
WELDING OF POLYGONS AND THE TYPE

OF RIEMANN SURFACES

BY KOTARO OlKAWA

Introduction.

1. Let f(x) be a continuous real-valued function which is defined on
θ5Ξ#<oo, strictly monotone increasing, and is such that

/(O) = 0 and lim f(x) = + oo.
a -^+oo

Consider in the complex 2-plane the half-strip

S={z; 0<Rez<oo, 0<Imz<l}
and put

lι = {z; 0<Rez<oo, Imz^O}, Z2 = {z; 0<Rez<oo, Imz = l},

and

S = S\Jlι\Jl2.

On 5 with the natural relative topology, we identify

xeIί with f(x) -f ΐ e Z2

and get the space Q? with the factor topology, which is a surface homeomorphic
with a doubly-connected plane domain. Its boundary components will be
denoted by B and B', where the former corresponds to z = °o in S. The
identified Zi = Z2 is a simple open curve A in § whose both ends tend to B and
Bf respectively. We shall denote by % the projection of 5 onto the factor
space §.

2. We say that a Riemann surface Dϊ is obtained from S by welding Zi
with 12 by means of f if we can introduce in § a conformal structure to get
a Riemann surface 9ΐ such that the mapping % of S onto 9ΐ — A is conf ormal.
As is seen from Example 1 given later, an / introduced in No. 1 does not
necessarily permit us to do so.

Example 2 will show that, even though / permits the welding, the Riemann
surface 9ϊ is not necessarily determined uniquely. Suppose, in general, we have
3ϊι and 3Ϊ2 with projections Ίi3 (j = 1, 2) and seams A3 (j = 1, 2), respectively.
The %2°%Γ1 is a homeomorphism of 9ϊι onto 9ΐ2 which is conformal on $tι — Λι.
If %2°%Γ1 is conformal on 9ϊι for any pair of %ι and %2, we say that a Riemann
surface is obtained uniquely from S by welding Zi with Z2 by means of f.
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For instance, if / and f'1 are real analytic, then the welding is possible and,
since A is an analytic curve in 9ΐ, the $t is determined uniquely (see, e.g.,
Ahlfors-Sario [1], pp. 118-119).

If an Dϊ is obtained by welding, it can be mapped conformally onto the
annulus 0^q<\w\<l so that B corresponds to \w\ = q. We say that B is of
parabolic type if q — 0, and hyperbolic otherwise.

The following problems, related closely to each other even though seem to
be independent, have been discussed by Blanc [4, 5] and Volkoviskii [14, 15,
16], and the latter also by Nevanlinna [8, 9], Wirth [17], Sainouchi [12], and
Jenkins [6]:*>

PROBLEM I. Given f(x) defined in No. 1, decide if the welding is possible
and if it is possible uniquely.

PROBLEM II. Given f(x) such that the welding is possible, determine the
type of B.

In the following lines, we shall use extremal length quite frequently. For
its definition and elementary properties, the reader is referred to, e.g., Ahlfors-
Sario [1], p. 220 ff.

§ 1. Possibility and uniqueness of welding,

3. We can see easily that an $ is obtained from S by welding ίt with 12

by means of / if and only if the following two requirements are fulfilled:
( i ) Let ξ be an arbitrary point in 0<f<oo. There exists tζ>Q such

that the upper-half disc Dlξ with diameter (ξ—εξ, ξ+εe)c:lι and the lower-half
disc DM with diameter (/(£ — ε$), /(£ + £e))cZ2 are in S and mutually disjoint;
there exists a simple arc cς which is in \w\<l except for both endpoints on
\w\ = l, and divides \w\<l into simply-connected domains D(ξ and D^; there
exist conf ormal mappings w = <f>jξ(z) of Djξ onto D'jξ (j = 1, 2) such that dDJ? Π 13

