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Introduction.

Many authors have discussed the problems of linear difference-differential
equations such that

( 1 ) ^- = ax(t) + bx(t - 1) +/(ί)
at

f o r O ^ £ < o o . (Cf. [1] — [11], [15] — [22].)

However, few have been investigated concerning the problems of neutral
systems. Hence, it may not be useless for us to consider a neutral linear
equation such that

( 2 ) - - = ax(t) + bx(t -
at at

for 0 ̂  t < oo, where α, δ, c are constant. Although neutral systems are es-
sentially different from equations with c = Q, the similar method is applicable
for it.

In § 1, we are going to discuss the location of zeros of the characteristic
equation corresponding to (2). In § 2, the existence of solutions of homogeneous
equations will be studied. Non-homogeneous equations together with the
fundamental solution will be discussed in § 3. In § 4, stability problem will be
discussed as the application of the results in §3. In §5, perturbation method
will be described for equations having a parameter.

The author would like to express his hearty thanks to Prof. Y. Komatu
and Prof. T. Saito who looked over his paper and gave him a lot of advice
during his investigation.

§ 1. Location of zeros of the characteristic equations.

In this section, we first consider the linear difference-differential equation

(1.1)
at at

with the constant coefficients α, 6, and c, where we suppose that
In the equation (1.1), if we put x(t) = est, we have
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ax-
at \ at I

Hence, if we denote by s0 a zero of the transcendental equation es(s — a)
— (b + cs) = 0, es<st is a particular solution of (1.1). Then, the equation

(1.2) f(s) Ξ= es(s - α) - (6 + cs) = 0

is called the characteristic equation of the linear difference-differential equation
(1.1). In connection with the investigation of the linear difference-differential
equations of higher order, Langer [13, 14] has considered the location of zeros
of the equation esP(s) + Q(s) = 0, where P(s) and Q(s) are polynomials of s. By
Picard's theorem, there exists an infinite number of zeros of (1.2) in the neigh-
borhood of the essential singularity at s= oo. Then, it follows from (1.2) that
es=(b+cs)/(s— α), by which we obtain

(1.3) s = logc + 0(l/s)

for any large \s\ with exception of an integral multiple of 2πit If we put
s = u -f iv, where u and v are real, (1.3) gives us that

u = log I c I + 0(l/ri), v = arg c + 2nπ + 0(l/ri),

where n is an arbitrary integer, which implies that all the zeros of (1.2) lie
in a strip parallel to the imaginary axis. In general, however, it is well known
that if the degree of P(s) is different from that of Q(s), a finite number of
zeros of esP(s) + Q(s) = 0 lies in a strip parallel to the imaginary axis. Further-
more, Hayes [12] has investigated in detail the case where the degree of P(s)
and Q(s) are equal to 1 and 0 respectively.

In the following sections, it is convenient to suppose that the real parts
of zeros of (1.2) are all negative. It is, however, not sufficient to assume that
|c| is less than 1, for the equation

has the real zeros 1 and —log 2.
It follows from (1.2) that

/'(β) = β'(s - α + 1), /cn)(β) = e'(8

which shows that the number of multiple roots of (1.2) and their multiplicity
are finite.

§ 2. Linear homogeneous difference-differential equations
with constant coefficients.

We shall consider, in this section, the linear homogeneous difference-
differential equation

. ,
at at

where α, 6, and c are constant and c^O, with the conditions

(2.2) x(t) = φ(t) (0 ̂  t < 1), α?(l) = x0,
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where φ(t) is a given function continuous for 0^£<1 and 0(1 — 0) exists.
Bellman [1] has already considered the case where c = 0. In order to obtain a
solution of (2.1) with (2.2), we formally apply the Laplace transformation for
(2.1) obtaining

- *dt = aΓ
Jo dt Jo Jo Jo at

Using the initial conditions (2.2), we have

(es(s - α) - (δ + cs)) { °° x(t}e~stdt = x0- c0(0) + es(s - α) P0tfιX~sίl<^
J o J o

where we have assumed that \ιmt^+00e~stx(t) = 0. This condition will be affirmed
later. Then, the Laplace inverse formula leads us to

= 1 (
2πi J G

(2.3) x(t)
es(s — α) — (δ + cs)

which is considered as a positive solution of (2.1) with (2.2). C is a suitably
chosen contour of integration parallel to the imaginary axis.

