,,(1412; .. 'A’éi'Vhi""‘thl .. .Ajg)

p 2 _ 2 2. 2 K ook
(4.2) + ;Aki o 'A,::_i /AkinAk::i i -AkSVhi...th?i' : A?Z
4 A“ A;pvkl...kpAnl Aht-l //th Ahl+1 Ah7
— g e ARV AL AT AT Al
Now, let Ve ¥(P(X)2?2) with local components Vjijjjj.g, then we have
. P TETN . Y7 G
(4.6) Ak} o 'Akgvhi...hz A’Jf tee A;‘/J = lel...;z-
Since A is a projection, it follows that
N GioseKordyy _ Trdeceeeeees i Y7 Ui
(4.7) Aksti ....... ;Z*‘le...k....ng’;t —ij...,-g,

3=1,"':p; t':ly"';q'

Clearly the conditions (4.6) and (4.7) are equivalent to each other. Putting
these relations into (4.2"), we obtain the following

THEOREM 4.2. Let I' be a mormal gemeral conmection. For any tensor
field V of type (p, q) with local components V}i::j}'Z mvariant under A the
components of its basic covariant differential DV are given by the formula:

2yee2p
(4.8) yiein _8_£i1+ i ! frs, YR i ;%J npE e ip
. dredalh = T gun & AR e ja T A JpV gk g
where
) . 04;
A= Qi — Fu_’z'
(4.9) -
” §n=FihQ’§+Pi :

ou*

/7 Ai

The formula (4.8) is a natural extension of (3.7) of [7], since ‘A% ="T%,
when I' is regualar.
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Analogously, a tensor field V of (p, g) with local components V3" is a
tensor field of N(¥X), if and only if

(4.10) Nig- - NgViueNg - Njg=Vin
or
(4.11) NEVu b=V aNy =V,

s:]-y"yp; t_ly""q-
Hence, for such tensor field V e #(N(X)®??), we have
4.12) ApVyh =V Al =0

and so we get from (4.2") the formulas:

(4.13) V;i ma=0, when p+q¢=2,
Vi|]7, - '/IﬁhV’

" (Vo= sV

(4.14) Vin=="T%V..

§5. Normal convariant differentiations.

Making use of the tensor N in place of @, we shall define a covariant
differentiation.

For each coordinate neighborhood (U, ), let ny: U— M2 and iy — 8 be
the mappings defined by

(5.1) asny =Ni, alny =0
and
(5.2) a;'ﬁU=3§" a’gh'ﬁU’_‘O’ pTJ"/?LU:Nzy

then the systems {nyfv} and { fyﬁy} define two general cgnnectjons ‘I, and
"I, of X respectively as the systems {f’v=quvfv} and {f"v=fvGs} in §3.
Since we have

(N3, O)(P5, IT) = (0, NI,

(5;: A}M —P?)@}’ 0, N;) = (6;7 ihN’;f 0),
‘I, and "I, are tensor fields of type (1, 2) on X with local components as
{ Sw=Nil"%,

YN = AN = ( i - %P">N'ﬂ

(5.3)

respectively.
Now, let ¢,” and ¢,” be the bundle homomorphisms for the general con-
nections ‘I, and "I, defined as ¢ =¢r for I'. Then we have clearly

evp(0u;) = PiN* 0w, = 0 = ¢,/ (0uy),
v ep(0° Ujp) = =I"4N% 0wy = "N 0u, = ¢,/ (0%u;1),
(5.4) ewp(d?ut) = — AL Njdu* @ du" = — "N dw’ ® du = ¢,/ (d*u?),
evg(du’) = du' = ¢, (du?),
v dut @ -+ @due @ du®) = ¢, ([du ® - - - Qdue®@du") =0, ¢=1.
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Putting
(5.5) D, =D,
we call this the normal covariant differential operator of I'. From (5.4), we

see that D, is identical with the covariant differential operators of 'I', or
"I’y for contravariant or covariant tensor fields respectively.

THEOREM 5.1. For the normal covariant diferentiation of I', it holds

good
[N'I_)n:[_)n

and for any tensor field Ve ¥(T(X)® ) with local components V.7 we
have
D, Vip=0, when p+q=2
D,Vi='NiVidu",
D,V,=—"NiyV,du".

(6.7

The proof is evident.

Lastly, since we have from (4.9)

) ) 0A: ) 0P ) L
AN = (@ — 528 N3 = @t (1 — S0 NS = QutaNY = Qs

ow T oun
and
(248 ali 3 k L k 6Q§ ’ i &
Nlc Jil.:Nlc FLan‘l‘PL@uh =N;;n 7

the formula (4.14) can be rewritten as
Viln = Qf”Nllchky
. (
( ) Vjtn=—/thVkQ§’
where VEou, and Vidu* are vector fields of N(¥X).

§6. Some general connections derived from a normal general connection.