(j — 1, 2) correspond to cξ, respectively, and that Ψΐξ °<piξ(x}=f(ώ) on (ξ—εζ,

(ii) If DίξftDiξ'^ψ, the conf ormal mappings ψjξ^ψj'ξ1 of
onto φjξ'(DjξΓlDjξ') (j=l, 2) are prolongable analytically to each other across

Let F(x) be a continuous strictly monotone increasing function defined on
a^x^b. We shall simply say that F(x) is of class W if the following C,
Φί9 and Φ2 exist: C is a simple arc in \w\<l except for both end points on
\w\ = l which divides \w\<l into simply-connected domain D{ and D^t Φι(Φ2)
is a conformal mapping of the upper- (lower-) half disc with diameter (a, b)

*} Added in proof. Prof. M. Ozawa notified the author that Problem I has been dis-
cussed also by Courant. See R. Courant, Dirichlet Principle. New York, 1950, p. 69,
"Sewing Theorem".
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((F(a), F(b))) on the real axis onto D[ (Dζ) under which the diameter of Dί (D2)
on the real axis corresponds to C; Φ~1oφί(χ)~F(x) on a^x^b. An F(x) of
class W will be called of class W* if, for any other C*, Φf, and Φ*, there
exists a linear transformation L of |w|<l onto itself such that Φj = L°Φf on
Dj O' = 1, 2). These notations have been introduced by Volkoviskii [14].

The previous statement (i) means that, for any ξ, the restriction of / on
[£ — Gξ, ξ + £?] is of class W. Of course (i) does not imply (ii) (cf. Example 2).
We note, however, that 3ΐ is determined uniquely by the welding if and only
if the restriction of / on [f — εξ, £+ε$] is of class JF* for every ξ.

We show here by an example that an f(x) introduced in No. 1 does not
necessarily permit us to get a Riemann surface 9Ϊ from S by the welding:

EXAMPLE 1. // a, β>Q and aφβ, then the function

χa 0 ̂  x ̂  1,

is not of class W on — 1 <£ α? <s i.

Proof. Suppose that F(x) is of class W and retain the previous notations.
Let Wo be the point in \w\< 1 corresponding to x ~ 0. C— {w0} consists of two
analytic curves. Without loss of generality we assume that a>β. Consider,
for every r with 2~a/P < r < 2"1, the smooth curve γr in (|w|<l) — {WQ} defined
as follows:

rr= u l{rWeiθ; -w^tf ^0}U{rCα/^n^"Vtf; 0^0^*}],
71 = 0

where each arc has clockwise direction. Since every ΐr connects the point WQ
with the set in (\w < 1) — {w0} which corresponds to the set {z; 2~a/? <Re z<2~\
Im z = 0} of boundary points of Z>2, the extremal length λ(Γ) of the family
Γ={rr\ 2~a/P<r<2-1} is infinite (cf. [1; p. 224]). We shall show Λ(Γ)< oo
to disprove that F(x) is of class W.

Let In and I'n be the intervals 2-<a/Pn+1 ^x^2-<a/P* and 2-ίa/^nβ'1^x
^2-(α/i8)7l"1^~1, respectively. Consider also the quadrilaterals An = {z; \z\&In,
— π< arg z<0} and A^ = {z; |z| e /£, 0 < arg 2; < π}. Let ^0*1^^1 be the auxiliary
density on |w|<l defined as follows: p*=0 on C; in (|w|<l) — C, it is defined,
in terms of #e ADA, by

0, 1, 2, •••),
0, 1, 2, •••),

On using the notations in [1; p. 220 if], we have, with respect to any admis-
sible density p\dw\,
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(p2/p*)\dw\)
ry /

Γ
J- β

Divide it by r and integrate with respect to r over (2~a/P, 2'1):

L(Γ, Pγ«=£ Iog2 <: ̂ ± f̂ Σ f f ^rd«W ̂  ̂ ±^ f f0 β(a — β) t»=ΌjJ^n^ β(a-β) JJH<ι

therefore Λ(Γ)<oo. Consequently F(cc) is not of class TΓ.

