THE SPACE OF NON-NEGATIVE SOLUTIONS OF THE
EQUATION Ju=pu ON A RIEMANN SURFACE

By MiTsSURU NAKAI

Introduction.

Consider a form p(2)|dz|?> on a Riemann surface R. This defines a self-
adjoint elliptic partial differential equation 4Ju = pu on R. The so called global
theory of this equation aims to investigate the structures of the spaces of some
distinguished solutions of this equation after the theory of harmonic functions.
The investigation of this direction was begun first by Ozawa [10] and continued
by himself [11], [12] and L. Myrberg [4], [5] and later by Royden [13] and
the present author [7].

The aim of this paper is to study the space PB(R) of non-negative solutions
of this equation from the aspect of minimal solutions of P(R). After Martin
we say that a function % in P(R) is a minimal solution of the above equation
if w0 and #=v for some v in P(R) implies the existence of a constant c,
such that v=c,u on R. It is not hard to see that P(R) has sufficiently many
minimal solutions of the above equation, i.e. the totality of linear combinations
of minimal solutions with non-negative coefficients is dense in P(R) with respect
to the compact convergence topology. Our problem is to determine the shapes
of minimal solutions and to determine the standard way to approximate the
functions in P(R). This problem was raised essentially by Ozawa in [11]. We
shall see that the situation is quite similar to that of harmonic case as was
treated by Martin [3].

In chapter I we state among some known fundamental results the conti-
nuity of Green’s function and precise nature of it around the pole. We also
introduce a class of functions which plays the similar role to super- and sub-
harmonic functiqns in the theory of harmonic functions. The similar investiga-
tion is found in a recent work of L. Myrberg [6].

In chapter II we develope the theory of Green potentials. These are exten-
sively used in the following chapter. The Green potentials are quite similar
to the harmonic Green potentials. We believe that the potential theoretic
method will be a powerful tool for the future study of global theory of Adu
= pu.

In the final chapter III we reproduce the Martin theory for du = pu. We
shall state that every minimal solution of this equation is obtained by the
limiting process
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for some appropriate sequence {{.} of points in R which has no point of accumu-
lation in R and by multiplying a non-negative constant, where G(z, £) is Green’s
function of 4Ju = pu with respect to R and with pole ¢ and z, is a fixed point
in R. The totality {K(z, ¢); ¢ €M} of minimal solutions of Ju = pu normalized
by the condition that K(zo, £) =1 generates P(R) in the following manner: for
any wu(z) in P(R) there exists a unique Borel measure u on M such that

u(e) = § K(& 0du),

where M is topologized so as to be a metric space by which K(z, £) is conti-
nuous on R X M. The method of proof used here is quite due to Martin [3].

At the end the author expresses his heartiest thanks to Professor M. Ozawa
and Mr. M. Kishi for their valuable discussions.

I. Preliminaries.

1.1. General notions and notations. Throughout this paper we denote by
R a Riemann surface in the sense of Weyl-Rado. By a density p(z) on R we
mean a non-negative continuously differentiable function of local parameter 2z
such that the expression p(z)|dz|? is invariant under the change of local para-
meters. Moreover we always assume that p(z)Z0 on R. Then we can con-
sider the elliptic partial differential equation
L.1) du=pu, A=2 4&

’ =P T ox? | oy
on R. By a solution u of (1.1) on an open subset D of R we mean that u is
twice continuously differentiable function satisfying (1.1) on D.

An open subset D of R is said to be mice if its relative boundary 6D con-
sists of countably many piecewise analytic Jordan curves which do not cluster
in R and each of which has no end point in BR. A subdomain D of R is a
connected open subset of R and a compact subdomain is a subdomain whose
closure is compact in B. An exhaustion {R,}az1 of R is a sequence of nice
compact subdomains R, of R suchthat R,C R,,; (n=1,2, ---)and R =U1Rn.
For a point 2, in R, K,(z,) denotes the neighborhood disc of local parameter 2
valid for |2 — 20| <1 such that K. (20)=(z; [z2— 20| <7) for 0<r <1,

1.2. Fundamental properties of solutions. For the sake of convenience,
we describe here the known fundamental properties concerning the solutions
of the equation (1.1).

Functions considered in this paper are all assumed to be real-valued.

(I) Maximum principle. Let p and ¢ be two densities on B and D be
a nice compact subdomain of R. Suppose that p=q on D and u, v and w be
solutions of Adu=pu, dv=qv and dw =0 respectively and continuous on D
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satisfying w=v=4=0 on 0D. Then the same inequality holds on D.

(II) Harnack inequality. Let D be a nice compact subdomain of E.
Then there exists a positive constant ¢ = ¢(D) such that for any pair of points
zand 2’ in D and for each non-negative solutian » of (1.1) on R it holds

¢ u(z) = uw(z’) < cu(z).

(III) Dirichlet problem. Let D be a nice compact subdomain of R and
¢ be a continuous function on &D. Then there exists a unique continuous
function % on D such that w=¢ on 8D and % is a solution of (1.1) in D.

(IV) Completeness. Suppose that {u,} is a sequence of solutions u, of
(1.1) on R and converges uniformly on each compact subset of R to a function
% on R. Then % is also a solution of (1.1) on R.

(V) Monotone compactness. Let {u,} be a monotone sequence of solu-
tions %, of (1.1) on R such that {u.(z0)} is bounded for some point 2, in R.
Then {u,} converges uniformly on each compact subset of B to a solution of
(1.1) on R.

(VI) Bounded compactness. Let {u,} be a sequence of solutions %, of (1.1)
such that |u,| S M < oo. Then there exists a subsequence of {u,} which con-
verges uniformly on each compact subset of K to a solution of (1.1) on R.

As for the proofs of these propositions, refer to Myrberg [4].

(VII) Removable singularity. Let D be a compact subdomain of R, E be
a compact subset of D and w be a bounded solution of (1.1) in D —E. In order
that % is continued to D so as to be a solution of (1.1) on D it is necessary and
sufficient that E is of logarithmic capacity zero (ef. [7]).

1.3. Supersolutions. A continuous function f on an open subset D of R
is said to be a supersolution (resp. subsolution) of (1.1) on D if for any point
20 in D there exists a positive constant 7r(z,) such that KcD and f(z) =u(2)
(resp. f(2) =u(z)) on K, where K=K, (zp) for arbitrary » in 0 <» =< 7(20) and u
is the solution of (1.1) on K with boundary value f on K. Clearly a solution
of (1.1) is a supersolution and subsolution of (1.1) and vice versa. It is also
clear that f is a supersolution if and only if —f is subsolution.

LEMMA 1.1. (i) Let fi and f; be supersolutions of (1.1) and ¢; (1=1, 2)
be non-negative constants. Then ¢;, ¢;fi1+c:fe and min(fi, f2) are also super-
solutions of (1.1).

(ii) Let {f.} be a sequence of supersolutions of (1.1) in an open subset
D of R and converges uniformly on each compact subset of D to a function
fon D. Then f is also a supersolution of (1.1) in D.

(iii) A supersolution f(2) of (1.1) on a nice compact subdomain D of R
and continuous on D with f=0 on 0D is non-negative on D.

(iv) Let f be a supersolution of R and D be a nice subdomain relatively
compact in R and fp be obtained from f by replacing by u inside D, where
% 1s the solution of (1.1) in D with boundary wvalue f on 0D. Then fp is
again supersolution of (1.1) on R and fp<f on R.
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These are easy consequences of our definition and preceding paragraph.

