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Introduction.

Consider a form p(z) \ dz \ 2 on a Riemann surface R. This defines a self-
adjoint elliptic partial differential equation An = pu on R. The so called global
theory of this equation aims to investigate the structures of the spaces of some
distinguished solutions of this equation after the theory of harmonic functions.
The investigation of this direction was begun first by Ozawa [10] and continued
by himself [11], [12] and L. Myrberg [4], [5] and later by Royden [13] and
the present author [7].

The aim of this paper is to study the space ty(R) of non-negative solutions
of this equation from the aspect of minimal solutions of ty(R). After Martin
we say that a function u in φ(R) is a minimal solution of the above equation
if uφΰ and u^v for some v in ty(R) implies the existence of a constant cυ

such that v = cvu on R. It is not hard to see that ty(R) has sufficiently many
minimal solutions of the above equation, i.e. the totality of linear combinations
of minimal solutions with non-negative coefficients is dense in φ(J2) with respect
to the compact convergence topology. Our problem is to determine the shapes
of minimal solutions and to determine the standard way to approximate the
functions in ty(R). This problem was raised essentially by Ozawa in [11]. We
shall see that the situation is quite similar to that of harmonic case as was
treated by Martin [3].

In chapter I we state among some known fundamental results the conti-
nuity of Green's function and precise nature of it around the pole. We also
introduce a class of functions which plays the similar role to super- and sub-
harmonic functions in the theory of harmonic functions. The similar investiga-
tion is found in a recent work of L. Myrberg [6].

In chapter II we develope the theory of Green potentials. These are exten-
sively used in the following chapter. The Green potentials are quite similar
to the harmonic Green potentials. We believe that the potential theoretic
method will be a powerful tool for the future study of global theory of Au
= pu.

In the final chapter III we reproduce the Martin theory for Au — pu. We
shall state that every minimal solution of this equation is obtained by the
limiting process
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κ~ (G(z9 G;

for some appropriate sequence {ζn} of points in R which has no point of accumu-
lation in R and by multiplying a non-negative constant, where G(z, 0 is Green's
function of Au — pu with respect to R and with pole ζ and 20 is a fixed point
in R. The totality {K(z, ζ); ζ eΛf} of minimal solutions of Au = pu normalized
by the condition that K(ZQ, 0 — 1 generates ty(R) in the following manner: for
any u(z) in ty(R) there exists a unique Borel measure μ on M such that

= ( K(Z, ζ)dμ(ζ),

where M is topologized so as to be a metric space by which K(z, ζ) is conti-
nuous on R X M. The method of proof used here is quite due to Martin [3].

At the end the author expresses his heartiest thanks to Professor M. Ozawa
and Mr. M. Kishi for their valuable discussions.

I. Preliminaries.

1.1. General notions and notations. Throughout this paper we denote by
R a Riemann surface in the sense of Weyl-Radό. By a density p(z) on R we
mean a non-negative continuously differentiable function of local parameter z
such that the expression p ( z ) \ d z \ 2 is invariant under the change of local para-
meters. Moreover we always assume that p(z) ̂  0 on R. Then we can con-
sider the elliptic partial differential equation

on R. By a solution u of (1.1) on an open subset D of R we mean that u is
twice continuously differentiable function satisfying (1.1) on D.

An open subset D of R is said to be nice if its relative boundary ΘD con-
sists of countably many piecewise analytic Jordan curves which do not cluster
in R and each of which has no end point in R. A subdomain D of R is a
connected open subset of R and a compact subdomain is a subdomain whose
closure is compact in R. An exhaustion {Rn}^=\ of R is a sequence of nice
compact subdomains Rn of R such that Rn c Rn+ι (n = l, 2, •) and R = \j£LιRn.
For a point 20 in R, Kr(zo) denotes the neighborhood disc of local parameter z
valid for | z — ZQ \ ̂  1 such that Kr(zQ) = (z; \z — zQ\<r) for 0 < r ̂  1.

1.2. Fundamental properties of solutions. For the sake of convenience,
we describe here the known fundamental properties concerning the solutions
of the equation (1.1).

Functions considered in this paper are all assumed to be real-valued.
( I ) Maximum principle. Let p and q be two densities on R and D be

a nice compact" subdomain of R. Suppose that p ̂  q on D and u, v and w be
solutions of Au = pu, Av = qv and Aw — (^ respectively and continuous on D
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satisfying w^v^u^Q on dD. Then the same inequality holds on D.
( II ) Harnack inequality. Let D be a nice compact subdomain of R.

Then there exists a positive constant c = c(D) such that for any pair of points
z and zf in D and for each non-negative solutian u of (1.1) on R it holds

c'lu(z) ^ u(z') ^ (?%(«).

(III) Dirichlet problem. Let -D be a nice compact subdomain of R and
^ be a continuous function on dD. Then there exists a unique continuous
function u on D such that % — ̂  on ΘD and % is a solution of (1.1) in D.

(IV) Completeness. Suppose that {un} is a sequence of solutions un of
(1.1) on R and converges uniformly on each compact subset of R to a function
% on R. Then % is also a solution of (1.1) on R.

( V ) Monotone compactness. Let {%n} be a monotone sequence of solu-
tions un of (1.1) on R such that {UH(ZQ)} is bounded for some point z0 in #.
Then {un} converges uniformly on each compact subset of R to a solution of
(1.1) on R.

(VI) Bounded compactness. Let {un} be a sequence of solutions un of (1.1)
such that un\ ^M^oo. Then there exists a subsequence of {^w} which con-
verges uniformly on each compact subset of R to a solution of (1.1) on R.

As for the proofs of these propositions, refer to Myrberg [4].
(VII) Removable singularity. Let D be a compact subdomain of R, E be

a compact subset of D and u be a bounded solution of (1.1) in D— E. In order
that u is continued to D so as to be a solution of (1.1) on D it is necessary and
sufficient that E is of logarithmic capacity zero (cf. [7]).

1.3. Supersolutions. A continuous function / on an open subset D of R
is said to be a supersolution (resp. subsolution) of (1.1) on D if for any point
ZQ in D there exists a positive constant r(z0) such that KdD and f(z)^u(z)
(resp. /(z) g iί,(z)) on K, where K=Kr(zo) for arbitrary r in 0<r^r(20) and u
is the solution of (1.1) on K with boundary value / on dK. Clearly a solution
of (1.1) is a supersolution and subsolution of (1.1) and vice versa. It is also
clear that / is a supersolution if and only if — / is subsolution.

LEMMA 1.1. ( i ) Let ft and /2 be supersolutions of (1.1) and ct (i=l, 2)
be non-negative constants. Then cίf Cι/ι+c2/2 and min(/ι,/2) are also super-
solutions of (1.1).

(ii) Let {fn} be a sequence of supersolutions of (1.1) in an open subset
D of R and converges uniformly on each compact subset of D to a function
f on D. Then f is also a supersolution of (1.1) in D.

(iii) A supersolution f(z) of (1.1) on a nice compact subdomain D of R
and continuous on D with /^O on dD is non-negative on D.

(iv) Let f be a supersolution of R and D be a nice subdomain relatively
compact in R and fD be obtained from f by replacing by u inside D, where
u is the solution of (1.1) in D with boundary value f on dD. Then fD is
again supersolution of (1.1) on R and fD^f on R.
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These are easy consequences of our definition and preceding- paragraph.