4. LEMMA 1 (Blanc [5], Volkoviskii [14, 15]). F(x) defined on a^x^b
is of class W if and only if it is of class "quasi-W", which means the
validity of the requirements for F(x) to be of class W (No. 3) with quasi-
conformal Φi and Φ2

 Ό

Proof. Let Φ3 (j = 1, 2) be quasi-conformal mappings of D3 onto D'.
(.7=1,2), respectively, such that Φ~l^Φ^ = F on [α, δ]. The quasi-conformal
mapping Φjl satisfies the Beltrami equation

dw j dw

on ZK, where μj(w) is a measurable function with \μj\^k<l on D'. (j = l, 2).D

Consider the μ(w) defined on \w\<l by

!

μι(w) for w e D{,

μ2(w) for w e ̂ ,

0 otherwise,

and let ω = Φ(w) be a quasi-conformal mapping of |ω|<l onto M<1 satisfying
the Beltrami equation dΦ/dw = μ ΘΦ/dw, the existence of which is known.D

Then the curve Φ(C) and the conformal mappings Φoφj of D3 into |α>|<l (j
— 1, 2) guarantee that the F(x) is of class W.

LEMMA 2. Let F(x) be of class W on a^x^b.

( a ) // F(x) is of class JF*, then the area of C is zero.
( b ) Suppose there exists a set E which is in a domain A in the ζ-plane,

is closed relative to A, and is the union of at most a countable number of
sets with finite 1-dimensional outer measure. Suppose further there is a
quasi-conformal mapping w = ψ(Q of Δ into |w|<l such that ψ(E) = CΓi(\w\

1) We mean by a quasi-conformal mapping the one in Pfluger-Ahlfors' sense. For
its definition as well as its generalized derivatives and relation with Beltrami differential

equations, the reader is referred to, e.g., Bers [2].
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<1). Then F(x) is of class W*.

Proof. (a) If C has positive area, we can construct a measurable μ(w)
in |w|<l such that \μ\^k<l, μ = Q in (\w\<l) — C, and μ=£Q on a set of
positive area. The quasi-conformal mapping ω = Ψ(w) of \w\<l onto M<1
satisfying dΨ/dΐϋ = μ d¥/dw is conformal in (\w\<l) — C and is not conformal
in \w\<l. The curve Ψ(C) and the conformal mappings Ψ°ΦΊ (j = l,2) de-
termine another welding which violates the requirement for F to be of class
TF*.

( b ) Let Φ* and Φ* determine another welding. It is sufficient to show
that the mapping

{ φ*oφ~l in
1 \

Φ*°Φ2 m

a homeomorphism of M<1 onto itself being conformal in (\w\<ϊ) — C, is
conformal in |w|<l.

The composite mapping T°ψ is homeomorphic on Δ and quasi-conformal
in Δ-E. By a result of Strebel [13; p. 906] and Mori [7; p. 66], T°ψ is
quasi-conformal in Δ, therefore, so is T on |w|<l. Since a quasi-conformal
mapping is measurable (see Bers [2; p. 18]), the area of C vanishes. We con-
clude that T is conformal in |w|<l since a quasi-conformal mapping which is
conformal almost everywhere is conformal.2)

REMARK. As is seen from the proof immediately, the assumption for C
in (b) came from a condition for "quasi-conformal removability of topological
mappings" due to Strebel [13] and Mori [7]. Amelioration of the latter
would narrow the gap between (a) and (b).

The reasoning in the proof of (a) leads us to the following:

EXAMPLE 2. There is a function F(x) on — l^x^l which is of class
W but is not of class TF*.

Proof. Consider a simple arc C in |w|<l except for both endpoints on
|w|=l which has positive area3) and divides \w\<l into simply-connected
domains D( and D(. Let Φi (Φ2) map D( (Dζ) conformally onto the upper-
(lower-) unit disc in such a way that the diameter corresponds to C. The
desired is F(x) = Φ~ίoφ1(x) (-

We have not succeeded in constructing an explicit example of F(x) with
this property.