Here we remark that we can apply Perron’s method using super- and sub-
solutions to solve the Dirichlet problem which sharpens (III) in §1.2. Let D be
a nice compact subdomain of R and ¢ be a bounded function on 8D. We put
U, (or B,) be the class of all super- (or sub-) solutions of (1.1) such that

E{r?lf (&)= ¢ (or Z??f (& =¢@)

at any point ¢ in 0D. We put
Hy(2) =inf(f(2); fll,)
and
H,(2) = sup(f(2); f€B,).

Then as in the harmonic case we easily see that H, and H, are solutions of
(1.1) on D and H,=H, on D. Moreover if ¢ is continuous at ¢ in 6D, then
we have

lim H(z) = lim H,(2) = ¢(0).-

14. Green’s function. Let ¢ be an arbitrary fixed point in . Now con-
sider the family F of functions v(2) on R —¢ such that

(G. 1) v(2) is a mon-negative solution of (1.1) in R—¢;

(G. 2) there exists a positive constant M: such that

—M;<v(z)+log|z—C| <M,

on Ki(0)—C.

Moreover if R is a nice subdomain of a larger surface R’ with relative
boundary 7, we suppose that

(G. 3) v(z) vanishes continuously at each point of 7.

Myrberg [5] proved that the family Ft is non-empty for any point ¢ in
R. We put

G(z, £) = inf(v(z); vEFY)

and we call G(z, £) is Green’s function of (1.1) with respect to R. It is easily
seen from §1.2 that G(z, {) possesses the properties (G. 1), (G.2) and (G. 3).
Let {R,} be an exhaustion of R and G.(z, £) be Green’s function of (1.1) with
respect to R,. Then {G.(z, )} is an increasing sequence and

1.2) Gz, ) =1im Gyu(z, 0),

where convergence is uniform on each compact subset of R. Let H(z, ) be
Green’s function of 4Ju = qu with respect to R and g(z, £) be harmonic Green’s
function with respect to R, where we promise that g(z, {)= o if R is a para-
bolic Riemann surface. If 0<¢=<p on R, then from §1.2 and by using ex-
haustion it is easily seen that

(1.3) 9(z, ©) =H(z, ©) =Gz, ©)
holds on R—¢.
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By defining G(&, £) =+ o0, we get a function G(z, ) defined on R X R. Now
we derive important properties of G(z, ) considered on R X R. From (G. 1)
and (II) in §1.2, we get

(G. 4 G(z,8)>00n RXR and Gz, &) =+ o if and only if z=C¢.

By Green’s formula we easily see that G.(z, £)=G.(&, 2) on R, X R, and
by (1.2) we get

(G. 5) Gz, O)=G(, 2) on RXR.
Next we prove
(G. 6) G(z, &) is continuous on R XR.

This is a consequence of the following (G. 6a) and (G. 6b) which will be
used repeatedly.

(G. 6a) G(z, &) s finitely continuous at (2o, Lo) in R X R with 2o+ &o.

Proof. We take a small disc K=K;(2,) in R such that { & K. Let G(z,¢)
be Green’s function of (1.1) with respect to K. Then from (1.3)

(1.4) 0<G@qu%{1 @—f?zzo!

on KX K. By Green’s formula
mmozlj Gt, O -Gz, )ds.
2r

Here 0/0n denotes the inner normal differentiation and ds denotes the line ele-
ment of dK. From this
1

IM%O—G@&Hégﬁle%O G(t, )| mz>@
T K

From this, by (1.4) and Schwarz’s inequality, we obtain

(15) mwo—amangmdﬁQmuo~mamP@yﬁ

where a(z)z(Zn)‘l’Z(l_:.le—zo[) /(1—|z—2]). Let D be a neighborhood of
Co such that DcR—K. By (II) in §1.2 we have a positive constant ¢ such
that 0 <G, §) =cG(, &) on D for all ¢t in K. Hence we have

|G, O — G, L) P =2(1+ ) G(E, Lo)°

for all (¢, ¢) in 0K xD and the right term of the above inequality is ds-inte-
grable on K. We also have lim¢se, |G(E, §) — G, L) 1*=0 for each ¢ in 0K.
Hence by Lebesgue’s convergence theorem, for arbitrarily given positive number
g, we can find a neighborhood Vco of &, contained in D such that

/
(1.6) ([, 16t 06 cras) " <me f
oK 4
on Vi. We can also find a neighborhood V of 2o contained in K such that
amn a(z) <2@x)2 and |G(z, &) — G(zo, Co) | < %
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on V,. Hence we get, by (1.5), (1.6) and (1.7),

| G(Z, C) - G(zOy CO) l <e
on Vi X Ve, QE.D.

(G. 6b) G(z, &) s represented in D =K, (20) X K;,2(20) as follows:

Gz, O =log | 1= f’)éz—%) +w(z, O,

where w(z, €) is finitely continuous on D.

Proof. Let K=Ki(z) and K’ =K,5(z,). We take Green’s function G(z, ¢)
of (1.1) with respect to K and harmonic Green’s function g¢(z, £) with respect
to K. Let u(z, £) be the solution of (1.1) in K with boundary value G(z, {) on
0K with arbitrary fixed ¢ in K’. Hence u(z, £) =G(z, &) on 0K X K’. As we have
seen that G(z, £) is continuous on 9K XK', so u(z, £) is uniformly continuous
on 0K XK’. Let & be an arbitrary positive number. We can find a positive
number 6 =d(e) such that |u(z, &) —u(z, )| <¢/2 for any 2z in 0K and for any
¢ and ¢ in K’/ with | —¢’| <8. The function u(z, &) —u(z, £') is a solution of
(1.1) in K for fixed ¢ and ¢’. Hence by (I) in §1.2, [u(z, ) —u(z, )| =Ze/2
for any 2 in K and for any ¢ and ¢ in K’ with |¢—¢'| <d. Fix a point
(#/,¢) in K’ xK’. There exists a positive number 7 = 7(e, £’) such that | u(z, £’)
—u(2', )| <e/2 if 2z isin K’ and |2—2'| <%. Thus we have shown that if
(2,8 is in K'xK’ with |2—2'|<7 and |¢—¢'|<0 then |u(z, &) —u(z’, )|
<e¢ or u(z, €) is continuous on K’'XK’.

Now it is easy to see that G(z, &) =G(z, &) —u(z, &) on D. If we put

vz, ()= _2'1?”1«”(2') 9(z, 2)G(2', Q) da'dy”

on D, where 2z’ =a’ +1y’, then by Green’s formula
9(z, ) =G(z, O) + (2, 0)

on D. From this we see that v(z, ©)=v({, 2) on D. As G O=g( &
=log|(1—({—20)(z—20)/(z— )1, so by putting b(z) =1+ |2 —20) /A —[2—2])
it holds

jj G, 2 da'dy’ < 4zb(Q).
By Schwarz’s inequality, g
A8 10 0=otas, 01 s 2@ ([[ 10 )= otas, 2) i),
where M = sup(p(z’); 2’ €K). It is clear that
limﬁx| 9(z, 2') — g(zy, 2) |2dx'dy’ = 0.