From a normal general connection I', we obtained the four normal general
connections 'I", “I", 'I,, "I}, which are given by (3.2), (8.3), (8.5), (8.7), (5.3),
that is

F: (Pji F?’h)y
/F: (Agy QI?:F]J"L ’
//I", (Al I"i Qlc —‘-Pl aQ’; >
. 79 L kR T k ou’ ’
/Fnl (0, N?crfn = (O» ,Nﬁh)’

oP: )
' (o, (ru=SE s =0, w3
with respect to local coordinates u’.

Let us calculate the components of the normal general connections which

are derived from the four general connections by the same manner.

(6.1)

3
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Since A(I") =A, with regard to 'I", we have

/(/r): (Az, lic/ ?h) = (A;y ler]y(h)y
hence
(6.2) /(/ P) =T

13 k
63 = (4 al ?ﬁ,) (45 @irsas + a oL )

(6.4) (I 0, N¥T5) = (0, 0),

T, (o, ( ‘— 3A1>N§>,

and
Yt o : P
(7= G )N = Q@ N5 AGTD s = ai(rn - 2 SN =
that is
(6.5) F;z = //(/I_')n: (Oy Qk,/N’;h)'
Next, since A("I') =A, with regard to “I", we have
i
68)  [v=CTY: (4, AT = (45 ATLG +Pig ).
0A"
//(//I'V): <A§’ 17 ihAk _|_ At a - >’
and
Ak 0Q% A¥
GaW R <FMQ,¢+P@ 2o >Ak+Akg—;
k a K
SYSRORS UL T AN
hence
(6-7) //(//F) — //
(6.8) I'y="("N.: (0, N,t”l",h =(0, ‘N Q5.
11001 V22 all aA"
( F)n’ <0, < Fkh,'— W‘>N’;>,
and
Alc 814.1' GPL ko
(” o — g ;,)Nk < in k'I‘PIan au:>N'§=_n thN
that is
(6.9) "M (0, 0).

Since A(T%) =A("I,) =0, we have easily

"(Iw): (0, 0),
(6.10) "(I%): (0, 0),
/(/Fn)n = //(/Fn)n =T,

and

i’/
2

[
jly
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{ 'Tw): (0, 0),

(6.11) “("Iw): (0, 0),

‘T ="("T')n="T,.
Furthermore, with regard to the normal general connections
r=7"(ry and I'="("I),
we have from (6.1), (6.3), (6.6) the relations:

WY =Cry: (4, AThAs+ A5
and
k
arrua+ 405 = g@r g+ 42
Ak
= Ql['khAk"i'AL% % =I"%;
=D (A ATLAT+AYE) )
and
k
i+ 085 = a(ruas e 208 4 02
. . 0Qy . 6’A"
=AiT' Qi+ P} T Al Al (m;
= AT Q@+ PO =y,

THEOREM 6.1. For a mormal general conmection I', the mormal general
conmections I'" ="(T) and I''* ="("I") satisfy the following conditions:

I(I'V.) — //(I"-) =[V.,
(6‘12) { /([V..) — //(["u) =I'T--
and
(6.13) ") =" (=" ="(I"")n=0.10

Proof. (6.12) is evident from (6.2), (6.7) and the above relations for I
and I'**. Regarding to (6.13), we have

(T (0, Ni™5) = (0, 0),
AR <0< b — gAjj)Nk>

o OA\ . (0 0AL A . NS ONT_
<"" Ou") <Aah"auh>N’ A i A =0

)z (0, NiI™5) =10, 0),

and

10) 0 denotes the trivial general connection whose components all vanish.
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" (0 (= 350)N3)

and

o BN, (ﬁQ‘ 04\ vu o ONE . ON
(I b= >N poE 2o )N PIQIS T+ A i=0.

COROLLARY 6.2. For the normal general commections I'* and I'**, their
covariant differentiations and their basic covariant differentiations are
identical with each other respectively.

THEOREM 6.3. For a mormal general connection I', we have the for-
mulas:
(/[")- — (/[‘)-n —

(6'14) (//r). — (//[').. :F

Proof. By means of (6.2), (6.7) and (6.12), we get
(/I") //(/(/[V)) //(/I") :Fo’
(T)"="("(I)="")=I",
(//I") //(/(//(I'V)) //(F- -) :F'.,
(//l") —_ /(//(//I")) — /(//[V) :F

Theorem 6.1 shows that out of the normal general connections naturally de-
rived from a normal general connection I”, I"* and I"** are the most convenient
ones and we may consider them as belonging to P(¥).

Furthermore, we get easily from (6.5) and (6.8) the relations:

I3 ="(I') =0,

6.1
and
(6.16) i)="(s) =0,

/(I‘V’;‘.) — //(I_';,.)n P I"

Lastly, we show the results with respect to the general connections derived
from a normal general connection I in a diagram. If we regard this diagram
as the genealogical tree of the descendants of a normal general connection I,
it shows that

(i) all the descendants are normal general connections,

(ii) their normal parts and I and I™* out of their basic parts are gene-

rically fixed,

(iii) ‘I and ”I" are not exterminable,
and

(iv) the genealogical tree is composed of at most the ten general connec-

tions: I, ', ", I, I'**, 'I,, "I, I, s, 0.
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