2 ) It is an immediate consequence of Weyl's lemma when we start from the analytic
definition of quasi-conformality (see, Bers [2]). Strebel [13; p. 909] proved it directly
from the geometric definition.

3) An explicit example of a Jordan curve with positive area is found in Osgood [10].
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5. A sufficient condition for F(x) to be of class W has been obtained by
Blanc [5] and Volkoviskii [14, 15]. Our Lemma 2 shows that their condition
even implies that F(x) is of class TF*.

LEMMA 3. A function F(x) on a^x^b with the following property is
of class TF*: There exists a quasi-conformal mapping ζ = Ψ(z) which maps
DI={Z; \z — (a + b)/2\ < (b — α)/2, Im z > 0} onto a simply-connected domain A
in the upper-half ζ-plane with \_F(ά), F(b)~]c:<)Λ and satisfies Ψ(x) = F(x) for

Proof. Map the simply-connected domain Λ{J(F(a), F(δ))U{C; \ζ-(F(ά)
+ F(b))/2\<(F(b)-F(a))/2, ImC<0} onto \w\<l conformally by w = Φ(ζ).
Then the curve Φ(\_F(<i), F(b)~]) and quasi-conformal mappings Φ*(z) = Φ°Ψ(z),
φ*(z) = Φ(z) determine a "quasi-conformalw elding". By Lemma 1 we find C,
Φj(z) O" = l, 2) showing that the F(x) is of class W. Up to here we merely
repeated the reasoning of Blanc [5] and Volkoviskii [14, 15]. Here the C
obtained by the method in the proof of Lemma 1 is a quasi-conformal image of
the line segment l_F(ά), F(6)], therefore, by Lemma 2, (b), F(x) is of class W*.

This lemma reminds us of the * '^-condition' ' due to Beurling and Ahlfors
[3]. In fact, on localizing it, we have

THEOREM 1. Let f(x) be a function on 0 ̂  x < oo introduced in No. 1.
// it satisfies the following if local p-condition" , a Riemann surface 9ϊ is
obtained uniquely from S by welding li with 12 by means o f f : At every
ξ (0 < ξ < oo ) there exist εξ (0 < βξ < ξ) and pξ (0 < pς < oo) such that

<:~r

holds for all x and t with ξ — Sξ<x —

The equivalence of Theorem 1 with Lemma 3 is apparent from the following
Lemmas:

LEMMA 4. Let h(x) be a continuous strictly monotone increasing function
on —l^x^l such that A(— 1) = — 1 and Λ(l) = l. Suppose there exists a
quasi-conformal mapping w=T(z) which maps the "unit triangle" A = {z\
Imz>0, \Eez\ +Imz<l} onto a simply-connected domain A' in the upper-
half w-plane with [— 1, I]c9^7 and satisfies T(x) = h(x) for — l^x^l.
Then there exists a positive constant p such that

-h(x) <
^ } p = h(x) -h(x-t) ~r

for all x and t with —l<x — 2t<x + 2t<l.

LEMMA 5. Let h(x) be as above on — 1 ̂  x ̂  1. // there exists a positive
constant p such that (1) holds for all x and t with -I<x — t<x + t<l,
then
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2)

maps quasi-conformally the "unit triangle" Δ onto a Δr described above in
such a way that T(x) = h(x) holds for — 1 ̂  x ̂  1.

These lemmas will be proved by repeating the qualitative part of the
proof in Beurling and Ahlfors [3] with minor technical modifications, which
for the sake of completeness we shall indicate in the following lines.