2>y

Thus v(z, ) is continuous in z with fixed ¢ and by symmetricity of wv(z, &),
v(z, £) is continuous in ¢ with fixed 2. Now fix a point (21, ) in D. From
(1.8) it holds
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[v(z, Q) —v(z1, O | = ( 3 )1/2Mp(z, 21)

T
for (2, €) in D, where lim..., p(z, 2:)=0. We also have

o' )= [v(2y, ) —v(21, C) ] —0

as £—¢;. Hence
3 172
vz, O —v(z, C) | = <7> Mo(z, z,) + p'(€, &),

which shows that w(z, ) is continuous on D. By putting u(z, &) — v(z, &)
=w(z, {), it holds (G. 6b).

II. Potential theory.

2.1. Fundamental properties of Green potential. By a measure u on R we
mean a non-negative countably additive set function defined on the Borel field
generated by all compact subsets of R and wx(K) is finite for every compact
subset K of R. The support S, of u is defined as follows: S,= NF, where F'
is closed in R and pu(R—F)=0.

As we have seen in §1.4, Green’s function G(z, &) of (1.1) with respect to
R is strictly positive, symmetric and continuous on R X R and G(z, £) is finite
unless z=¢. Hence G(z, £) is a kernel in the sense of potential theory. A
Green potential U#(z) of a measure p with kernel G(z, &) is defined by

U()= LG(Z’ O du©.

By using (I) in §1.2 it is easy to see that U#(2) is finite on R—S, if U#(z0)
is finite for some point z, in B and that U#() is lower semicontinuous on R
and continuous on R —S,. Hereafter we consider only those potentials U#(z)
such that U#(2) is finite on R —S,.

LEMMA 2.1. The potential U#(z) is a solution of (1.1) in R—S,.

Proof. Let p, be the restriction of # on R, where R, is an exhaustion
of R. Then U*(z) converges increasingly to U#(z) on R—S,. If U#(z) is a
solution of (1.1) in R— S, , then U#(2) is a solution of (1.1) in B —S, by (V)
in §1.2. Hence we may assume without loss of generality that S, is compact.

We take an arbitrary point z, in R — S, and a local parameter z around zo
such that KCR—S,, where K=Ki(z). We have only to show that U#(2) is
a solution of (1.1) in K.

By the definition of integral and the uniform continuity of G(z, {) on
K x S, we have sequences {a,””} of non-negative numbers and {¢,"} of points
in S, ¢=1,2, -+, N,) such that

U#(z) = lim, u,(?)
on K, where
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un(z) = % al(n) G<zf Cz(n))
2=1
and
) SUH2) + -
n

on K. Clearly u,(z) is a solution of (1.1) in K and by the bounded compact-
ness of {u.(2)} on K it converges to a solution of (1.1) on K. Hence U#(z) is
a solution of (1.1) in K. Q.E.D.

In §2.4, the converse of this Lemma will be proved. The following is an
easy consequence of (G. 3).

LeEmMMA 2.2. If S, is compact and R has a piecewise analytic relative
boundary 1, then the potential U#(z) vanishes continuously on 7.

Next we preve

LEMMA 2.3. lim U#z) = lim U#{).
Syazezo RSz-)zO

Proof. Let K=K, (20) and u’ be the restriction of zzon K and p/' = pu—p'.
Then U#z)=U#(z)+U*’(2) and U#’(z) is continuous on K. Hence we may
assume that S,CK and z is in K. By (G. 6b)

Ut(z) = L{log <—

1
)+ [ ute, 0w
lz—C| X
on K, where u(z, ) is finitely continuous on K XK. Clearly the second term
of the right hand side of the above is continuous on K and it is well known
and easily verified that

= ] 1 du©).
Sj;fgzojxlog e—g © K;E:%L 8 T, O
Hence we get the required identity. Q.E.D.

LEMMA 2.4. Let K be a compact subset of R and ¢ be a mon-negative
continuous function admitting the value o such that ¢ is a supersolution
of 1.1) in R—S,~K. Suppose that ¢(z)=U*z) on S,~K, where S, is com-
pact, then the same inequality holds on the whole space R.

Proof. Let {R,} be an exhaustion of R and G.(z, {) be Green’s function
of (1.1) with respect to R, and we put

U,(z) = L Gz, O dp(O),

where S,CR,. From (1.2) we see that U,*(2) /U*z) on R. From this we
may assume that R has the relative boundary 7 and Ry is compact. Let D
be a component of R— S,~K. Then from Lemma 2.2 and 2.3
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lim U#(z) < ¢(z0),
D3zz

where 2z, is an arbitrary point in 6D. Hence by Lemma 1.1 and 2.1, U#(z)
=¢(2) on D. So this inequality holds on R. Q.E.D.

The mutual energy (u, v) of measures p and p is defined by
(1, 9) = “ Gz, ©)du(z) ().
RXR

The energy || u|? of a measure p is, by definition, || #||2= (g, ). Let K be a
compact subset of RB. The capacity C(K) of K is defined by

3 1
O = St (Il WS =1, Sy B

For an arbitrary subset X of R, its inner capacity C(X) is defined by
C(X)=sup(C(K); K is compact in R and KcCX).

Hereafter capacity means always inner capacity.

LEMMA 2.5. The kernel G(z,£) ts regular®, that is, for any & in R
and any neighborhood V of &, there exist a measure u of total mass 1 with
finite energy and S,CV satisfying

Ut(z) < 2G(z, &)
on the whole space R.

Proof. Take a local parameter such that Ki(¢) V. By (G. 6b), there
exists a positive constant ¢ such that

@.1) —c—loglz—CI=G( )=c—log|z—]
holds on K, (&) X Ki,2(&s). Let & be in (0, 1/2) and put
_ [ @n)"tdarg (€ — o) if [(—Cl=¢
Al = { 0 elsewhere.

Clearly the total mass of p. is 1 and the support of u. is contained in Kj,(&).
From (2.1)

2.2) Ute(z)<c+min(—loge, —log|z— &)

on Ki,(&). From this we have [[g|?=<c¢—loge<co. From (2.1) and (2.2),
Ur(2) < 2G(z, &) on K;i,.(&) if ¢ is sufficiently small. By Lemma 2.4, this ine-
quality holds on the whole space R. Q.E.D.

An important consequence of the regularity of G(z, £) is the following

LEMMA 2.6. Let X be an arbitrary subset of R and ¢; (1=1, 2) be con-
tinuous functions defined on X. If
01(2) = UH(z) = ¢a(2)

1) Terminology due to Ninomiya [8].
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holds on X except a set of capacity zero, then the same imequality holds at
every inner point of X.

Proof. Let 2z, be an inner point of X and let {£2,} be a fundamental base
of neighborhéods of z, such that 2,,,C 2,cX. By the regularity of G(z, ©),
we get a sequence {u.} of measures such that S,,C 2, and || <o and
ta(Sp,) =1 and Urn(z) < 2G(zy, 2) on R. Then it is easy to see that

Ut(ao) = limnj U@) (@)

and
¢i(zo) = lim,, Lsoi(z) dpen(2) G=1,2).

Noticing that u.,-measure of a set of capacity zero is zero, we have
| p@dme = | v aue s | p@dme.
P
Letting 7 tend to infinity we get the required inequality. Q.E.D.

2.2. Potential theoretic principles. Green potentials enjoy almost all im-
portant potential theoretic principles from which we can derive the analogous
properties as that of harmonic Green potentials. They are listed in the fol-
lowing

THEOREM 2.1. Green kernel G(z, €) satisfies the following principles.

(i) Continuity principle. If the restriction of Ut(z) on S, is finitely
continuous on S,, then UH#(2) is continuous on R as the function on R.