Here we remark that we can apply Perron's method using super- and sub-
solutions to solve the Dirichlet problem which sharpens (III) in § 1.2. Let D be
a nice compact subdomain of R and ψ be a bounded function on dD. We put
UP (or Sp) be the class of all super- (or sub-) solutions of (1.1) such that

(or
z +ζ

at any point C in dD. We put

#,(*)
and

Then as in the harmonic case we easily see that Hφ and Hφ are solutions of
(1.1) on D and Hψ^Hφ on D. Moreover if φ is continuous at C in dD, then
we have

lim Hψ(z) = Km Hφ(z) =
z —

1.4. Green's function. Let ζ be an arbitrary fixed point in R. Now con-
sider the family Fς of functions v(z) on R — ζ such that

(G. 1) v(z) is a non-negative solution of (1.1) in R — ζ;
(G. 2) there exists a positive constant Mζ such that

on J5Γ,(0-C.
Moreover if R is a nice subdomain of a larger surface Rf with relative

boundary Γ, we suppose that
(G. 3) v(z) vanishes continuously at each point of ϊ.
Myrberg [5] proved that the family Fζ is non-empty for any point C in

R. We put

and we call G(z, C) is Green's function of (1.1) with respect to R. It is easily
seen from §1.2 that G(z, C) possesses the properties (G. 1), (G. 2) and (G. 3).
Let {Rn} be an exhaustion of R and Gn(z, 0 be Green's function of (1.1) with
respect to Rn. Then {Gn(z, 0} is an increasing sequence and

(1.2) <?(*,0 = lim <?„(*, 0,

where convergence is uniform on each compact subset of R. Let H(z, 0 be
Green's function of Δu = qu with respect to R and g(z, 0 be harmonic Green's
function with respect to R, where we promise that g(z, 0 = °° if R is a para-
bolic Riemann surface. If 0 ̂  q ̂  p on R, then from § 1.2 and by using ex-
haustion it is easily seen that

tt.8) 9(z, Q^H(z, Q^CKz, Q
holds on R — ζ.
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By defining G(C, C) = + °°, we get a function G(z, C) defined on R xR. Now
we derive important properties of G(z, C) considered on R X R. From (G. 1)
and (II) in §1.2, we get

(G. 4) G(z, 0 > 0 on R X R and G(z, 0 = + °° if and only if z = ζ.
By Green's formula we easily see that ffn(z, C) = Gn(C» *0 on ̂  χ Rn and

by (1.2) we get

(G. 5) G(z, C) = G(C, «) on 12 X JR.

Next we prove
(G. 6) G(z, 0 is continuous on RxR.
This is a consequence of the following (G. 6 a) and (G. 6b) which will be

used repeatedly.

(G. 6 a) G(z, C) is finitely continuous at (20, Co) in RxR with z§Φ Co.

Proof. We take a small disc K—Kι(zQ) in -R such that CoΦ^ Let G(z, C)
be Green's function of (1.1) with respect to K. Then from (1.3)

(1.4) 0<G(z,C)^lo0 z — C

on KxK. By Green's formula

G(z, C) = — ί G(ί, Q-j-G(z, t)ds.
2π j dK on

Here 0/0w denotes the inner normal differentiation and ds denotes the line ele-
ment of ΘK. From this

I G(z, C) - G(z, Co) I ̂  -^-J3 J
 G(*> 0 ~ G(ί, Co) I -£ (̂s, ί) ds.

From this, by (1.4) and Schwarz's inequality, we obtain
/c \1/z

(1.5) I G(z, C) - G(z, Co) I ̂  α(«)( I G(ί, C) - G(ί, Co) I 2 d s ) ,
\JdK )

where α(z) - (2τr)-1/2(l_+ | z - Zo I)/(1 - 1 z - z01). Let Z) be a neighborhood of
Co such that DdR—K. By (II) in §1.2 we have a positive constant c such
that 0<G(ί, 0^cG(t, Co) on D for all t in 9JSΓ. Hence we have

I G(ί, C) - G(ί, Co) I 2 ̂  2(1 + c2)G(ί, Co)2

for all (ί, C) in ΘKxD and the right term of the above inequality is cfe-inte-
grable on ΘK. We also have limζ+ζo | G(ί, C) - G(ί, Co)l 2 = 0 for each t in ΘK.
Hence by Lebesgue's convergence theorem, for arbitrarily given positive number
ε, we can find a neighborhood Vζ of Co contained in D such that

σ \l/2 0

I G(ί, C) - G(t, Co)!2 ds} < τr1/24
3JΓ / 4

on FCO. We can also find a neighborhood VZQ of a:0 contained in K such that

(1.7) α(«) < 2(2π)-1/2 and | G(z, Co) - G(z0, Co) K -̂
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on VZQ. Hence we get, by (1.5), (1.6) and (1.7),

I G(2, 0 - G(20, Co) K £

on FZo X Fc0. Q.E.D.

(G. 6b) G(2, C) is represented in D = K1/2(zo) X Kι/2(zo) as follows:

G(2, C) = log ! ~ (£ ~ so)(z ~ ZQ) + w(Zj Q9

2 —C

where w(z, C) is finitely continuous on D.

Proof. Let K=K1(z0) and X"' =.£1/2(20). We take Green's function G(2, C)
of (1.1) with respect to K and harmonic Green's function g(z, C) with respect
to K. Let u(z, C) be the solution of (1.1) in K with boundary value G(2, C) on
ΘK with arbitrary fixed C in Kf. Hence u(z, C) = G(z, C) on ΘKxK'. As we have
seen that G(2, C) is continuous on dKxK', so u(z, C) is uniformly continuous
on dKxK'. Let ε be an arbitrary positive number. We can find a positive
number d = d(ε) such that \u(z, Q — u(z, CO ^£/2 for any 2 in OUT and for any
C and C' in ίΓ' with | C — C' I < S. The function u(z, C) — ̂ (2, CO is a solution of
(1.1) in K for fixed C and C' Hence by (I)_in §1.2, \u(z, Q-u(z, C O I ^ ^ / 2
for any z m K and for any C and C in ίΓ' with | C — CΊ < δ. Fix a point
(z'j CO in K' xK'. There exists a positive number η — η(e, CO such that |^(2, CO
— u(zr

t CO I ̂ ϊ£/2 if 2 is in JΓ' and \z — z'\<η. Thus we have shown that if
(2, C) is inK'xK' with |2-2Ί< ̂ and I C ~ C Ί < ^ then |u(z, 0 - u(*', CO
^ε or u(z, C) is continuous on K'xK'.

Now it is easy to see that 3(2, C) = G(2, C) — u(z, C) on Z). If we put

v(z, C) - -~f f P(z')g(z, z')G(z', Odx'dy''
2π J J &

on 5, where 2r — xf 4- tί/r, then by Green's formula

on 5. From this we see that v(z, 0 = v(C «) on D. As G(^, C) ̂  ί/(«, C)
- log I (1 - (C^Xz - *o))/(z - C) I, so by putting b(z) = (1 + | z - ZQ |)/(1 - | z - z0\)
it holds

G(C, z'γdx'dί

By Schwarz's inequality,
M /CC \1/2

(1.8) K2, C)-^(2ι,C)I ^—(πδ(C))1/2( 1^(2, 20-^(21, z')\*dx'dy'\ ,
π V J J ^ /

where M= sup(p(2θ; z' &K). It is clear that

l i m f f \g(z, zf)-g(zlt z')\*dx'dy' = 0.
z+zl J J K

Thus v(z, C) is continuous in z with fixed C and by symmetricity of v(z, C),
^(2, C) is continuous in C with fixed 2. Now fix a point (21, Ci) in D. From
(1.8) it holds
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( O \ 1/2
— ) Mp(z,zύ

π /

for (z, 0 in A where Hmz^zlp(z, Zι) = 0. We also have

p'(CCι)=|v(*ι, 0-^ι, CO 1-0

as C— >Cι Hence
q \ 1/2

^.
 π /

which shows that v(z, C) is continuous on D. By putting u(z, C) — v(z, 0
= w(z,0, it holds (G. 6b).

II. Potential theory.

2.1. Fundamental properties of Green potential. By a measure μ on R we
mean a non-negative countably additive set function defined on the Borel field
generated by all compact subsets of R and μ(K) is finite for every compact
subset K of R. The support Sμ of μ is defined as follows: Sμ= ΓiF, where F
is closed in R and μ(R~F)-Q.

As we have seen in §1.4, Green's function G(z, 0 of (1.1) with respect to
R is strictly positive, symmetric and continuous on R x R and G(z, ζ) is finite
unless z = ζ. Hence G(z, C) is a kernel in the sense of potential theory. A
Green potential Uμ(z) of a measure μ with kernel G(z, C) is defined by

Uμ(z)={ G(z,0dμ(0

By using (II) in § 1.2 it is easy to see that Uμ(z) is finite on R - Sμ if
is finite for some point ZQ in R and that Uμ(z) is lower semicontinuous on R
and continuous on R — Sμ. Hereafter we consider only those potentials Uμ(z)
such that Uμ(z) is finite on R — Sμ.