Proof of Lemma 4. For x and t with -l<x-2t<x + 2t<l, let Λ be
the extremal length of the family consisting of all the curves in Δ connecting
the interval \_x-t, x~] with [cc + £, 1]. Let λ' be that of the family consisting
of all the curves in Δ' connecting [h(x — t), h(x)~\ with [/&(# + £), 1]. We have
X ^ Kλ, where K is the maximal dilatation of T. Let Λ0 be the extremal length
of the family consisting of all the curves in {C; Im C > 0, |Re C — x\ + Im C < 2ί}
connecting [x — t, x~] with [x + t, x + 2t]. Let λ" be that of the family con-
sisting of all the curves in the upper-half plane connecting [h(x — t), h(x)~]
with [h(x + ί), oo). Evidently λ" ^ X and λ ̂  Λ0, hence Λ" ̂  Kλ*. Here KλQ is
independent of x and t while λ" is given by cross-ratio as in [3; p. 130]. We
thus get the right inequality in (1). The left one is proved analogously on
considering the intervals [—1, x — f] and [#,

Proof of Lemma 5. Extend the given h(x) by

Λ */ r x_ίMaO for I a? |^1,
h(X)-(x for \x\>l

on — oo<#<oo and define T*(z) by the integral (2) with respect to h*.
T(z) = Γ*(ί2) holds on Δ. Even though Λ* does not necessarily satisfy the p-
condition throughout — oo< x <oo, the reasoning in [3; pp. 135-136] is applicable
to show that T* maps topologically the upper-half plane onto itself with the
boundary correspondence h*. The estimation of the dilatation of T in Δ is
performed in completely the same way as in [3; pp. 136-138].

A continuously differentiate function F(x) on — l^x^l with positive
F'(x) is of class W* by Theorem 1. Volkoviskii [16; p. 42] showed that, if
F(x) further satisfies

F'(x) - F'(t)
x-t

for every ίe[ —1, 1] with J£ independent of t, the Φ^(x) (j = l, 2) exist and
are uniformly bounded and bounded away from zero on each closed interval
in (-1, 1).

6. THEOREM 1'. Let f(x) be a function on Q^x <oo introduced in No. 1.
Suppose there exists an at most countable set -E'cCO, oo] which has no finite
positive accumulation point and satisfies the following conditions:
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(i) At every ξ&E, f>0, f(x) satisfies the "local p-condition " in
Theorem 1;

(ii) For every ξ^E, there exists a <5>0 such that

-f(ξ) ' f(ξ) -f(ξ-t)

(note that /' exists almost everywhere). Then the Riemann surface 9ϊ is
obtained uniquely from S by welding l± with 12 by means of. f.

Theorem V is not necessarily a generalization of Theorem 1. However,
the function

, _
ft \ Λ τ f or 0 - x

/(») = ^ - -
[x for 1 ̂  x < oo

satisfies the assumption of Theorem V for E={1}, while does not that of
Theorem 1 at x = 1.

Proof. By Theorem 1 we obtain the Riemann surface 9ΐ* determined
uniquely from S by welding li — E with l2—f(E) by means of/. To each
ξ^E the boundary component Bξ of 9ΐ* corresponds. The image A* of li — E
consists of at most a countable number of simple curves connecting different
ideal boundary components of 9R*. The "union" of A* and all the Bξ (ξ^E)
"connects" B with B' of 91*. It is not difficult to see that the proof is complete
if we show that each Bξ is parabolic.

We map conformally the upper-half disc with diameter (ξ — d, ξ + δ) by
w = — log (z — ξ) into the strip Si: 0 < Im w < π. Similarly we map the lower-
half disc with diameter (/(f-3), /(£ + £)) by w = -log(s-/(?)) into S2:
π<lmw<2π. Then the decision of the type of Bξ is reduced to the type
problem concerning the welding of two strips, which has also been discussed
by Volkoviskii [14, 15]. In our case we have two functions g(u) and h(u)
transformed from f(x), by means of which we weld Si and S2 as follows:
The point u on the lower edge of Si is identified with g(u) + 2πi on the upper
edge of S2; the point u + πi on the upper edge of Si is identified with h(u) + πί
on the lower edge of S2. Evidently Bξ is parabolic if and only if the boundary
component corresponding to w = + oo of thus obtained doubly-connected Riemann
surface is parabolic.