(ii) Frostman’s maximum principle. If the inequality U#(z)<1 holds
on compact S,, then the same inequality holds on the whole space R.

(iii) Cartan’s maximum principle. If the inequality U#(z) < U>(z) on com-
pact S, with ||p||< oo, then the same inequality holds on R.

(iv) TUnicity principle. If U#(z)=U>(z) on R except a set of capacity
zero, then p=v.

(v) Equilibrium principle. For an arbitrary compact subset K of R
there always exists a unique measure called equilibrium measure of K satis-
Sying S,CK and U#z) =1 on K except a subset of 0K of capacity zero and
Utz) <1 on R.

(vi) Balayage principle. For an arbitrary compact subset K of R and
a measure v there always exists a unique measure p called balayaged mea-
sure of v on K satisfying S,CK and Utz)=U"(z) on K except a set of
imner capacity zero and U#(2) =U*(z) on R.

(vii) Energy principle. For any measures p and v with compact supports

such that o =p—v#0 it holds ﬁ Gz, £)do(2)da(€) > 0.
RXR

Proof. (i) follows at once from Lemma 2.3 and the lower semicontinuity
of U¥(z) on R. (ii) is a consequence of Lemma 2.4. To prove (iii) and (iv),



EQUATION 4u=pu ON A RIEMANN SURFACE 161

we notice that for kernel G(z, &) (iii) and (iv) are equivalent to the following
(iii)’ and (iv)’ respectively (cf. Ninomiya [8], Théorémes 7 and 9):

(iii)’ Suppose that &, is a point in B and A is a measure with compact
support S; not containing &, If U*z)=G(z, &) holds on S;, then the same
inequality holds on the whole space R.

(iv)" Suppose that & is a point in R and 1 is a measure with compact
support S; not containing &. If U#z) <Gz, &) holds on S;, then U#(z)
< G(z, &) on a neighborhood of &.

These are easy consequences of Lemma 2.4 and the fact G(&o, &) =o0. (vii)
is a consequence of (ii) (or (iii)) and (iv) (cf. Ninomiya [8], Lemma 6). Next
we concern ourselves with (v ) and (vi). Existence of equilibrium measure on
K (resp. balayaged measure of v on K) is equivalent to (ii) (resp. (iii)) (ef.
Ninomiya [8], Théoréme 4 (resp. 5)). Unicity of them follows from (iv) (ef.
Ninomiya, ibid.). Non existence of exceptional points in inner point of K for
equality U#(z) =1 follows from Lemma 2.6.

2.3. Sets of capacity zero. It is quite easy to see that a subset X of R
is of inner capacity zero if and only if C(X ~ Ki(2))=0 for all z in B. We
say that a subset X of R is of inner logarithmic capacity zero if inner
logarithmic capacity of X ~ K;i(z) is zero for all z in E. We can prove

THEOREM 2.2. For a subset X of R, C(X)=0 if and only if X is a set
of inmer logarithmic capacity zero.

Proof. From the above remark and the definition of C(X) and inner
logarithmic capacity, we may assume without loss of generality that X is a
compact subset of a parameter disc K=K;,(20). We put

Co(X) = 1/inf(n Ak =j5 06, Odpdp0; M) =1, 8, cX>,

where g(z, £) is harmonic Green’s function of K;(z,). It is well known that X
is of logarithmic capacity zero if and only if Co(X)=0. Hence we have only
to prove the equivalence of Cy(X)=0 and C(X)=0. From (G. 6b) we can
find a positive constant ¢ such that

9z, 0=G@# O+e=9k 0 +2¢
on KxK. If u is a measure such that S,cX and x(S,)=1. Then
leld=lullP+e=llpll®+2¢

KX

and so
1 1 1
< < .
G0 e T T
This shows the equivalence of Cy(X)=0 and C(X)=0. Q.E.D.

It is known that from continuity principle it follows the following (cf., for
example, Ugaheri [14]).
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THEOREM 2.3. Let E be an F,-set of capacity zero in R. Then there
exists a measure p satisfying p(R—E)=0 and UXz)=o0 at each point z
wn K.

This measure p (or potential U#(z)) is called Ewans’ measure (or Evans’
potential) of K with respect to R.

2.4. Gauss’ variation. A sequence {u,} of measures is said to converge to
a measure p vaguely if {j f(@ d/z,,(z)} converges to j f(z)du(z) for all con-
R R

tinuous functions f(2) with compact support on R. The following is well
known and can be proved easily by using Riesz-Markoff-Kakutani’s representa-
tion theorem of continuous linear functionals (cf., for example, Halmos [1], at
page 243).

SELECTION THEOREM. If S,, are contained in a compact set in R and
{(R)} is umiformly bounded, there exists a subsequence of p, which con-
verges to a measure vaguely.

Let K be a compact subset of B. By Stone-Weierstrass theorem, we can
easily see that the closed subalgebra generated by C(K) of C(KXK) coincides
with C(K X K), where C(K) and C(K X K) are the totality of continuous funec-
tions on K and K X K respectively. Using this fact, we get at once

LEMMA 2.7. Suppose that S,, are contained in a fized compact set in R
and {u.} converges to p vaguely. Then lim, (u, p) = (4, ).

The following theorem is very useful in the potential theory and proved
easily by using Lusin’s theorem. For the proof, see, for example, Kishi [2],
Lemma 2.

REGULARIZATION THEOREM. Let K be a compact set and p be a measure
with S, CK and |[pl|<co. Then there exists a sequence {u,} of measures
with p, = p satisfying 1° {u,} converges to n vaguely and lim,| p,—p|=0,
2° Utn(z) are all continuous on R, 8° {Utn(z)} converges increasingly to Ut(z)
pointwise in R.

The following is also well known. For the proof, see, for example, Nino-
miya [8], Lemma 5.

LEMMA 2.8. Suppose that {u.} converges to p vaguely and S, are con-
tained in a fixed compact set in R. Then

Ut(z) = lim, U¥n(2)
on R except a set of capacity zero.

Let K be a compact set in R and ¢ be a continuous function on K. For
a measure p with S, CK we put
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() = (1, 1) — zj;o(z) du(z)

and
m, = inf(G,(1); S, CK).

As G,(0)=0, so m,=0. Gaus:g’ variational problem with respect to the
system (K, ¢) is to find a measure u such that m,=G,(1). We say that {u,}
is a minimal sequence if G,(u,) \m,.

LEMMA 2.9. Gauss’ variational problem is always solved.

Proof. Let {u,} be a minimal sequence. We put 4 ={4 S;CK, A(K)=1}
and a =inf(|1||; A= 4). Let 4, be in 4 and [4,]>\.a. By selection theorem
we may assume that 4, converges vaguely to a measure 4 in 4. By Lemma
2.7,

a <212 <lim, | 2,2 = a.

Thus a=||2|? and by energy principle @ >0. Now it is easy to see that G,,.(2)
>0ift>2|¢ll/a, where A4 and | ¢ll=sup (|¢(2) |; z €K). As G (t2) =t?Gp(A),
so if u(K)>2|¢ll/a, then Gy(4) >0. Hence u.(K)=2| ¢|/a for all sufficiently
large n since m,=0. By selection theorem we may assume that {u.} con-
verges vaguely to a measure u. By Lemma 2.7,

My < Go(t) < lim (i, i) +2 f 9@ duz) =lim, Gy () = m,.
Hence G (1) = m,,.