It is convenient to make use of the following assumption:
Every root of es(s— α) — (δ-f cs) = 0 lies to the left of the straight line

3ΐs = -<5<0.
Then, since the function

flo - cφ(0) + es(s - o)fl0tfi)e-"'(foi
es(s — α) — (6 + cs)

is regular in the half -plane $ts > — δ, we may take as the contour C the straight
line —δ/2 + iτ, — oo<τ<oo, parallel to the imaginary axis. It follows by
(2.3) that

x(t) = 1 Γδ/2+ΐC° x° ~ c °̂) + (6 + <»)f ̂ (*ι)«r"1<ftι esi^s
2τrt J -δ/2-ioo es(s — α) — (b + cs)

1 Γ-5/2 + ίooΓ/ l Π

+ 17M Φ^e-^dt, \e-stds.
Aπi J-ί/2-<ooLJo J

We denote by % and ^2 the first and second integrals respectively, that is,

Uί 2πi J- ί/2-<oo es(s — a) — (b + cs)
-I Λ-δ/2-ίoor/ ι η

= —V φttje-^dtί \estds.
2πτ J-δ/2-ίooLJo J

Bellman [1] stated in (2.5) that Uι vanishes for 0 ̂  t < 1 if c = 0, u2 attains
the value φ(t) for 0^£ ̂ 1 and it vanishes for l<t< oo.

As for the case c =£ 0, since we can also apply the same method of contour
integration as in [1], we obtain % = 0 for 0 ̂  t < 1. Furthermore, by the same
method, it follows that

for 1 < t < oo, where ct is a constant (cf . [1]).
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Then, x = Uί(t) seems to be a solution of (2.1) with (2.2) for l<ί<oσ.
However, we shall prove it indirectly. We denote the integral

\

by x(t). We shall prove that the function x(t\ satisfies the difference-differential
equation

(2.6) =

at

for t > 1. Then, we have

(2.7)
1 p-ί/2+ίoor pi η ^5(^

= "TΓ^ U&o + cφ(0) + (b + cs) φQύe-'Ίdt! est -
2πι J_ δ / 2_ίooL J o J s

ds.

Since the integration by parts gives us that the member in the bracket of
(2.7) is bounded in the left half-plane, and furthermore, since Cauchy's theorem
is applicable for the integrand of (2.7) by its analyticity, we may shift the
contour to the left. Then, it is easily established that the right hand side of
(2.7) vanishes for t > 1, which implies that x(t) is a solution of (2.6).

We can prove that the uniqueness of solution of (2.6) is affirmed. To this
end, we suppose that there exists another solution y(t) with the initial con-
ditions (2.2). If we put z(t) = x(t) — y(t), it follows by the linearity of (2.1)
that z(t) is a solution of (2.1) with the initial conditions z(t) = 0 for 0 ̂  t ̂  1
and z(0) = 0. Then, it is apparent that z(t) is identically equal to zero.

§ 3. Nonhomogeneous difference-differential equations.

We shall consider the nonhomogenous difference-differential equation

= ax(t + 1) + bx(t) + c +mcίt at

with the initial conditions that x(t) = φ(t) for 0^£<1, 0(1—0) exists, and

X(ϊ) = XQ.

Formally multiplying e~st and using the analogous method as in the preceding
section, we obtain an equation

(3.2) x(t) = x\t) + f(tύK(t ~ ω dtl9
Jo

where K(t) has the following integral representation

(3.3) K(t) = —V —. ." ,. , . ds,
2πι J -5/2-ioo e (s — a) — (b + cs)

and x°(t) is the solution of the homogenous equation (2.1) with the conditions
(2.2).