LEMMA 2.1. The potential Uμ(z) is a solution of (1.1) in R — Sμ.

Proof. Let μn be the restriction of μ on Rn, where Rn is an exhaustion
of R. Then Uμ™(z) converges increasingly to Uμ(z) on R-Sμ. If Uμn(z) is a
solution of (1.1) in R - Sμn, then Uμ(z) is a solution of (1.1) in R - Sμ by (V)
in § 1.2. Hence we may assume without loss of generality that Sμ is compact.

We take an arbitrary point z0 in R — Sμ and a local parameter z around ZQ
such that KdR — Sμ, where K=Kι(zQ). We have only to show that Uμ(z) is
a solution of (1.1) in K.

By the definition of integral and the uniform continuity of G(z, 0 on
KxSμ we have sequences {az

cn)} of non-negative numbers and {Cz<w)} of points
in Sμ (i = 1, 2, , Nn) such that

on K, where
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un(z) = Tίaί^G(z,
» = 1

and

n

on K. Clearly un(z) is a solution of (1.1) in K and by the bounded compact-
ness of {un(z)} on K it converges to a solution of (1.1) on K. Hence Uμ(z) is
a solution of (1.1) in K. Q.E.D.

In §2.4, the converse of this Lemma will be proved. The following is an
easy consequence of (G. 3).

LEMMA 2.2. If Sμ is compact and R has a pίecewise analytic relative
boundary ΐ, then the potential Uμ(z) vanishes continuously on Γ.

Next we prove

LEMMA 2.3. lίm Uμ(z) = ίϊϊn UP(Z).
SμS*->*0 R^Z-^ZQ

Proof. Let K=K1/2(zo) and μ' be the restriction of μ on K and μ" — μ —μ'.
Then UP(Z) = U**(z) + Uμ"(z) and UP"(Z) is continuous on K. Hence we may
assume that SμdK and z is in K. By (G. 6b)

U"(z)=(
J — C!

on K, where u(z, C) is finitely continuous on KxK. Clearly the second term
of the right hand side of the above is continuous on K and it is well known
and easily verified that

_ Λ J_ _ Λ 1

Km log- - —dμ(Q= Km log- - —dμ(Q.
^3*-> oJje \Z — ζ\ ΛΓ3*->*0Jjε \Z — ζ\

Hence we get the required identity. Q.E.D.

LEMMA 2.4. Let K be a compact subset of R and φ be a non-negative
continuous function admitting the value oo such that φ is a supersolution
of (1.1) in R — Sμ^K. Suppose that <p(z)^Uμ(z) on Sμ^K, where Sμ is com-
pact, then the same inequality holds on the whole space R.

Proof. Let {Rn} be an exhaustion of R and Gn(z, 0 be Green's function
of (1.1) with respect to Rn and we put

Un"(z)=( Gn(Z,Qdμ(0,

where Sμ<^Rn From (1.2) we see that Un

μ(z)/Uv(z) on R. From this we
may assume that R has the relative boundary ϊ and R^ϊ is compact. Let D
be a component of R — Sμ^K. Then from Lemma 2.2 and 2.3
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ίίϊn U^(

where ZQ is an arbitrary point in dD. Hence by Lemma 1.1 and 2.1, Uμ(z)
on D. So this inequality holds on R. Q.E.D.

The mutual energy (μ, u) of measures μ and v is defined by

G(Z, ζ)dμ(z)dv(ζ).

The energy \\μ\\2 of a measure μ is, by definition, l!μ| |2 — (μ, μ). Let K be a
compact subset of R. The capacity C(K) of K is defined by

For an arbitrary subset X of .R, its inner capacity C(X) is defined by

C(X) = suv(C(K); K is compact in R and .SΓcJE")-

Hereafter capacity means always inner capacity.

LEMMA 2.5. The kernel G(z, C) is regularl\ that is, for any Co in R
and any neighborhood V of Co, there exist a measure μ of total mass 1 with
finite energy and SμtιV satisfying

U"(z)£2G(z9to
on the whole space R.

Proof. Take a local parameter such that -Kι(Co) c V. By (G. 6b), there
exists a positive constant c such that

(2.1) -c-log|z-CI^G(z, C)^-log|z-Ci

holds on J£ι/2(Co) X-KΊ/2(Co) Let £ be in (0, 1/2) and put

Co) if I C - C o l = * ,
elsewhere.

Clearly the total mass of με is 1 and the support of με is contained in K1/2(ζo).
From (2.1)

(2.2) UK(Z) ^ c + min (- log β, - log U - Co I)

on JSΓι/2(Co) From this we have \\μs\\2^c-logε <co. From (2.1) and (2.2),
UP*(Z) ^ 2G(«, Co) on XΊ/2(Co) if « is sufficiently small. By Lemma 2.4, this ine-
quality holds on the whole space R. Q.E.D.

An important consequence of the regularity of G(z, C) is the following

LEMMA 2.6. Let X be an arbitrary subset of R and ψt (i — 1, 2) be con-
tinuous functions defined on X. If

1) Terminology due to Ninomiya [8].
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holds on X except a set of capacity zero, then the same inequality holds at
every inner point of X.

Proof. Let z0 be an inner point of X and let {Ωn} be a fundamental base
of neighborhoods of z0 such that Πn+ιCΩnc:X. By the regularity of G(z, C),
we get a sequence {μn} of measures such that Sμn c Ωn and || μn \\ < oo and
μn(Sμn) = 1 and Uμ»(z) ^ 2G(zQ, z) on R. Then it is easy to see that

£^(zo) = lim Uμ(z)dμn(z)
JΛ

and

φt(zo) = limn I φt(z) dμn(z) (i = 1,2).
JΛ

Noticing that /^-measure of a set of capacity zero is zero, we have

ί
jj

Letting n tend to infinity we get the required inequality. Q.E.D.

2.2. Potential theoretic principles. Green potentials enjoy almost all im-
portant potential theoretic principles from which we can derive the analogous
properties as that of harmonic Green potentials. They are listed in the fol-
lowing

THEOREM 2.1. Green kernel G(z, 0 satisfies the following principles.
( i ) Continuity principle. // the restriction of Uμ(z) on Sμ is finitely

continuous on Sμ, then Uμ(z) is continuous on R as the function on R.
( ii ) Frostman's maximum principle. // the inequality Uμ(z) ^ 1 holds

on compact Sμ, then the same inequality holds on the whole space R.
(iii) Cartan's maximum principle. If the inequality Uμ(z)^Uv(z) on com-

pact Sμ with || μ || < oo, then the same inequality holds on R.
(iv) Unicity principle. // Uμ(z)~Uv(z) on R except a set of capacity

zero, then μ = v.
( v ) Equilibrium principle. For an arbitrary compact subset K of R

there always exists a unique measure called equilibrium measure of K satis-
fying SμdK and Uμ(z) = 1 on K except a subset of dK of capacity zero and
Uμ(z) ^ 1 on R.

(vi) Balayage principle. For an arbitrary compact subset K of R and
a measure v there always exists a unique measure μ called balayaged mea-
sure of v on K satisfying Sμ<^K and Uμ(z) — Uv(z) on K except a set of
inner capacity zero and Uμ(z) ^ Uv(z) on R.

(vii) Energy principle. For any measures μ and v with compact supports

such that σ = μ — v^Ξ® it holds 1 G(z, 0 dσ(z) dσ(Q > 0.
J JϋxJϊ

Proof. ( i ) follows at once from Lemma 2.3 and the lower semicontinuity
of Uμ(z) on R. (ii) is a consequence of Lemma 2.4. To prove (iii) and (iv),
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we notice that for kernel G(z, 0 (in) and (iv) are equivalent to the following
(in)' and (iv)' respectively (cf. Ninomiya [8], Thέoremes 7 and 9):

(iii)' Suppose that Co is a point in R and λ is a measure with compact
support Sχ not containing Co- If Uλ(z) ^ G(z, Co) holds on SΛ, then the same
inequality holds on the whole space R.