With respect to this welding, Volkoviskii [14; p. 193] gave the following
criterion: The relevant boundary component is of parabolic type if

> du = TO

where s is the function of u defined by s — u = g(u) — h(s), s* = h(s), and
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u* = g(u). Since the implicit relation involved is unpleasant, we shall avoid
to use it.

To get another criterion for parabolicity, we estimate the extremal length
of the family {Tu; UQ<U<OO} (u0: sufficiently large), where ΐu is defined as
the union of line segments connecting u with u + πi in Si and h(u) + πi with
g(u) + 2πi in S2, respectively. On performing completely the same process as
in Theorem 2 in the next section, we have that

implies the parabolicity. Consequently, on expressing g and h in terms of /
given, we get the condition (ii) of our theorem.

§ 2. Types of surfaces.

7. For completeness we begin by proving the following theorem due to
Volkoviskii [14, 15] and Nevanlinna [8, 9]; the proof is essentially a mere
repetition of the former's:

THEOREM 2. Suppose that f(x) on 0 ̂  x < oo introduced in No. 1 deter-
mines an 9ϊ by welding. (Note that f ' ( x ) exists almost everywhere.) // it
satisfies

mm(l,f'(x)) J

then the boundary component B of every 9Ϊ is parabolic.

Proof. For every x (0<x< oo), let ϊx be the closed curve in 9ϊ which
corresponds in S to the line segment connecting x with f(x) + i. ϊx separates
boundary components of 9ϊ. Every subarc of ϊx which does not contain the
point corresponding to x is rectifiable. As is well known (see, e.g., [1; pp.
224-227]) B is of parabolic type if the extremal length λ(Γ) of Γ = {rx; 0<#
< 00} vanishes. Using the notations in [1; p. 220 if] we have, for every
admissible p,

L(Γ, p)^({ p\dw\}*^( \dw\\ p*\dw
\Jrχ / Jrx Jrxrχ

(f(x) - x)2) (x + y(f(x) -x) + iy)2dy

ιmm(l,

so that

ί
oo

-• ~ x ) + ί y ) 2 ( 1 + y ( f ( x } ~1))dx dy'
The topological mapping u + iv — x + y(f(x) — x) + ίy of S onto itself is partially
differentiable almost everywhere with the Jacobian 1 + y(f'(x)—1). On changing
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the variables (05, y) into (u, v) and omitting the singular part (see, e.g., [11],
p. 199; cf. also pp. 271, 413), we have

in(l, /'(*)) da Γ Γ
j^pΐjΓ- ^ ] ]

The left integral is infinite by assumption, so that λ(Γ) = 0.

A sufficient condition for hyper bolicity has been given by Volkoviskii [14,
15], which was recently improved by Jenkins [6] by using a different method.
Making use of the former's method has two advantages that we can avoid a
rather complicated topological consideration required in the proof of the latter
and that we need not assume the absolute continuity of /. In fact, we can
state Volkoviskii- Jenkins' theorem in the following way:

THEOREM 3. Suppose that f(x) on 0 ̂  x < oo introduced in No. 1 deter-
mines an 9Ϊ by welding. Let fo(x) = x and fn(x)—f°fn-ι(x) (n = 1, 2, •)• If
there exist a number a > 0 with f ( a ) > α, liΐΆn^^fn(a) = oo and a measurable
set Ed [α, f(a)) with positive measure on which

holds, then the boundary component B of every 9Ϊ is hyperbolic.

Proof. Let E* be the set in 9ϊ corresponding to {z; Re z e E, Im z=l} c S.
If B is parabolic then λ(Γ) = oo holds for any family Γ of curves in SR connect-
ing E* with B (cf. [1; p. 224]). This proposition is valid under the assump-
tion that each member of Γ satisfies the following condition: In its parameter
representation p = p(t) (0<£<1), there are tn (n = Q, ± 1, ±2, - •) such that
Q<tn-ί<tn<l, linwoo£n=l, limn+00t-n = 0, and that each subarc of the curve
corresponding to tn-ι <t<tn is rectifiable.