We first summarize the results concerning the properties of K(t). It is
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easily proved by the analogous method as in the preceding section that

\ό Q) \JΛ.\Ί/J\ —^ C%G

and the continuity of K(t) are guaranteed for t > 1, where c2 is a constant.
Since (3.4) is rewritten as

^ r-δ/2+ίoo es(t-r>

2πi } -s/2-zoo s — a — e~s(b + cs)

it follows that by the same method as above K(t) vanishes for t < 1.
In order to establish the differentiability of K(t), it is sufficient to prove

the relations

(3.5) K(t +1) - a {*K(t! + l)dtί - b (tK(t1)dt1-cK(t) = l
J o J o

and

(3.6) K(t +1) - a ̂ K(tι + l)d*ι = 1 (0 < t < I).
Jo

It follows by (3.3) that the right hand side of (3.5) is reduced to

aes + 6 ds1 f-a/2 + ίo

(3.7) -M
Zττ£ j-δ/2-io s 2πi J _ί/2-»oo es(s — a) — (b + cs) s

Since the integrand of the first integral of (3.7) is regular in the left half-
plane, by a simple calculation, it is equal to the integral

1 Λ-α + ioo x,Sί

Γ^ 1 —2πι j-a-ioo s

where a is an arbitrary constant greater than δ/2. By the arbitrariness of a,
if we shift the contour of integration far to the left, that is, if a-^+oo, the
integral tends to zero for any finite t > 0.

On the other hand, since the integrand of the second integral of (3.7) has a
simple pole at s — 0 in the half-plane Dϊs > —δ/2, it follows by Cauchy's integral
formula that the following equality is satisfied:

aes + b ds1 Γ-*/a+*g aes + b ^s_._-1+ 1 f
πi } -S/2-ix es(s — α) — (6 + cs) s 2πi } CR

_
2πi -S/2-ix es(s — α) — (6 + cs) s 2πi CR es(s — a) — (b + cs) s '

where CR represents a right-hand semi-circle of the radius R with the center
at —δ/2. Since the integral of the right-hand side tends to zero as R— >+oo
by the analogous way as used above, it follows that (3.5) is equal to 1.

As to the relation (3.6), we obtain

es ds
t2πι J_δ/2-*oo es(s — a) — (b + cs) s

= ̂ ^ r-V2+zoo est 1 Λ-ya+i

2πi J -δ/2-zoo s 2πί J -5/2-^,-5/2-^,00 es(s — a) — (b + cs) s

By the same reason as before, the first integral of the right hand side vanishes
for any t > 0.

On the other hand, since the integrand of the second integral of the right
hand side has a simple pole at s = 0 in the half -plane 3?s > - δ/2, we obtain
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e

st(b + cs) + aes ds _ - 1 Γ e**(6 + eg) + αes ds
2πi -8/2-ijR es(s — a) — (b + cs) s 2πi cR es(s — a) — (b + cs) s

By the same reason as before, the integral of the right hand side tends to
zero as R— >+oo for t<l, which proves the relation (3.6), by which we obtain
iΓ(l + 0) = l if ί-*+0.

As to the differentiability, it follows by (3.6) that

Kf(t + 1) = aK(t + 1) (0 < t < 1),

that is, K(t) is diίf erentiable for 1< t < 2.
On the other hand, differentiating (3.5), we have

K'(t + 1) = αX(ί + 1) + W3Γ(ί) + ci7(i) (1< t < 2).

Hence, we obtain the differentiability of K(t) for n<t<n + l (n — \, 2 •••)•
Summarizing the results obtained above, we have the following

THEOREM 1. ( i ) K(t) is continuous for t>l.
(ii) \K(t)\£c2e-°"* for t>l.
(iii) K(t) — 0 for t <1, ΐ/ -iί -is represented by the integral.

(iv) JSΓ(ί + 1) - α(*JSΓ(ίι + ϊ)dt -bΫK(tι)dtι - cίΓ(ί) = 1 for 1< ί < oo.
Jo Jo

( v ) K(t + ϊ) - αf ίΓ(ίι + l)cZίι = 1 for 0 < ί < 1.
J o

(vi) K(t) is differentiate for n<t<n + l (n = 1, 2, •)•

Thus, if we refer to the properties of K(t), it follows that the existence
and uniqueness of solutions of (3.1) will be established.