The following is known as fundamental theorem in potential theory.

THEOREM 2.4. Let K be a compact set and ¢ be a continuous function
defined on K. Then there exists a unique measure 4 with S, C K and UH(z)
=¢(z) on S, and UHz)=¢(z) on K except an Fy,-set E of 0K with C(E)=0.

Proof. Let u be a solution of Gauss’ variational problem with respect to
(K, ¢). Let d=sup(Utz)—¢(z); 2€8,) and E=(zecK; U4z)—¢(z)<d) and
E,=z<K,; Utz)—¢()<d+1/n). Then it is clear that E, is compact and
E=U,FE, or E is an F,set. First we claim that C(F)=0. Contrary to the
assertion we suppose C(E)>0. By the definition of C(E) we can find a com-
pact set F' contained in E such that C(F)>0. Let o be equilibrium measure
of F. Then

0< )< o(F ~ E)

and so there exists an n such that «(F ~ E,)>0. Let o, be the restriction of
won E,. Then |w,|Z||w]| <o by C(F)>0 and so w,(E,)>0. By regulari-
zation theorem we can find a measure 8 with S;CE, and [|B]|< o and Uf(z)
is continuous on R. By the definition of d and the lower semicontinuity of
U#(z) — ¢(2), we can find a neighborhood W of a point 2z, in S, such that
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1
B(2) — _—
(2.3) Ub(z) — o(z) > d o
on W~ K. Now define the set function 4 by
—H on W,
_ ) MV)B
2.4) A= B(E on E,,
0 elsewhere on R.

Then by |ul|<o and the continuity of Uf(z), we get the finiteness of
S G(z, &)dA(z)dA(&) and j‘ Ur(z)dA(z). If 0<t<1, then u+t2 be a mea-
sux%xzvevhose support is in I? Hence Gy(1+td) = G,(1) and from this | (U#(2)
—¢(2))dA(z)=0. On the other hand, from (2.3) and (2.4) we seéz that
(UH(2) — ¢(2)) dA(z) = — m(W)/2n < 0. This is a contradiction and so C(E)=0.
” Thus we have seen that U¥(z) —¢(z)=d on K except an F,set E with
capacity zero and U#(z) —¢(z)=d on S, except a set of capacity zero. Hence
we have (4, ,u)—§ ©(2)du(z) = d-p(K). On the other hand x-+tu with |¢] <1
is a measure with zupport contained in K. So we have Gy(u-+t2) —G,(x) 0.
From this (s, p)—g ¢(2)du(z)=0 or d=0. Thus we have U“(z) < ¢(z) on S,
and U*(z) = ¢(z) on IIE except K of capacity zero. By Lemma 2.6, we see that
E CoK.

Finally we prove the unicity of . Suppose that p’ also satisfies the asser-
tion of our theorem. Hence in particular [ z/'[ <oo. So U¥(z)=¢(z) on K
except a set of capacity zero implies (¢/, ) =\ ¢(?)du(z). Hence || p— p/|?
= [l +llp 17 =20 W= p P+ 121 — 2L¢(2) d,f(Z) =G+ e 12 As U(2)
=¢(z) on S, except a set of capacity zero, so ||/ ||?°=| ¢(2)du'(z) or G(v')
= — || ¢/ |?. Thus we get || x— 2/|I2= G(1) — G(¢') < 0. Thusty energy principle,
p=p. Q.E.D.

The following will be extensively used in Chapter III.
THEOREM 2.5. Let K be a compact set in R and f be a mon-negative
supersolution on R. Then there exists a wunique measure p with S,cK

and Utz)=f(2) on R and U(z)=f(z) on K except an F,-set E of 0K with
C(E)=0.

Proof. This follows from Theorem 2.4 and Lemma 2.4. Q.E.D.

As an application of Theorem 2.5 we prove the converse of Lemma 2.1.
We state this as follows.

THEOREM 2.6. U*(z) is a solution of (1.1) in Ki(20) if and only if
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S, ~ Ki(20) is empty.

Proof. In virtue of Lemma 2.1, we have only to show that S, ~ Ki(z) is
empty if U#(z) is a solution of (1.1) in Ki(z¢). Let K be a dise in K;(z,) such
that Ec K (z0). Let ¢’ be the restriction of # on K and g/ =pu— /. Then

Utz) =U¥(2) + U (2)

on R. Clearly U#(2) is continuous on R—K. As U#(z) and U*’(z) are lower
semicontinuous and their sum, i.e. U#(z), is continuous on K;(zp), so U#(z) is
continuous on K;(z,) and so on E. Moreover U#(z) and U#”’(z) are solutions of
(1.1) in K and so U¥(z) is a solution of (1.1) in K. If we can prove p' =0 on
K, we may conclude that S, ~ Ki(2,) =0 since K is arbitrary in Ki(z,). From
this remark we may assume without loss of generality that S,,CK' 1(zo) and
U*#(z) is continuous on R and a solution of (1.1) in R except 0Ki(zo).

Let K be a disc in Ki(2,) such that K cKi(z,). By F we denote a compact
set K(z)) —K. By Theorem 2.5 there exists a unique measure A with S;cF
and U%(z) =U*z) on F except an F,set E of capacity zero in 0F and U?(z)
<U#z) on R. By the lower semicontinuity of U2(z) and the continuity of
Ut(z), we easily see that U4(z) is continuous on 0F — K and U%(z) = U*(z) there.

Let U*(z) be Evans’ potential of E (cf. Theorem 2.3) and {R,} be an ex-
haution of R with R, DK (z) and G.(z, &) be Green’s function of (1.1) with

respect to R,. Put U"(z):L,,G"(z’ Odu). Clearly U.*(z)/U*z). For an
arbitrary positive number ¢ we consider

u(z) = UXz) + e U*(2) — Un*(2),
which is a solution of (1.1) in D, = R, —K(2). It is easily seen that

limu(z) =0
2>

for all £ in 0D, (cf. Lemma 2.2). Hence by (I) in §1.2, we have
Ui(z) +eU(2) = Un(2)
on D,. Letting » tend to infinity and next &£\,0, we get
Ui(z) 2 U*(z)

on R —K(z,). Similarly by considering U%(z)+ eU*(z) — U#(z), which is a solu-
tion of (1.1) in K, it can be proved that

Ui(z) 2 UH(z)

in K. Hence we have proved that U#(z) =U*z) on R except a set E of capa-
city zero. By unicity principle we get =4 and so S, ~K=S; ~ K is empty.
Since K is arbitrary, S, ~ Ki(2o) is empty. Q.E.D.

2.5. Miscellaneous facts. Before closing this chapter we state two more
results. Although they have their own interests but we shall make no use of
them, so we omit their proofs.
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1. Let € be the totality of measures g with ||z]|< o and with compact
S, and €x be the subset of & whose measures have compact support contained
in a fixed compact set K. Let u; be in € and put

| — a2 = ijGa, Odo(®)do(@), o= pu— .

By energy principle this defines a metric on €. Ohtsuka [9] proved that CGx
is complete with respect to this metric. The same is also valid for €.

2. If f(z) is a supersolution of (1.1) on R dominating a solution of (1.1),

then we can find a unique measure x such that f(2) —U*(z) is a solution of
(1.1).