(iv)' Suppose that Co is a point in R and Λ is a measure with compact
support Si not containing Co- If Uλ(z) ^ G(z, Co) holds on SΛ, then U*(z)
< G(z, Co) on a neighborhood of Co-

These are easy consequences of Lemma 2.4 and the fact G(Co, Co)—00- (vii)
is a consequence of ( ii ) (or (iii)) and (iv) (cf. Ninomiya [8], Lemma 6). Next
we concern ourselves with ( v ) and (vi). Existence of equilibrium measure on
K (resp. balayaged measure of v on K) is equivalent to ( ii ) (resp. (iii)) (cf.
Ninomiya [8], Theoreme 4 (resp. 5)). Unicity of them follows from (iv) (cf.
Ninomiya, ibid.). Non existence of exceptional points in inner point of K for
equality Uμ(z) = 1 follows from Lemma 2.6.

2.3. Sets of capacity zero. It is quite easy to see that a subset X of R
is of inner capacity zero if and only if C (X ̂  Kί(z)) = 0 for all z in R. We
say that a subset X of R is of inner logarithmic capacity zero if inner
logarithmic capacity of X^Kι(z) is zero for all z in R. We can prove

THEOREM 2.2. For a subset X of R, C(X) = 0 if and only if X is a set
of inner logarithmic capacity zero.

Proof. From the above remark and the definition of C(X) and inner
logarithmic capacity, we may assume without loss of generality that X is a
compact subset of a parameter disc K=K1/2(zo). We put

g(z, Odμ(z)dμ(Q;
π

where g(z, 0 is harmonic Green's function of KI(ZO). It is well known that X
is of logarithmic capacity zero if and only if CQ(X) — 0. Hence we have only
to prove the equivalence of Co(X) = Q and C(-X")=0. From (G. 6b) we can
find a positive constant c such that

g(z, 0 ^ G(z9 0 + c rg g(z, 0 + 2c

on KxK. If μ is a measure such that SμdX and μ(Sμ) = l. Then

and so

C(X) - C0(X)

This shows the equivalence of Cot3Γ) = 0 and C(X) = 0. Q.E.D.

It is known that from continuity principle it follows the following (cf., for
example, Ugaheri [14]).
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THEOREM 2.3. Let E be an Fσ-set of capacity zero in R. Then there
exists a measure μ satisfying μ(R—E) — Q and Uμ(z) = oo at each point z
in E.

This measure μ (or potential Uμ(z)) is called Evans' measure (or Evans'
potential) of E with respect to R.

2.4. Gauss' variation. A sequence {μn} of measures is said to converge to

a measure μ vaguely if 1 1 f(z) dμn(z) 1 converges to f(z) dμ(z) for all con-

tinuous functions f(z) with compact support on R. The following is well
known and can be proved easily by using Riesz-Markoff-Kakutani's representa-
tion theorem of continuous linear functional (cf ., for example, Halmos [1], at
page 243).

SELECTION THEOREM. // Sμn are contained in a compact set in R and
{μn(R}} is uniformly bounded, there exists a subsequence of μn which con-
verges to a measure vaguely.

Let K be a compact subset of R. By Stone- Weierstrass theorem, we can
easily see that the closed subalgebra generated by C(K) of C(KxK) coincides
with C(KxK), where C(K) and C(KxK) are the totality of continuous func-
tions on K and KxK respectively. Using this fact, we get at once

LEMMA 2.7. Suppose that Sμn are contained in a fixed compact set in R
and {μn} converges to μ vaguely. Then limn(μn, μn)^(μ, μ).

The following theorem is very useful in the potential theory and proved
easily by using Lusin's theorem. For the proof, see, for example, Kishi [2],
Lemma 2.

REGULARIZATION THEOREM. Let K be a compact set and μ be a measure
with Sμc:K and ||μ||<°°. Then there exists a sequence {μn} of measures
with μn^μ satisfying 1° {μn} converges to μ vaguely and limn || μn — μ \\ = 0,
2° Uμn(z) are all continuous on R, 3° {Uμn(z)} converges increasingly to Uμ(z)
pointwise in R.

The following is also well known. For the proof, see, for example, Nino-
miya [8], Lemma 5.

LEMMA 2.8. Suppose that {μn} converges to μ vaguely and Sμn are con-
tained in a fixed compact set in R. Then

on R except a set of capacity zero.

Let K be a compact set in R and ψ be a continuous function on K. For
a measure μ with SμdK we put
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G9(μ) = (μ9μ)-2\ ψ(z)dμ(z)
JK

and

As G^(0) = 0, so mφ ̂  0. Gauss' variational problem with respect to the
system (K, φ) is to find a measure μ such that mφ = Gψ(μ). We say that {μn}
is a minimal sequence if Gφ(μn)\/mφ.

LEMMA 2.9. Gauss' variational problem is always solved.

Proof. Let {μn} be a minimal sequence. We put A = {/ί; Sχ C.K, Λ(ίQ — 1}
and α = inf(| |Λ ||2; λ <=Λ). Let λn be in Λ and | |Λ n | | 2 \α. By selection theorem
we may assume that λn converges vaguely to a measure λ in A. By Lemma
2.7,

Thus α = | | Λ | | 2 and by energy principle a > 0. Now it is easy to see that Gψ/t(λ)
> 0 if t > 2 1| φ || /α, where λ eΛ and || φ || - sup (| φ(z) zεΞK). As Gφ(tλ) = t2Gφ/t(X),
so if μ(K) >2\\φ\\/a, then G>(μ) > 0. Hence /^(#) ̂  2 1| ^ ||/α for all sufficiently
large n since mφ^0. By selection theorem we may assume that {μn} con-
verges vaguely to a measure μ. By Lemma 2.7,

m^ ̂  GpO") ̂  linin (μn, μn) + 2 ^>(«) dXi?) = limn Gφ(μn) = mφ.
jx

Hence Gφ(μ) = mφ.

The following is known as fundamental theorem in potential theory.

THEOREM 2.4. Let K be a compact set and φ be a continuous function
defined on K. Then there exists a unique measure μ with Sμ c K and Uμ(z)
^ φ(z) on Sμ and U^(z) ^ φ(z) on K except an Fσ-set E of QK with C(E) = 0.

Proof. Let μ be a solution of Gauss' variational problem with respect to
(K, φ). Let d = sup( t7^(z) - φ(z); z <= Sμ) and E=(z^K; U^(z) - φ(z) < d) and
En = (z^K; Uf(z) — φ(z)^d + l/n). Then it is clear that En is compact and
E= \jnEn or E is an J&Vset. First we claim that C(E) = Q. Contrary to the
assertion we suppose C(E) > 0. By the definition of C(E) we can find a com-
pact set F contained in E such that C(F) > 0. Let ω be equilibrium measure
of F. Then

and so there exists an n such that ω(F^En) > 0. Let ωn be the restriction of
ω on En. Then || ωn \\ ̂  || ω \\< oo by C(F) > 0 and so u>n(#n) > 0. By regulari-
zation theorem we can find a measure β with Sβ<^En and | |/3| |<oo and £7^(2)
is continuous on R. By the definition of d and the lower semicontinuity of
Uμ(z) — φ(z), we can find a neighborhood W of a point 20 in Sμ such that



164 MITSURU NAKAI

(2.3)

on W^K. Now define the set function λ by

!