THEOREM 2. Suppose that all the roots of es(s — a) — (b + cs) = 0 lie to the
left of the straight line $ts = — d<0 and if f(t) is a continuous function of
bounded variation over any finite interval such that

(3.8)
o

Then, the solution x(t) of (3.2) with x(t) — φ(t) for 0 ̂  t < 1 and x(l) — XQ is
represented by

(3.9) χ(t) = x°(t) + f(tί)K(t -ί
t-l

/(it0

for t > 1, where x°(t) is the solution of the homogeneous equation corresponding
to (2.3), K(t) is represented by

(3.10) K(t) =
ait'i* j

(3.11) J

2πi J-δ/2-zoo es(s - a) - (b + cs)

for t > 1, and



LINEAR DIFFERENCE-DIFFERENTIAL EQUATIONS

Next, we consider the nonlinear equation

(3.12) = aχ(t + ΐ) + bχ(t) + c +f χ(t + lλ α(ί))

cίt at

for t > 1, where we suppose that /(£, a?, y) is continuous and satisfies the
Lipschitz condition

(3.13) |/(£, »ι, ifo)-/(ί, α?2, y2)|^α(ί)|a?ι-»2| + ft(ί)|yι-y2|.

It is convenient to assume that α(£) and δ(£) is continuous and to consider the
nonlinear integral equation of Volterra type

(3.14) x(t) = x°(t) +
o

for £>1, where #(£) is represented by (3.10) and #°(£) is the solution of the
homogeneous equation corresponding to (3.12). We define a sequence {%n(t)}™=0

as follows:

*ι)Λι (Λ = 0, 1, 2, - •)•
o

Then, by the explicit representation of x°(t) and the properties of K(t), it
follows that each function xn(t) is bounded. Furthermore, since the Lipschitz
condition (3.13) is fulfilled, it follows that the sequence {xn(t)}n=o converges
uniformly to x(t), which is the unique solution of (3.14).

THEOREM 3. Suppose that in (3.12) /(£, x, y) is continuous, bounded, and
satisfies the Lipschitz condition (3.13). Then, there exists the unique solution
of (3.13). Furthermore, if we suppose that the integral

[Ί/(ίι, «, fOlβ'Wίi
Jo

is bounded, the solution tends to 0 as t— »+oo.

In fact, the explicit representation x°(t) and the properties of K(t), it
follows that

where K is a constant, which proves the second part of the theorem.

§ 4. Stability of solutions.

In this section, we shall propose to consider the behavior of the solutions
of the difference-differential equation

(4.1) = ay(i + X> + by(t) +Λ*' y(t + 1)

where a, b, are constant and / is small as £— >+oo in some sense, by using the
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behavior of the solution of

(4.2) = ax(t + 1) + bx(t),
at

which has been investigated in [1], If we consider a special type of (4.1),
that is, the equation

dy(t + ΐ)

where a(t) and δ(£) are continuous and bounded for 0 ̂  t < oo, the existence
and uniqueness of solutions are guaranteed with the conditions that y(t) = φ(t)
(0^t< 1), 0(1 - 0) exists, and y(l) = y0.

However, instead of the equation (4.3), it is convenient to consider the
integral equation

(4.4) y(t + 1) = x(t + 1) + [ Wι)y(*ι + 1) + b(tύy(tί))K(t - fc) dtl9
Jo

where x(t + 1) is the solution of (4.2) with the conditions x(t) = φ(t) (0 ̂  t < 1)
and x(ϊ) = x0, and X(ί) is represented by (3.10) with c = 0.

By the hypotheses on a(t) and &(£), the existence and uniqueness of solutions
are established. Then, we obtain the following

THEOREM 4. We suppose that in the equation (4.4) the following con-
ditions are satisfied:

( i ) every root of es(s — a) — b = 0 lies to the left of the straight line

(ii) a(t) and b(t) are continuous for Q^t < oo and bounded, that is,

(iii) A + B < 3/2.
Then, the solution of (4.3) approaches zero as t— >+oo.