III. Minimal solutions of Au = pu.

3. 1. Martin’s kernel and Martin’s boundary. Let G(z, ) be Green’s func-
tion of (1.1) with respect to R and K(z, ) be defined by

K(z, ) =G(z, )/ G(20, O)

on RXR if £+2z, and K(z, 2)) =0 if z+# 2, and K(z, 20)=1. We notice that
K(z, £) is continuous in £ on R with fixed z in R and K(z, &) is a solution of
(1.1) in z on R —{¢} with fixed ¢ in R.

We take a fixed exhaustion {R,} of R such that R, contains z, and put

—_ > -n K(z’ Cl) K(z, CZ)
®D U C =227 W | T R €) 14K 6 |
Then d defines a metric on B. We denote by R* the completion of R by this
metric. It is easily seen, by using fundamental properties of solutions of (1.1)
stated in Chapter I, that R* is a compact metric space with naturally extended
metric d. For a point ¢ in R* —R, we can find a sequence {¢,} in R such that
d(, £,) —0 and so we can define

Kz, €) =lim, K(z, {,),

then the extended metric d is also in the form (8.1). By the fundamental pro-
perties of solutions of (1.1) described in Chapter I, we see at once that K(z, {)
=1 and K(z, &) is a solution of (1.1) in z on R —{ with fixed £ in R* and
K(z, €) is finitely continuous on D X (R* —D), where D is an open subset of R.

We shall say R* and K(z, {) to be Martin’s compactification of R with
origin 2z, and Martin’s kernel of (1.1) on R X R* with origin 2, respectively.
It is easy to see that the special choice of exhaustion does not affect the
structure of R* and does not change K(z, £). The same is also true for z,.

We denote by 0R the set R* —R and we shall say that 0R is Martin’s
boundary of R with respect to Ju =pu. Clearly 0R is compact.

3.2. Martin potential. By a measure p on R* we mean a countably addi-
tive set function defined on the Borel field generated by compact subset of R*
and p(R*) < co. Hence the restriction ' on R of a measure ¢ on R* is a
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measure on B. The meaning of the support and the notation S, are similar to
that defined in §2.1.

Selection theorem also holds for a compact subset K of B* and the sequence
of measures whose total measures are uniformly bounded and whose supports
are contained in K. Here K may be R*.

Let D be an open subset of R and x be a measure on B. For a Borel set
X in R we put

3.2) pp(X) = L _Glen, 07 du(0).

As G(zo, £) is strictly positive and continuous on D, we see that pp is a mea-
sure on R with S,, cD.

Using Martin’s kernel K(z, £) on B X R*, we can define a potential K#(z),
so called Martin’s potential, by

K= | Kz, Qdu©).

Clearly K*(zo) = p(R*). Martin potential is, of course, closely related to Green
potential and the properties of the former are deduced from those of the latter
by using (3.2). For example,

LeMMA 3.1. K#(z) is a solution of (1.1) in Ki(zo) if and only if Ki(zo)
~Su is empty.

Proof. By the similar method as in the proof of Theorem 1.1, K#(z) is a
solution of (1.1) in D=Ki(z,) if D~ S, is empty.

Conversely assume that K*(z) is a solution of (1.1) in D. Let z’ be the
restriction of # on R*—D. Then Kt(z) =K*(2) +Utp(z). As K¥(z) and K¥(2)
are solutions of (1.1) in D, so U*p(z) is a solution of (1.1) in D and hence S,
~D is empty by Theorem 2.6. Thus S, ~D is empty. Q.E.D.

3.3. Operator I,. We denote by S(R) the totality of non-negative super-
solutions of (1.1) on R and N(R*) be the totality of closed subsets A of R*
such that (A —0A) ~ R is a nice open subset of R.

Let A be in N(R*) and f be in S(R). The set D=R —A is again a nice
open subset of . We denote by U,? the totality of supersolutions of (1.1) on
D satisfying

lim g(z) = f(£)

>
for every point ¢ in 0D, R. We put
3.3 H;”(z) =inf(g(z); 9 €U,?)
on D.

Next consider an exhaustion {R,} of B. Let wu, be the solution of (1.1) on
D_ R, with the boundary value f(z) on D~ R, and 0 on OR, - D. This
boundary value function on 9(D - R,) is not continuous in general but we can
find such a solution as remarked in §1.8. The boundary value of u, is f
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on 0D~ R, and 0 on 0R,~ D with possible exceptional points in (0D R,)
~@OR, ~D). It is easy to see that {u,} forms an increasing sequence domi-
nated by f(2) on D and so

38.4) E:2(z) = lim, u,(z)

is a solution of (1.1) in D with 0<E”2)<f(2) on D and E,”(z)=f(z) on
0D R.

Next decompose D into components {D,} and Gp,(z, {) be Green’s function
of (1.1) with respect to D, and put Gp (2, ) =0 for (2, &) €Dn XD, (n+*m).
We define the Green’s function Gp(z, ) of (1.1) with respect to the open set
D by

Go(z, {) =33, Gp,(2, ©).
Now set
1
3.5) 6@ =5 | PG, 05 ds,

DR ON

where 0/0n denotes the inner normal derivation with respect to D and ds de-
notes the line element of 6D - R.
Now we remark the following

LEMMA 8.2. Let {v,} be the positive solutions of (1.1) im D =K;(2c)
~{z; Im (z — zo) > 0} and continuous on D. Suppose that v,=0 on a=Ki(2)
~1{2; Im (z — 20) =0} and 0v,/0n exists on a and {v,} converges to 0 decreas-
ingly and uniformly on each compact subset of D —a. Then

lim,, (0vn /0n)(z) =0

on a and {v,} converges to 0 uniformly on each compact subset of D™~ a.

Proof. Let h, be the harmonic function such that h,=v, on 0D. Then
{h»} forms a decreasing sequence converging to 0 on each compact subset of
D —a. Moreover 0< v, <h, on D and so

0 = (Ovw / 0n)(2) < (Ohy / On)(2)

on «a, since h, =0 on a. Clearly lim,, (0h,,/0n)(2) =0 on a and thus the asser-
tion of our Lemma follows. Q.E.D.

LEMMA 3.3. H;”(2) =Ef"(2) = G;°(2).

Proof. As E;”(z) €U, so E;°(z) =H;’(z). On the other hand, the funec-
tion u.(z) in (3.3) clearly satisfies u,<g on R, ~D for any ¢ in U;°. From
this we get E;?(z) <H;”(z) and so E;*=H;” on D.

Let G™(z, £) be Green’s function of (1.1) with respect to D~ R,. By
(G. 3) and (1.2), Gp(z, ) — G™(z, £) satisfies the assumption of Lemma 3.1 as
the function of ¢ with fixed z and so (0G™/0n)(z, )./ (0Gp/0n)(z, ). By
putting (0G™/0n)(z, £)=0 on 0D — 0D R,, and by Green’s formula
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() = L j 9 Gawge, 00 ds.
2r dD~R on
Letting m tend to infinity, we get
B =1 j 0 6o, 0 F O ds. QE.D.
2r dD~R 0%

Definition of the operator 14, For AN(R*) and fe S(R),

_[f(® on A4,
3.6) wH@={18. ..
It is easily seen that l.f belongs to S(R). Hence I, is an operator of S(R)
into S(R). We have

LEMMA 3.5. The operator 1, possesses the following properties:
(i) 0=2WSf=S;
(ii) f=g implies Lif<lug;
(i) lalef+ 9) =claf + lsg, where ¢ is non-negative number;
iv) lavsfSULf+ 16T
(v) ADB implies luf=1lsf and L(lsf) =1slsf) =1sf;
(vi) lim,f, € S(R) implies
L(im, ) = lim, Lafn

and moreover the existence of g = S(R) such that g=f, (n=1, 2, ---) implies
lA(hmnfn) = hmn lAfn;

(vil) 14K(z, &) is lower semicontinuous on OR with respect to &;
(viii) R~A,/'R~A, ie. R A=R_  (U,A,) implies

lim, Ly, f=1L.f.