It is possible to find a measurable EQ^E with positive measure on which
Σ»-o !//»(«) ^Af< oo. We note that, for each xeEQ, fn(x)<fn+ι(x) _and
limw>oo/n(x) = oo hold. Let ϊx be the curve in $t which is represented in S by

ϊx = U {z; Re z =/«(»), 0 ̂  Im z ̂  1}
n=0

with the downward direction. Each Tx (x e EQ) connects £'* with B in ^ and
satisfies the above requirement for piece wise rectifiability. Therefore, to prove
the hyperbolicity of B, it suffices to show that the extremal length of Γ
— {rx', x e EQ} is finite.

We remark that En=fn(Eo) (n = l, 2, •••) are mutually disjoint. Define a
density p*\dw\ on 9ϊ as follows: ^* Ξθ on A; in 3ΐ — yi it is defined, in terms
of z e /S, as follows:

otherwise,
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where ξ e E0 is such that fn(ξ) = Re z. For any admissible p on 9t, we have

p*\dw\}({ (p>/p*)\dw\}
rx / ^ J r x /

We integrate it with respect to x over EQ. Concerning the change of variables
we know

'du (U=fn),
J J

so that

L(Γ, p)2mEo ̂  Af f] P f p(fn(x) i- i#)2/»G
71=0 Jθ J So

f i y ) 2 d x d y ^ M \ \ ρ2dudv,

consequently λ(Γ) ^ M/mE0 < oo.

Λff] f X ί
n=0 J o J #9i

REMARK. The following comparison theorem due to Blanc [5; p. 142]
would enlarge the range of applicability of above criteria:

Let fι(x) and fz(x) on 0 ̂  x <oo be those introduced in No. 1 and absolutely
continuous on every finite closed interval in 0<#<oo. Suppose that fι(x)
satisfies the assumption of Theorem 1 or V and that f2(x) determines an 9ΐ2

by welding. If

M
a. e.,

x +/ι(<c)

\^N a.e.,

-1

then the type of Bι of the 9tι determined uniquely by /i and that of B2 of
every 9Ϊ2 determined by /2 are the same.

8. Our plan of reclaiming the space beyond the range of Theorems 2 and
3 begins by looking over the first requirement

(3) f ( a ) > α, lim/n(α) = oo
W>oo

in Theorem 3. This condition for the inverse /'Ms expressed as

( 4 ) f ( a ) < α,
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where /_„ = C/"1)^ If f(a)>a and limfn(a) = b<oo, then a<b and f(b) = b;
conversely if /(α) > a and f(b) = b for some 6 > a, then lim/w(α)<oo. Concern-
ing (4) we see the similar. Therefore, an f(x) introduced in No. 1 satisfies
neither (3) nor (4) for any a (0 < a < oo) ΐ/ αwd cmZ?/ i/ ί/&ere exists a sequence
0 < δi < δ2 < sttcfe £/&αί linwooδrc = 00 and f(bn) = bn (n=l, 2, •); Theorem 3
is applicable neither to / nor f"1 of this property.

We shall give a sufficient condition for hyperbolicity which is essentially
to be applied to such functions. Let f(x) be what is introduced in No. 1 and
such that f(bn) = bn for a sequence 0 = δ 0 <δι<δ 2 < ---- >°°. On introducing
auxiliarly transformations

and
τn(x) = 2bn+ι — x on bn ̂  x ̂  bn+l

for w=0, 1, 2, •••, we consider the sequences {flTn(a?)}»=0 ^nd {W»)}~=0 defined on
δi as follows:

hn(%) =f°gn(χ).

THEOREM 4. Suppose that f(x) on 0^α?<oo introduced in No. 1
mines an 9ϊ δ^/ welding and that

/or α sequence

n(a;) (O^α^δi; w = 0,1,2, •••) δe as above. If there exists a
measurable set l£c(0, δι/4) tϋiίfe positive measure such that

(n = 0,l,2,

(5) Σ , - —, -
»=ol xg'n(x) χhf

n(χ) }

on E, then the boundary component B of every 9Ϊ is hyperbolic.