Proof. By the hypothesis on α(ί), δ(£) and the property (ii) in Theorem 1,
it follows that

(4.5) \y(t + ΐ)\ ^ \x(t + 1)1+ ΓίAlytfi + m+BlytfODβ-^-
Jo

Since we may take as t a large number, (4.5) is reduced to

\y(t + 1)1^-^/2

(4.6)
+ (

Jo

It is well known that there exists a constant Ci such that \x(t)\^ Cιe~δ

for t > 1. Hence, we obtain

(4.7) \y(t + l)|β^+ι^^C2 + (A
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where

Jo

which is a constant. Now, we can apply for the inequality the following
result.

LEMMA. In the inequality

/(*)+(
o

we suppose that x^O and K(t) ^ 0 for Q^t^x. Then, we have

u(x) ^f(x) + (Xf(t)K(t)exv((XK(s)ds}dt.
Jo V J t J

Thus, it follows by the above result that

i.e.,

for !<£<oo. Hence, if A + B<δ/2, y(t+1) approaches zero as t— >+oo.
Next we consider the equation

(4.8) y(t + 1) = x(t + 1) + f /(ίi, y(tι + 1), y(t$K(t - t,) dtl9
Jo

where x(t + 1) is the solution of (4.2) with the conditions x(t) = φ(t) (Q^t< 1),
x(ΐ) = XQ, and K(t) is represented by (3.3) with c = 0. Then, we obtain the
following

THEOREM 5. Suppose that in the equation (4.8) the following conditions
are satisfied:

( i ) every root of the characteristic equation es(s — a) — b — 0 lies to the
left of the straight line 3ϊs = — δ < 0;

(ii) f(t, 0, 0) = 0 and

\f(t, xi, yι)-f(t, x2, y2)\^

(iii) h(τ) is continuous in 0<^τ^t for any finite t, and there exists a
constant ε>0 such that

Ct+i
ι(τ) dτ > ε

X 1 ft+

—-—V
2 t + l Jo

for any finite t.
Then, the solution is uniquely determined and tends to zero as £—»+oo.

Proof. The successive approximation method shows us that the existence
and uniqueness of solutions of (4.8) are guaranteed under the hypotheses cited
above.
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It follows by (ii) that

\y(t + ΐ)\£\χ(t + 1)1+
o

By the same reason as in the proof of Theorem 4, we have

^

Jo

Jo
It follows by Lemma that

\y(t + 1)1 ̂  c( expf- — (t + 1) + Γ
\ 2 Jo

where

tί and
Jo

It follows from the hypothesis (iii) that y(t) approaches zero as £-> + oo, which
proves the theorem.

§ 5. Perturbation of equations having periodic solutions.

In this section, we shall consider the equation

(5.1)
at

with the conditions x(t — 1) = Φ(t) (0 ̂  t < 1) and #(0) = #0, where ψ(t) is a
continuous function independent on μ, which is constant. In the sequel we
suppose that /(£, x, y, μ) satisfies the following conditions :

( i ) f(t, x, y, μ) is a periodic function of t with the period T;
( ii ) the equation (5.1) corresponding to μ=Q has a periodic solution x=p(t)

of the period T with the conditions p(t — ϊ) = φ(t) (0 ̂  t < 1) and #(0) = XQ;
(iii) /(ί, a?, 2/, μ), fx(t, x, y, μ), fy(t, x, y, μ) are continuous for 0 ̂  t ̂  T,

The problem to be investigated is whether or not the equation (5.1) has a
periodic solution for μ which does not vanish but near zero.