Proof. The properties (i)—(v) is clear from the definition of I,. By using
the representation l,f=G;F 4 on R—A, (vi) follows at once from Fatou’s
theorem and Lebesgue’s theorem. (vii) is a direct consequence of (vi).

To prove (viii), put f,=14,f. As {f.} is an increasing sequence dominated
by l.f, so we may set g =lim,f, on R. In any point of A4, g=f. In R—A,
g is a solution of (1.1) from monotone compactness of {f,}, which is a sequence
of 1.1y in R—A. In each point ¢ in 0A ~ R, limr_as:>¢ fu(2) = (&) for some
n. Thus limz_—4s5:5:9(z)=f() at each point ¢ in 0A. Thus l.f=Hf4<g
<l,f in R—A. Hence l,f=g on R. Q.E.D.

LEMMA 8.6. For any A in N(R*) there exists a measure A on R* such
that S;c A and
(Lu)(2) =K*(2)
holds on R.

Proof. Let {R,} be an exhaustion of R and A,=A ~R,. By the conti-
nuity of 4 with respect to A4,
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(Laf)(2) = limy, (L4, f)(2)
on R. By Theorem 2.5, there exists a measure u, on R with S,, CA, such that
(LanS)(2) = UPr(2)
on A, except an F,set E of 04, with C(E)=0 and (I,,f))=U(z) on R.
Let U*(z) be Evans’ potential of E on R and & be an arbitrary positive

number. Then
lim (Utn(z) 4+ eU*(2) = ()

R-A>z5¢

on 0A, and by ls f=H;*“» on R—A, we get Utn+eU”214,f on R—A,.
Letting ¢\.0, we have U =1,,f on R—A,. Hence

Utn(z) = (Lanf)(2)
on R—FE and by Lemma 2.6 this holds on the whole space R.

Now put
d2,(8) = G(zo, {) d2a(D)-

Then

(lanS)(2) = K*n(z).

As ,(R*) =K™(z0) < (1.f)(20), S0 we may assume that 1, converges to a mea-
sure A vaguely. Now let D be a nice compact subdomain of R and_)un’ be the
restriction of u, on D and A, be the restriction of 2, on R*—D. Clearly
{u'(R*)} and {1,/(R*)} are bounded and so we may assume that ux,’ and 24,/
converge to p’ and A’ vaguely, respectively. Clearly 1=4"4 " and K*=K¥
+U*.

If 2 lies in D, then K(z, €) is continuous on R*—D as a function of ¢ and
so lim, K*'(z) =K¥(z). By Lemma 2.8, U*(2)=lim,U"'(2) on R except a set
of capacity zero. As (I4,f)(z) =K*'(z)+ U’ (z), so

(uN)@) =K% (2) + U*(2) =K¥(2)

on D except a set of capacity zero. The difference (1,f)(z) — K% (z) is continuous
on D and equals to U¥(z) except a set of capacity zero and so by Lemma 2.6
(af)2)—K¥(2)=U¥(z) on D or (I.f)(2)=K2%z) on D. Since D is arbitrary
14f)(z) =K*z) on R. Q.E.D.

3.4. Operator Lx. We denote by P(R) the totality of non-negative solu-
tions of (1.1) on R. This is a subset of S(R). Let F be a compact set con-
tained in OR. Let N(F) be the totality of 4 in N(R*) such that the open
kernel of A contains F. We easily see that N(F) constitutes a fundamental
base of neighborhood system of F. Needless to say N(F') contains a countable
subbase.

For closed set F' in 0R we define a function Lzu on R by

3.7 (Lru)(z) = inf{lu)(2); A EN(F)}

for each u in PB(R). We now show that Lyu = PB(R). In fact, we can choose a
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decreasing sequence A, € N(F') such that N A,=F and (Lru)(ze) = lim, (L4, %)(20).
By monotone compactness, lim,l,, % =v belongs to P(R). Next choose an
arbitrary point 2z in B. We can also choose a decreasing sequense B, <N(F)
such that NB,=F and (Lyu)(z)=lim, (s,u)(2). By considering B,NA. we
may assume B, CA,. By monotone compactness, lim, Iz, = w belongs to P(R)
and v=w. As v(z0) =w(zo), so by (II) in §1.2, »=w. This shows that v(z)
= (Lru)(z) at every point z in B. Thus Lru < PB(R). Thus Ly defines an
operator of PB(R) into P(R).

Incidently we have also proved that there exists a sequence {4,} in N(F")
such that A,\\F and

3.8) Lpu=1im, l,u.

LEMMA 8.7. The operator Ly possesses the following properties:
(i) 0=Lru=wu;

(ii) w=<v implies Lzu<Lzv;

(iii) Lyg(eu+ v) =cLru+Lv, where ¢ is a non-negative constant;
(iv) Lpexu = Lpu + Lxu;

(v) Lsyzu=mu;

(vi) FOK implies Lyu=Lxu and Lgp(Lxzu)= Lxu;

(vii) Fo\\F, i.e. NF,=F timplies Lpu™\ Lyu.

Proof. These can be verified easily from (3.8) and Lemma 3.5. Q.E.D.

Nextly let G be a relatively open subset of 0R. We put
(8.9) (Leu)(z) = sup {(Lru)(z); F is compact in 0R and F'c G}

for each u in P(R). By the similar method by which we proved Lru € P(R),
we can prove Lsu € P(R). From Lemma 3.7, we easily get

LEMMA 3.8. The operator Lg possesses the following properties:
(i) 0=Lcu=wu;
(ii) u=v vmplies Leu < Lgv;
(iii) Lg(eu + v) = eLgu + Lgv;
(iv) Legu=>) Lou;
Y n=1
(v) G DIU tmplies Leu=Lyu and Lg(Lyu)=Lyu;
i) G,/G, ie. UG,=G implies Lgu " Lsu.

Finally for arbitrary set X in 0R, we set
(8.10) (Lx*u)(z)=inf {(Leu)(z), G is relatively open set in 0R and G DX}

for each w in P(R). Similarly as before, it can be shown that Lx*u = P(R).
From Lemma 3.8 and (vii) in Lemma 3.7, it follows the following

LEMMA 8.9. The operator Lx* possesses the following properties:
(i) O=ZLx*u=wu;
(ii) w=v implies Lyxy*u=Ly*v;
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(iii) Lx*(cu +v)=cLx*u+Lx*v, where ¢ is a non-negative constant;
(iv) L*ew x u <>} Ly, *u;
w21 n=1
(v) XD2Y implies Lxy*uw=Ly*u and Ly*(Ly*u)=Ly*u;
(vi) for any relatively open subset G of 0R, Lg*u = Lgu;

(vii) for any compact set F of OR, Ly*u =Lyu.
Hence we may use the notation Ly instead of Lyx*.

LEMMA 8.10. For any compact set F' in OR, there exists a measure p
with S,c 0R and

(Lo = K@) = | Kz, Odp0.