— μ on W,

^

0 elsewhere on R.
Then by || μ \\< oo and the continuity of TJP(z), we get the finiteness of

ίί G(z,0dλ(z)dλ(0 and ί U^(z)dλ(z). If 0<£<1, then μ + tλ be a mea-
JJUxJί JJ2 fJJUxJί JJ2 f

sure whose support is in K. Hence G^(μ + tλ)^Gφ(μ) and from this I (Uμ(z)
JJ2

— φ(z))dλ(z)^Q. On the other hand, from (2.3) and (2.4) we see that

( ( UP(Z) - <f(z)) dλ(z) = - μ( W) / 2n < 0. This is a contradiction and so C(E) = 0.
J-β

Thus we have seen that Uμ(z) — ψ(z) ^ d on K except an ^-set E with

capacity zero and Uμ(z) — ψ(z) = d on Sμ except a set of capacity zero. Hence

we have (μ, μ) — \ ψ(z)dμ(z) = d μ(K). On the other hand μ + tμ with | ί |<l
J-K^

is a measure with support contained in K. So we have Gφ(μ + tλ) — Gφ(μ) ^ 0.

From this (μ, μ)- ( φ(z)dμ(z) = 0 or d = Q. Thus we have ϋμ(z)^φ(z) on 5̂
JK

and ί7 (̂̂ ) ̂  ̂ («) on K except E of capacity zero. By Lemma 2.6, we see that

Finally we prove the unicity of μ. Suppose that μ' also satisfies the asser-

tion of our theorem. Hence in particular \\μ'\\<oo. So Uμ'(z)^<ρ(z) on K

except a set of capacity zero implies (//, μ) ̂  φ(z)dμ(z). Hence \\μ — μ'\\2

= ll/* II 2 + \\μ' II2 - 2(X, μ)^\\μ ||2 + ||̂  ||2 - 2\ φ(z)dμ(z) = Gφ(μ)+ \\μf ||2. As C7^(«)
J-^ r

= φ(z) on S^u/ except a set of capacity zero, so | |//]|2= φ(z)dμ'(z) or G( '̂)

= - || μ' ||2. Thus we get || μ - μ'\\2^ G(μ) - G(μ') ^ 0. Thus^y energy principle,

μ = μf. Q.E.D.

The following will be extensively used in Chapter III.

THEOREM 2.5. Let K be a compact set in R and f be a non-negative
super solution on R. Then there exists a unique measure μ with SμdK
and Uμ(z)^f(z) on R and Uμ(z)=f(z) on K except an Fσ-set E of dK with

Proof. This follows from Theorem 2.4 and Lemma 2.4. Q.E.D.

As an application of Theorem 2.5 we prove the converse of Lemma 2.1.
We state this as follows.

THEOREM 2.6. Uμ(z) is a solution of (1.1) in KI(ZO) if and only if
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is empty.

Proof. In virtue of Lemma 2.1, we have only to show that Sμ^^K^Zo) is
empty if Uμ(z) is a solution of (1.1) in KI(ZQ). Let K be a disc in jKΊ(z0) such
that JΓcXi^o). Let // be the restriction of μ on JΓ and μ" = μ — μf . Then

on .#. Clearly Uμ'(z) is continuous on R—K. As £>'(#) and Uμ"(z) are lower
semicontinuous and their sum, i.e. Uμ(z), is continuous on jKi(z0), so ZT^'fc) is
continuous on .Ki(20) and so on R. Moreover Uμ(z) and Uμ"(z) are solutions of
(1.1) in K and so ί/^(z) is a solution of (1.1) in K. If we can prove // = 0 on
jfiΓ, we may conclude that S^ ̂  #1(20) = 0 since X" is arbitrary in Kι(zQ). From
this remark we may assume without loss of generality that SμdK^Zo) and
Uμ(z) is continuous on R and a solution of (1.1) in R except dKifa).

Let K be a disc in JKΊ(20) such that Kc.Kι(z0). By F we denote a compact
set Kί(Z())—K. By Theorem 2.5 there exists a unique measure λ with SχaF
and Z7*0s) = t/^Os) on F except an Fσ-set E of capacity zero in ΘF and Uλ(z)
^Uμ(z) on 7?. By the lower semicontinuity of Uλ(z) and the continuity of
Uμ(z), we easily see that Uλ(z) is continuous on ΘF—E and Uλ(z) = Uμ(z) there.

Let C7y(^) be Evans' potential of E (cf . Theorem 2.3) and {Rn} be an ex-
haution of R with RnnKί(zQ) and (?„(£, C) be Green's function of (1.1) with

respect to Rn. Put Un(z)=[ Gn(z, Qdμ(Q. Clearly Un

μ(z)/Uμ(z). For an
J^/"

arbitrary positive number ε, we consider

u(z) = Uλ(z) + βC7y(^) - Unμ(z)9

which is a solution of (1.1) in Dn — Rn— KI(ZO). It is easily seen that

lim u(z) ^ 0
z^ζ

for all C in dDn (cf. Lemma 2.2). Hence by (I) in §1.2, we have

on Dn. Letting n tend to infinity and next £\0, we get

on R—K^Zo). Similarly by considering Uλ(z) + εUv(z) — Uμ(z), which is a solu-
tion of (1.1) in K, it can be proved that

Uλ(z) ^ Uμ(z)

in K. Hence we have proved that Uμ(z) = Uλ(z) on R except a set E of capa-
city zero. By unicity principle we get μ = λ and so S^^K^ S^^K is empty.
Since K is arbitrary, Sμ^Kι(zo) is empty. Q.E.D.

2.5. Miscellaneous facts. Before closing this chapter we state two more
results. Although they have their own interests but we shall make no use of
them, so we omit their proofs.
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1. Let (£ be the totality of measures μ with || μ || < oo and with compact
Sμ and &κ be the subset of (£ whose measures have compact support contained
in a fixed compact set K. Let μt be in (£ and put

G(z, 0 dσ(z) dσ(Q, o^μ^- μ2.

By energy principle this defines a metric on (£. Ohtsuka [9] proved that (£#
is complete with respect to this metric. The same is also valid for (£.

2. If f ( z ) is a supersolution of (1.1) on R dominating a solution of (1.1),
then we can find a unique measure μ such that f(z) — Uμ(z) is a solution of
(i.i).

III. Minimal solutions of Au = pu.

3. 1. Martin's kernel and Martin's boundary. Let G(z, ζ) be Green's func-
tion of (1.1) with respect to R and K(z, 0 be defined by

on RxR if ζ^Zo and K(z, z0) = 0 if z^z0 and K(z0, zQ) = l. We notice that
K(z, 0 is continuous in C on R with fixed z in R and UL(Z, 0 is a solution of
(1.1) in z on # - {C} with fixed C in R.

We take a fixed exhaustion {Rn} of .β such that Ri contains ZQ and put

(3.1) d(Cι, W = Σ! 2" sup
= 1 , CO

Then c£ defines a metric on J?. We denote by R* the completion of R by this
metric. It is easily seen, by using fundamental properties of solutions of (1.1)
stated in Chapter I, that J?* is a compact metric space with naturally extended
metric d. For a point C in R* —R, we can find a sequence {ζn} in R such that
d(C CO — » 0 and so we can define

then the extended metric d is also in the form (3.1). By the fundamental pro-
perties of solutions of (1.1) described in Chapter I, we see at once that K(z0, 0
= 1 and K(z, 0 is a solution of (1.1) in z on R — ζ with fixed C in R* and
K(z, 0 is finitely continuous on D x (JB* — D), where D is an open subset of R.

We shall say R* and HCίz, C) to be Martin's compactification of R with
origin 20 and Martin's kernel of (1.1) on RxR* with origin 20 respectively.
It is easy to see that the special choice of exhaustion does not affect the
structure of R* and does not change K(z, Q. The same is also true for z0.

We denote by ΘR the set R* —R and we shall say that OR is Martin's
boundary of R with respect to Λu = pu. Clearly dR is compact.

3.2. Martin potential. By a measure μ on R* we mean a countably addi-
tive set function defined on the Borel field generated by compact subset of J?*
and μ(R*)<oo. Hence the restriction μ' on J? of a measure μ on R* is a
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measure on R. The meaning of the support and the notation Sμ are similar to
that defined in §2.1.

Selection theorem also holds for a compact subset K of R* and the sequence
of measures whose total measures are uniformly bounded and whose supports
are contained in K. Here K may be R*.

Let D be an open subset of R and μ be a measure on R. For a Borel set
X in R we put

(3.2) /

As G(ZQ, 0 is strictly positive and continuous on D, we see that μD is a mea-
sure on R with S^cZ).