1. First variation. In general, we consider the equation

(5.2) =f(t, x(t), *(*-!))
at

with the conditions that x(t — 1) = φ(t) (0 ̂  t < 1), 0(1 - 0) exists, and cc(0) = x0.
We suppose that f(t, x, y), fx(t, x, y), fy(t, x, y) are continuous for

Then, there exists a unique solution x = φQ(t) with φQ(t — 1) = 0(ί) (0 ̂  ί < 1)
and 00(0) = XQ. If we put α(ί) = φQ(t) + t/(ί), (5.2) is reduced to the equation

(5.3) =/(*, 00(0 + y(t), *o(ί - 1) + y(ί - D) -Λί, *o«), #o« - D)
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with the condition y(t — 1) = 0 for 0 ̂  t g 1. The mean value theorem leads us
to the equation

(5.4) - - = fx(t, φ0(t),

where f=o(y) as #— >0. Then, we call the equation

(5.5) ,
at

the first variation of (5.3) with the condition y(t — l) = Q (0 ̂  ί ̂  1).

2. Existence of periodic solutions. It is noted that in the equation (5.1)
there exist a solution x — x(t, XQ, μ) (XQ = x(0, x0, μ)) and its partial derivative
dx(t, XQ, μ)/dx0 for O^ί^Γ, sufficiently small μ and \xQ — p(0)\.

THEOREM 6. Suppose that f(t, x, y, μ) satisfies the conditions (i), (ii), (iii)
stated above. Let x = x(t, XQ, μ) be a solution of (5.1) with the conditions
x(t — l, XQ, μ) = Φ(t) (0^ί<l), a?(0, α?0, μ) = Xo. Then, if

(5.6)

there exists a unique solution x = x(tf Xo(μ), μ) of (5.1) with the period T for
sufficiently small μ, where Xo(μ) is a continuous function of μ and XQ(O)=XQ.

Proof. The necessary and sufficient condition that a solution x — x(t, XQ, μ)
of (5.1) with the condition x(t — 1, XQ, μ) = φ(t) (0 ̂  t < 1) and XQ == »(0, α?0, Λ*)
has period T is that

(5.7) x(T, XQ, μ) = xQ.

Since (5.1) has a periodic solution x = p(t) for // = 0, we obtain x(T, p(G), 0) = x0

(»o = p(0)) It follows by a well known theorem of implicit function that if

(5.8) (x(T, XQ, μ)-Xo)}μ=Q =£0,
/*o=ί>(0)

there exists a function #0 = #o(μ) continuous and uniquely determined for
sufficiently small μ, satisfying (5.7) and α?0(0) = p(0). (5.8) is equivalent to
(5.6), which proves the theorem.

Next, we consider the first variation of (5.1) with respect to p(t) as μ = 0,
that is, the equation

(5.9) -^^=Λ(ί, p(ί), p(ί-l), 0)y(ί)+Λ(ί, p(ί), ί>(ί-l), OMί-1)
αί

with the condition y(t — l) = Q (0 ̂  t ̂  1). Since Λ, /y, and p(ί) are the periodic
functions of the period T, (5.9) is the equation with the periodic coefficients of
the period T. Then, Theorem 6 is equivalent to the following

THEOREM 7. // the equation (5.9) has no periodic solutions of the period
T, the result in Theorem 6 remains valid.
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Proof. Let x = x(t, x0, μ) be the same solution as in the proof of Theorem 6.
Since dx(t, xQ, μ)/dt=f(t, x(t, x0, μ), x(t — l, x0, μ), μ), we obtain an equation

f y ( t , P(t), P(t — '.

u/t/

where
/ £i \

, and

Since y(t — 1) = 0 (0 ̂  t ̂  1) in (5.9), any solution y(t) of (5.9) with the conditions
y(t — 1) = 0 and y(ϋ) = c is represented by y(t) = cψ(f). In fact, the result is
easily obtained by the linearity and uniqueness of solutions of (5.9).

If the equation (5.9) has a periodic solution yQ(t) of the period T with the
conditions yQ(t — l) — 0 and 2/0(0) = a(Φ 0), it is represented by yo(t) = (
Furthermore, we obtain

Conversely, if ψ(T) = 1, aψ(t) is a periodic solution of (5.9) for any constant

On the other hand, it is easily obtained that

ψ(T) = (-2— χ(T, x0,

which completes the proof.
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