Proof. It is possible to find a measurable E0 c E with positive measure on
which the left-hand side of (5) is bounded by M<°o. For every x<=E0, let
ϊx be the curve in Sft which is realized in S as
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where

7*2° = {z; |2 - 6W | - gn(x) -bnιO^ arg(z - &„) ̂  π}

with clockwise direction and
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with counter-clockwise direction. As in the proof of Theorem 3, the hyper-
bolicity of B is seen from the finiteness of the extremal length of the family

To estimate λ(Γ), consider

^w = |z; \z — bn\<— min(l,bn+ι — bn,bn — bn-ι), lmz>0\ (w = l,2, )
I * J

and

z — - < — min(l, bn+ι -bn\ ϊmz<0\ (n = 0,1,2, - •)
^ J

which are in S and mutually disjoint. Let ρ*\dw\ be the density on 9ϊ defined
as follows: p* = Q on ^ in 9ϊ — Λ, in terms of #e£,

1 •* ._ , ^,^1^2,...),

1

6*i(f)
0

if ^ <Ξ j5n

otherwise,

where f e J S Ό is such that gn(ξ) = bn + \z — bn\ and feJ?0 is such that hn(ξ)
= ((bn + bn+ι)/2)-\z-((bn + bn+ι)/2)-i\. Then, for any admissible p on SR,

9pγ^([ p*\dw\}([ (p*/
\Jr* / \Jϊjc

£ πM f] f" P((gn(x) - bje«y(g»(x) - bn)xg'n(x) dθ

^^ϊiL-M*)
ώ

^^ξ^-A^W/torffl.
-̂  /

On dividing it by x and integrating over E0, we have

L(Γ, p)2 { — ^ πM ( f] f f ^cίίrdi/ + Σ3 ί ί ^2cω# ̂  ^rAf f f
J^o » \»=ιJJuiΛ »=oJjΛM / J J g

and, therefore,

Since the theorem is rather complicated, we give here an illustrative
example. Consider a sequence {cn}~=0 of real numbers such that 0<cπ<l/4.
Define f ( x ) as follows:
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f ( x ) =

2 4(x - n)

l+<

for
±
4 '

— x)

for w + — - ̂  a; ̂  n + 1 — cn+ι,
4

t& = 0, 1, 2, , and for remaining x define suitably so that the resulting f ( x ) on
0 ̂  x < oo is strictly monotone increasing, continuously differentiate with non-
vanishing /'(#), and is such that f(n) = n (n=0, 1, 2, ) By Theorem 1, /
determines an 9Ϊ uniquely. We infer the following:

T U I

n + ^tp11 τ n ~ L/ η

Tl+l

EXAMPLE 3.
parabolic if

and is hyperbolic if

respect to the f ( x ) defined above, the B of the SR is

Σ-

Proo/. /'
We thus have

*A log(l/cn)

12ϊ 1 on In = [n + cn,

<oo.

and on 0 ̂  a;

f-
] i

mind, /'(*))

and see, by Theorem 2, that the divergence of the last term implies the para-
bolicity.

To apply Theorem 4 for hyperbolicity, we take # = (1/8,1/4). Clearly

gn(E) c:(n,n + (1/4)) and hn(E) c (n + (1/4), n + (1/2)) (n = 0, 1, 2, - ). Since



WELDING OF POLYGONS AND THE TYPE OF RIEMANN SURFACES 51

n + l + — (4α - 4n)los*Cn+i/los4cn (n<x<n +
4 \ 4

for x^E, we have successively,

gn(x) -n = 4-(4(flr»-ι(a?) - n + l))̂ "̂--!,
4

4(0n(aO -

__

flr«(aO - w log 4cn_! ~gn-ι(x) - (n - 1) log 4c0 + α?

— n

and

Σ Qn*,,J!r- = Σ ——rr77rr^~ = 9 lo^ T: Σ

for x^E. Consequently, by Theorem 4, the convergence of the last term

implies the hyperbolicity.
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