Using Martin's kernel K(z, C) on R x R*, we can define a potential Kμ(z),
so called Martin's potential, by

!&(*)=[ K(z,0dμ(0.

Clearly Kμ(z0) = μ(R*) . Martin potential is, of course, closely related to Green
potential and the properties of the former are deduced from those of the latter
by using (3.2). For example,

LEMMA 3.1. Kμ(z) is a solution of (1.1) in KI(ZQ) if and only if KI(ZQ)
s^Sμ is empty.

Proof. By the similar method as in the proof of Theorem 1.1, Kμ(z) is a
solution of (1.1) in D = Kι(z^ if D^Sμ is empty.

Conversely assume that Kμ(z) is a solution of (1.1) in D. Let μ' be the
restriction of μ on R*-D. Then Kμ(z)=Kμ'(z) + Uμv(z). As Kμ(z) and Kμ'(z)
are solutions of (1.1) in JD, so Uμι>(z) is a solution of (1.1) in D and hence SμD

^D is empty by Theorem 2.6. Thus Sμ^D is empty. Q.E.D.

3.3. Operator I A. We denote by S(R) the totality of non-negative super-
solutions of (1.1) on R and N(R*) be the totality of closed subsets A of R*
such that (A — dA)^R is a nice open subset of R.

Let A be in N(R*) and / be in S(R). The set D=R— A is again a nice
open subset of R. We denote by Uf

D the totality of supersolutions of (1.1) on
D satisfying

for every point ζ in dD^R. We put

(3.3) #/>(*) = inf(</(z);</et7/0

on D.
Next consider an exhaustion {Rn} of #. Let un be the solution of (1.1) on

D^Rn with the boundary value f(z) on dD^Rn and 0 on QRn^D. This
boundary value function on d(D^Rn) is not continuous in general but we can
find such a solution as remarked in §1.3. The boundary value of un is /
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on dD^Rn and 0 on ΘRn^D with possible exceptional points in
s-^(dRn^D). It is easy to see that {un} forms an increasing sequence domi-
nated by f(z) on D and so

(3.4) Ef

D(z) = limnUn(z)

is a solution of (1.1) in D with Q^Ef

D(z)^f(z) on D and Ef

D(z)=f(z) on
ΘD^R.

Next decompose D into components {Dn} and Gz>n(z, 0 be Green's function
of (1.1) with respect to Dn and put GDn(z, ζ) = 0 for (z, 0 <^Dm xDn (nφm).
We define the Green's function GD(z, C) of (1.1) with respect to the open set
D by

GW*,0 = Σ»G^>n(*,0.
Now set

(3.5) Gf

D(z) = -ί- ( -~G ,̂ 0/(0 Λ>,
2π J 3/VvB 071

where d/dn denotes the inner normal derivation with respect to D and ds de-
notes the line element of dD^R.

Now we remark the following

LEMMA 3.2. Let {vm} be the positive solutions of (1.1) in D=Kί(z0)
^ {z; Im (z — ZQ) > 0} and continuous on D. Suppose that vm = Q on a =Kι(zQ)
^ {z; Im (z — 20) = 0} and dvm/dn exists on a and {vm} converges toQdecreas-
ingly and uniformly on each compact subset of D — ά. Then

on a ana {vm} converges to 0 uniformly on each compact subset of D^ a.

Proof. Let hm be the harmonic function such that hm = vm on QD. Then
{hm} forms a decreasing sequence converging to 0 on each compact subset of
D — ά. Moreover 0 ̂  vm ̂  hm on D and so

0 ̂  (dvm/dri)(z) ^ (9hm/dn)(z)

on a, since hm = Q on a. Clearly \imm (dhm / dn)(z) = Q on a and thus the asser-
tion of our Lemma follows. Q.E.D.

LEMMA 3.3. Hf

D(z) =Ef

D(z) = Gf

D(z).

Proof. As Ef

D(z)eΞUfD, so Ef

D(z)^Hf

D(z). On the other hand, the func-
tion un(z) in (3.3) clearly satisfies un^g on Rn/^D for any g in U/D. From
this we get Ef

D(z) ^Hf

D(z) and so Ef

D=Hf

D on D.

Let G™(z, C) be Green's function of (1.1) with respect to D^Rm. By
(G. 3) and (1.2), GD(z, Q-G™(z, 0 satisfies the assumption of Lemma 3.1 as
the function of C with fixed z and so (dG™/dri)(z, QS(dGD/dri)(z, O By
putting (dG™/dri)(z, 0 = 0 on ΘD-dD^Rm and by Green's formula
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um(z) = ~ { ~GCm)(z, Of(0 ds.
2π }dD^R dn

Letting m tend to infinity, we get

EfDM = V~ ί -j-G°(*> Of(0ds. Q.E.D.2π Jaz>^B on

Definition of the operator 1A. For A<=N(R*) and f<=S(R),

nκ\ a KM-ίfW on A>
(8'6) (^/)ω-U/^(z) on R-A.

It is easily seen that lAf belongs to S(R). Hence 1A is an operator of S(R)
into S(R). We have

LEMMA 3.5. The operator 1A possesses the following properties:
(i) O^lAf^f;
(ii) f^g implies lAf^lAg\
(iii) lA(cf+g) = clAf+lAg, where c is non-negative number;
(iv) lA^sf^lAf+lsf;
( v) A ^B implies lAf^ lBf and lA(lBf) = Wk/) = W;
(vi) limn/n e S(JR) implies

moreover the existence of g^S(R) such that g^fn (n = l, 2, •••) implies

lA(limnfn) = limn lAfn,

(vii) lAK(z, 0 is lower semicontinuous on dR with respect to ζ;
(viii) R^An/R^A, i.e. R^A = R^(\JnAn) implies

Proof. The properties ( i )-(v) is clear from the definition of 1A. By using
the representation lAf=Gf

R~A on R— A, (vi) follows at once from Fatou's
theorem and Lebesgue's theorem, (vii) is a direct consequence of (vi).

To prove (viii), put fn = lAnf. As {fn} is an increasing sequence dominated
by lAf, so we may set g = limnfn on R. In any point of A, g= f. In R— A,
g is a solution of (1.1) from monotone compactness of {/„}, which is a sequence
of (1.1)' in R— A. In each point C in QA^R, limj2_^3e->>c/n(3)=/(C) for some
n. Thus HτΆχ-ABz+ζg(z)=f(ζ) at each point ζ in ΘA. Thus lAf=Hf

R~A^g
^lAfinR-A. Hence lAf= g on R. Q.E.D.

LEMMA 3.6. .For any A in N(R*) there exists a measure λ on R* such
that SχdA and

holds on R.

Proof. Let {Rn} be an exhaustion of R and An=A^Rn. By the conti-
nuity of I A with respect to A,
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on R. By Theorem 2.5, there exists a measure μn on R with Sμn <^An such that

on An except an ίVset £7 of 0An with C(E) = 0 and (lAnf)(z) ^ Z7M*0 on .R.
Let Z7V(«) be Evans' potential of E on .β and ε be an arbitrary positive
number. Then

lim (

on 8An and by lAnf=Hf

R'A^ on R-An, we get U^ + sUv^lAnf on #-
Letting ε\0, we have Uμn^lAnf °n ^ — An. Hence

U^(z) = (lAnf)(z)

on R—E and by Lemma 2.6 this holds on the whole space R.
Now put

dλn(0
Then

As Λn(#*)=E>(20)^(Lι/)(2o), so we may assume that λn converges to a mea-
sure λ vaguely. Now let D be a nice compact subdomain of R and μw' be the
restriction of μn on D and Λn' be the restriction of λn on R* —D. Clearly
{μn'(R*)} and {λn'(R*)} are bounded and so we may assume that μn

r and λn'
converge to μ' and λ' vaguely, respectively. Clearly λ — λljrμ' and Kλ=Kλ'

If z lies in J9, then K(z, C) is continuous on jR* — Z) as a function of ζ and
so limwE:^(2;)=Jfi:

;ί/(^). By Lemma 2.8, U^(z)=^mnU^(z) on R except a set

of capacity zero. As (Z^/)(i8;)=JSL^'(2;)H-l7^'(ί?), so

(lAf)(z) =K*'(

on D except a set of capacity zero. The difference (lAf)(z) —Kλ'(z) is continuous
on D and equals to Uμ'(z) except a set of capacity zero and so by Lemma 2.6
(lAf)(z)-Kλ'(z) = W(z) on D or (lAf)(z)=Kλ(z) on Z). Since Z) is arbitrary
(lAf)(z)=K*(z) on JR. Q.E.D.

3.4. Operator Zx. We denote by 5β(Λ) the totality of non-negative solu-
tions of (1.1) on R. This is a subset of S(E). Let F be a compact set con-
tained in OR. Let N(F) be the totality of A in ΛΓ^*) such that the open
kernel of A contains F. We easily see that N(F) constitutes a fundamental
base of neighborhood system of F. Needless to say N(F) contains a countable
subbase.

For closed set F in dR we define a function LFu on R by

(3.7) (LFu)(z) = inf {(1 )̂00; A

for each u in $(•#). We now show that LFu^ty(R). In fact, we can choose a
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decreasing sequence AV^N(F) such that nAn=F and (
By monotone compactness, limnlAnu = v belongs to φ(-B). Next choose an
arbitrary point z in R. We can also choose a decreasing sequense Bn^N(F)
such that {~}Bn=F and (LjptO(s) = limn(Z*ntt)(z). By considering BnnAn, we
may assume #wc^4.w. By monotone compactness, limw lBnu = w belongs to $(Jf2)
and v^>w. As v(20) = wfco), so by (II) in §1.2, v = w. This shows that v(z)
= (LFu)(z) at every point z in R. Thus LFu^ty(R). Thus LF defines an
operator of 5β(Λ) into $(#).

Incidently we have also proved that there exists a sequence {An} in
such that An\F and

(3.8) Ljrw = lίmn lAnu.

LEMMA 3.7. The operator LF possesses the following properties:

( ii ) u ̂ v implies LFu<LFv\
(iii) LF(cu + v) = cLFu+LFv, where c is a non-negative constant;
( iv ) LF^KU ^ L j w + Lκu;
( v ) LdRU = u;
( vi) FID K implies LFu ̂  L^^ αnc^ LF(Lκu) = Lκu

f,
(vii) Fn\F, i.e. nFn—F implies LFnu\LFu.

Proof. These can be verified easily from (3.8) and Lemma 3.5. Q.E.D.

Nextly let G be a relatively open subset of ΘR. We put

(3.9) (LGu)(z) = sup {(LFu)(z); F is compact in QR and Fa G}

for each u in φ(R). By the similar method by which we proved LFu e φ(Λ),
we can prove Lβwe5β(Λ). From Lemma 3.7, we easily get

LEMMA 3.8. The operator LG possesses the following properties:
(i) Q^LaU^u;
(ii) u^v implies LGu ^LGv;
(iii) LG(cu + v)= cLGu + LGv;

oo

(iv) Loo Gnu^ΣLGnu;
U 71=1

w=l

(v) G^U implies LGu^LuU and LG(Luu)=Luu;
(vi) Gn/G, i.e. \jGn = G implies LGnu/LGu.

Finally for arbitrary set X in ΘR, we set

(3.10) (Lχ*u)(z) = in£{(L0u)(z), G is relatively open set in OR and

for each u in 5β(Λ). Similarly as before, it can be shown that Lx*u
From Lemma 3.8 and (vii) in Lemma 3.7, it follows the following

LEMMA 3.9. The operator Lx* possesses the following properties:
( i ) Q^Lχ*u^u;
( ii ) u^v implies Lx*
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(iii) Lχ*(cu + v) = cLχ*u+Lχ*v, where c is a non-negative constant;

(iv) L*~

( v ) X^Y implies Lx*u^LY*u and Lγ*(Lγ*u)=Lγ*u;
(vi) for any relatively open subset G of dR, LG*u=LGu;
(vii) for any compact set F of dR, LF*u=LFu.

Hence we may use the notation Lx instead of Lz*

LEMMA 3.10. For any compact set F in dR, there exists a measure μ

(LFu)(z) = K"(z) = K(z,

with SμddR and

Proof. We choose AneJV(F) such that An\F and lAnu\LFu. By
Lemma 3.6, there exists a measure μn with SμndAn and lAnu=K^. As μn(An)
=K^(ZQ)^U(ZQ), so we may assume that {μn} converges to a measure μ
vaguely. Hence K^(z) -^K^(z) for each point z in R, since K(z, 0 is conti-
nuous on R* — z with respect to C The fact that Sμnc.Am (n^m) implies

and so SμdF. Q.E.D.

LEMMA 3.11. For any u in ty(R) there exists a measure μ with Sμ

such that

u(z) = ( K(z
J dJK

Conversely, for any measure μ with Sμ c dR the function

belongs to

Proof. The first assertion follows from Lemma 3.8, since u=LdjR,u. The
second assertion is obvious. Q.E.D.

We introduce a Frechet norm III % III in φ(Λ) by

III Z III = Σ 2~n sup^ I Z(z) | (1 + | u(z) I)"1, u

where {J?w} is an exhaustion of R. Then clearly Sβ(Λ) is complete with respect
to III u I I I . Now for each subset X of dR let Sx be the totality of u with
the form

, CΛ

where c< are non-negative constants and
Then Lemma 3.10 and 11 are equivalent to the following: 2F is dense in

with respect to III u III /or eαcft compact set F in dR.

3.5. Minimal solutions. We say that a solution of (1.1) is minimal if
u e $β(jβ), % Φ 0 and it ̂  v for some v in φ(Λ) implies the existence of a con-
stant cυ such that v — cυu. We denote by ^(R) the totality of minimal solu-
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tions u of (1.1).
Let u be in ?$M(R) and K be a compact set in dR. We can find a con-

stant c such that
Lκu = cu.

By (vi) in Lemma 3.7, Lκ(Lκu) — Lκu. Hence Lκu = cLκu or c2 = c. Thus

LtfW = 0 or Lκu = u.

Assume that the latter is the case. Let K— \J?=ιFl9 where F% is compact and
the diameter d(Fi)<2~1. By (iii) in Lemma 3.7,

Y] LFίu ^Lκu = u.
*=ι

Thus one of LFίu satisfies LFίu — cu(c>0). Applying LF. , we see that c = l.
Hence we showed the existence of a compact set Ki^K such that d(K1)<2~1

and LKlu = u. Repeating this process, we get a sequence {Kn} of compact sets
such that K^Kί ID JfΓ2=) - =)#n=) with d(Kn) < 2~n and LKnu = u. Then
is a one point ζ in K and by (vii) in Lemma 3.7,

Thus by Lemma 3.10

u = u(z0)K(z, C), C e 9.R.

Finally suppose that LζK(z, ζ)ΦK(z, C) By Lemma 3.10, we get a non-
negative number c=LζK(z0, C)<1 such that

By applying again Lζ, c = c2 or c = 0. So LζK(z, C) = 0.
From the above consideration, we obtain

LEMMA 3.12. ( i ) Any minimal solution o/(l.l) is a multiple of a K(z, 0
with ζ in dR.

(ii) LζK(z, ζ)=K(z, Q or =0 on R and K(z, 0 (C^δLK) is minimal if
and only if L^K(zt C) =K(z, 0 on R.

(iii) Assume K(z, C) is minimal. Then LFK(z, Q=K(z, Q or =0 on R
according to ζ^F or ζ&F, where F is a compact set in dR.

Now we put
M= {C e dR; LζK(z, 0 =K(z, 0 on R}

and
E = {C e 9Λ; LciΓ(«, C) - 0 on R}.

Clearly M^E is empty and M^E=dR.
Now fix a constant a with 0 < a < 1. Assume that for a point C in dR we

can find an integer n^l such that for any AeJV(C) with d(A)<l/w implies
Z4JίΓ(2o, C) ̂  α Then we can find a smallest integer n(Q with the above pre-
scrived property. If for a point C in (λR we cannot find such an integer, then
we put n(Q = <χ?. It is clear from the definition of Lζ that n(0<°° for any
C in E and n(ζ) — oo for any C in M. Hence we may write
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M= {C e dR; n(Q = 00} and E - {C e &R; w(0 < °°}

We put

From (vii) in Lemma 3.5, En is compact. Clearly En/E, i.e. E=(jEn.
Thus we have shown that M is a Gδ-set with respect to $.R and E is an

LEMMA 3.13. Let XdE, Y be an arbitrary set in ΘR and
Then

(i)
(ii)

Proof. First let K be compact in En with d(K)<l/n. We can find
A<=N(K) with d(A)<l/rc. Let vm£Ξ%κ such that I I I vm -Lκu\\\->0. Let

z, CO where ζl ζ=K. Then

^m(^θ) = Σ CilΛK(ZQ, Cΐ) ^ Λ Σ Cί-ίΓfeo, Cί) = <

From (vi) in Lemma 3.5,

lALκu(zo) ^ limm lAvm(zQ] ^ limw αvTO(«0) = a

Since lA(LKu)\LK(LKu)=LKu, Lκu(z0)^aLκu(zo). Thus Lκu(zQ) = 0.
Next we can write £'7l=Uf=1^ with dCKiXl/ra. Then

^^n^ = Σ* £*ίtt = 0.

Finally by (iv) in Lemma 3.9,

Eu= 0.

Thus we have proved ( i ).
Now we prove (ii). As Lγ^Eu = Q, so

which implies LYU=LY^MU. Q.E.D.

LEMMA 3.14. Let u&ty(R). Then there exists a measure μ on dR such
that μ(E) = 0 and

U(Z)={ K(z,Qdμ(0.

Proof. There exists a decreasing sequence {un}%=0Q?$(R) with UQ = U and
a sequence {Kn}n=ι of compact set in M such that

un-ι=Lκnun-ι + un and un(zQ)^

This can be shown by induction as follows. First put UQ = u. As LEu0 = 0,
so there exists a relatively open subset <?ι of d.β such that (?ι D.E'and LG]UO(ZQ)
<1. Put Kι = dR — Gι. Then ϋΓi is a compact subset of M. Let ι̂ = ̂ 0

—Lχ/u,G. Then O^^i^^o and u<>=LKίUo + Uι. As ^0— L3RU0^ LGίu0+LKlu0,
so Uι — Uo—LKlUQ^LGlUo and hence MI(SO) ^I^ί?ι^o(«o) ̂ l Thus 7^0 and ̂  are
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required one.
Assume that ut (0 ̂  ί < n) and Kt(l^i<n) are required ones. As LEun- L

= 0, so there exists a relatively open subset Gn of dR such that Gn^>E and
LGnun-ι(zQ)<l/n. Put Kn = dR — Gn Then jfiΓTO is a compact subset of M".
Let Un = Un-l—LκnUn-i. ThβΠ 0 ̂  Ϊ6n ̂  tt«-l and %n_ι = ̂ 4-1,^^-1. AS Un-t

κnun-ι, so un = ιin-ι—LKnun-.<L<zLGnun-ι and hence ttn(so)
. Thus our induction is completed.

Next we get

Clearly un\Q, and so we get

By Lemma 3.10, we have a measure μn with SμndKn such that LKnun-ι(z)
= Kfn(z) on Λ. As

Σ^i(9Λ) = Σ3^:(«o)^w(«o) and
« = 1 i = l

SO

defines a measure on dR with μ(E) = 0 and % = 53?«ι^A<n=^ Q.E.D.

LEMMA 3.15. Lei μ be a measure on dR with μ(E) = 0 and

u(z)={ K(z,Odμ(Q.
JM

Then LGu(z)= \ K(z, Qdμ(ζ) for any open set G in dR. In particular
JG^M

Thus the measure μ in Lemma 3.14 is unique.

Proof. Take a sequence {Kn} of compact sets in M such that Kn / and
μ(M-Kn)\Q. We put

Un(z)={ K(z,Qdμ(Q.

Then un/*u. As Q^LGu— LGun=LG(u — un)^u — un\ 0, so we have LGun

/LGu. If we can prove

K(z,Qdμ(Q,
J G^Kn

then we get

Lou(z)=( K(z,Qdμ(Q.
JG^M

Thus we may assume that K=Sμc.M and so
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U(Z)=\ K(z,0dμ(ζ).

We put F = K—G, which is a compact set. Let if be a compact set in G. If
we can prove

(3.H) LHu(z)={ K(z,0dμ(0,
JjZVvff

then taking the supremum with respect to if c (7 we get LGu(z) = I K(z,Q dμ(Q.
JK^Q

Hence we have only to prove (3.11).

Let An^N(H) and An\H. First we prove that lAnK(z^ £ ) N O uniformly
for ζ^F. Contrary to the assertion, assume the existence of positive number
η and points ζn in F such that

Taking a subsequence, if necessary, we may assume ζn-*ζo<^F. By Lemma
3.10, there exists a measure vn on R* with Sync:An such that

on #. As *»«(#*) =J§Lyιι(3o) = Ϊ^XΌ&o, CO, so 9 ̂  ̂ n(S*) ̂  1. Taking again a sub-
sequence, if necessary, we may assume that {vn} converges to v vaguely.
Clearly Sv c H and 1 ̂  v(H) ^ η. Since

) = f (̂̂  0 <fo»(0,
J-^TJ

so

s

Easily, we can select a sequence {Hm} of compact sets such that

and the diameter of Hm is less than 1/m and v(Hm) >0. As (̂2, Co) is mini-
mal and

K(z, Co)^

so we get a sequence {αm} of positive numbers such that

Putting

we have

on J? and putting z~zQ we see that λm(Hm) = l. Selecting a subsequence, if
necessary, we may assume that λm converges to a measure λ vaguely and
clearly
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Sχ = Π Hmtm=ι

which must consist of only one point ξ in H and λ(ξ) = 1. Thus we get K(z, Co)
=K(z,ξ), which shows ζ0 = ξ(ΞH. This contradicts the fact that ζQ<=F = K
-G and f Γ c f f .

Now

u(z) = [ Zfa C) <WO + f #(*, 0 dμ(0.
jκ^β JF

As jKfa Qdμ(Q is the limit of a sequence {VTO} such that vm is the form
J*1

ΛΓm

VOT(«) = Σ C^(Z> C),
y =1

where ζv^F, so from the above we can find a sequence α Λ \ 0 such that

^m(zo) = Σ c,JAnK(zQ, C) ̂  Σ cyα?l ̂  αΛ Σ cyX"(^o, C) = αnvw(z0).

Hence by (vi) in Lemma 3.5,

L^ f K(z9, 0 dμ(0 ^LAn ( K(z0, 0 dμ(0 ^ limwι LAnvm(zώ ^ anLH ( K(zQ, 0 dμ(Q.
JF JF JF

This shows that

(3.12) LBu(z) =LH { K(z, Odμ(Q.
J-K ^G

By monotone continuity of LH, making G\H we have

LHu(z)=LH{ K(z,Qdμ(0.
Jπ^π

Next let Hn={CedR; d(ζ, CO ^l/n,C ZΞK^H}. Then Hn is compact and
Hn^(K^H) is empty, so by considering (K^H, Hn) as (F, H) in the preced-

ing argument, we see LHn 1 K(z, C) d^(C) = 0 and
JK^H

LH^Hn { K(z, 0 iXO ̂  ̂ H f K(z, 0 dμ(0 £ ( K(z, 0 ίMO
JJΓ^^ JK^Π JK^R

making n / oo and so H^Hn /* dR, we get

( JΓ(0, C) dMO = L^ f K(*> 0 dμ(0
J K^H J K^Π

Combining this with (3.12), we get (3.11). Q.E.D.

From Lemmas 3.14 and 15, we finally obtain

THEOREM 3.1. For any u in ty(R), there exists a unique measure μ such
that μ(dR —M) = 0 and

u(z) = K(z, 0 dμ(0,

τohere M is the totality of points ζ in dR such that K(z, C) is minimal in
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