Proof. We choose A,=N(F) such that A,\F and l;u\ Lrpu. By
Lemma 3.6, there exists a measure u, with S,, CA, and l,u =K. As p.(A4,)
=K*tn(2,) < u(20), s0 we may assume that {u,} converges to a measure u
vaguely. Hence K#»(2) —K*#(z) for each point z in R, since K(z, £) is conti-
nuous on R* —z with respect to {. The fact that S,,C A, (n=m) implies
S:CA, and so S,CF. Q.E.D.

LEMMA 3.11. For any u in P(R) there exists a measure u with S,COR
such that

u) = Kz, 0.
Conversely, for any measure p with S,C OR the function
|, K@ 0dn©
R
belongs to P(R).

Proof. The first assertion follows from Lemma 3.8, since u =Lszu. The
second assertion is obvious. Q.E.D.

We introduce a Fréchet norm li%ll in B(R) by
171 = 3127 sup, | 5) | L+ | ED D, & BB OBR),

where {R,} is an exhaustion of B. Then clearly P(R) is complete with respect
to lull. Now for each subset X of OR let £x be the totality of u with
the form

we) = 3K, 0,

where ¢; are non-negative constants and ¢, €X.
Then Lemma 8.10 and 11 are equivalent to the following: ¥z is dense in
LB(R) with respect to llull for each compact set F' in OR.

3.5. Minimal solutions. We say that a solution of (1.1) is minimal if
uEP(R), w#0 and u=v for some v in P(R) implies the existence of a con-
stant ¢, such that v =c,u. We denote by P¥(R) the totality of minimal solu-
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tions # of (1.1).
Let u be in P¥(R) and K be a compact set in 9R. We can find a con-
stant ¢ such that
Lxu = cu.
By (vi) in Lemma 8.7, Lx(Lxu)= Lxu. Hence Lxu =cLxu or ¢?=c¢. Thus
Lxu=0 or Lxu=u.

Assume that the latter is the case. Let K=U?.,F, where F, is compact and
the diameter d(F;) <2°1. By (iii) in Lemma 3.7,

n
E Lpiu gLKu =Uu.
2=1

Thus one of Lyu satisfies Lru==cu (¢>0). Applying Lz, we see that ¢c=1.
Hence we showed the existence of a compact set K; cK such that d(K;) <2
and Lxu=u. Repeating this process, we get a sequence {K,} of compact sets
such that KD K; DK;D---DK,D--- with d(K,) <2 ™ and Lg, v =u. Then NK,
is a one point ¢ in K and by (vii) in Lemma 3.7,

Lou=mwu.
Thus by Lemma 38.10
u=u(z0)K(z, ), (E0R.

Finally suppose that L:K(z, )+ K(z, ). By Lemma 3.10, we get a non-
negative number ¢ =L:K(zo, ) <1 such that

LCK(zy C) = CK(Z, C)'

By applying again L, ¢=¢c?® or ¢=0. So L:K(z, ) =0.
From the above consideration, we obtain

LEMMA 8.12. (i) Any minimal solution of (1.1) s a multiple of a K(z, £)
with € in OR.

(ii) L:K(z,©)=K(z,8) or =0 on R and K(z,&) ((€0R) is minimal if
and only if L.K(z, ) =K(z, ) on R.

(ili) Assume K(z, &) is minimal. Then LpK(z, £)=K(z,{) or =0 on R
according to E€F or L& F, where F is a compact set in 0R.

Now we put
M={¢(0R; LKz, ) =K(z, &) on R}
and
E={¢=0R; L:K(z,)=0 on R}.

Clearly M E is empty and M~ E=0R.

Now fix a constant a with 0<a <1. Assume that for a point £ in OR we
can find an integer # =1 such that for any A eN({) with d(A)<1/n implies
1.K(20, ©) < a. Then we can find a smallest integer n({) with the above pre-
scrived property. If for a point  in OR we cannot find such an integer, then
we put n(l) = o0. It is clear from the definition of L; that n({) < co for any
¢ in E and n(f) = for any ¢ in M. Hence we may write
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M={(coR; n¢) =0} and E={{c0R;nl) < co}.
We put
E,={{€0R; n(() <n}.

From (vii) in Lemma 8.5, E, is compact. Clearly E, 'E, i.e. E=UE,.
Thus we have shown that M is a G;-set with respect to 0R and E is an
F,-set.

LEMMA 8.13. Let XCFE, Y be an arbitrary set in 0R and u< P(R).
Then

(l) LXuZO;

(11) Lyu=LyﬂMu.

Proof. First let K be compact in E, with d(K)<1/n. We can find
AeNK) with d(4)<1l/n. Let v, ¥ such that llv, —Lzull—0. Let
V= 21 ¢:K(2, ) where {,K. Then

Lavn(2o) = 2 € LaK (2o, &) = a > i K(2o, () = avn(%0).
From (vi) in Lemma 3.5,
LaLxu(2o) = limp L4vn(20) = limy, avn(20) = @ Ligu(zo).

Since la(Lxu)\ Lx(Lgu)=Lxu, Lxu(2o) < aLxu(z,). Thus Lzxu(z) =0.
Next we can write E,=U!_, K, with d(K,)<1/n. Then

LEnu < El LKL»u =0.
Finally by (iv) in Lemma 3.9,
Lyu=Lpu <3}, Ly u=0.

Thus we have proved (i).
Now we prove (ii). As Ly~zu =0, so

Lyuw =Ly gy~ v~ ¥ =Ly 5% +Ly %=Ly yu=Lyu,

which implies Lyu =Ly xu. Q.E.D.

LEMMA 3.14. Let weP(R). Then there exists a measure p on 90R such
that p(E)=0 and

u(@) = SMK@, 0 du(©).

Proof. There exists a decreasing sequence {U,}n-0 S B(R) with uy=u and

a sequence {K,}n-1 of compact set in M such that
Un_y =Lg,Un1+un and uy(20)<1/m.

This can be shown by induction as follows. First put uo=u. As Lzu,=0,
so there exists a relatively open subset G, of 9R such that G DE and Lguo(z0)
<1. Put K;=0R—G;. Then K; is a compact subset of M. Let u;=wu,
—Lxuc. Then 0=u;<uo and uo=Lxguo+ t1. As uo=Larto < L¢ o+ L, tho,
80 Uy = U — Lxuo < Lg,uo and hence ui(2¢) < Lguo(20) =1. Thus u, and K; are
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required one.

Assume that 4, (0<i<n) and K, 1 =<¢<n) are required ones. As Lzu,_;
=0, so there exists a relatively open subset G, of OR such that G,>DE and
Lo Un_1(20) <1/m. Put K,=0R— G, Then K, is a compact subset of M.
Let wn =1%u-1 — L, Un-1. Then 0= %Un=Un-1 and Un_1=Un+LgUn-1. AS Un_s
Lortn-1 < Lgtn-1 + L, Un-1, 80 Un=Un_1 —Lg Un-1 SLg,%n-1 and hence wun(2o)
< Lg,%n-1(%) <1/m. Thus our induction is completed.

Next we get

n
U= ZELK,-%L-L + Un.
=
Clearly u,\,0, and so we get
u= ZILK'L%n_l.

By Lemma 3.10, we have a measure u, with S,, CK, such that Lx u._4(2)
=Kt~(z) on R. As

31 u0R) = 1 Ko Sule) and 31u(E) =0,

S0
p= 2
defines a measure on 0R with (&) =0 and = > -1 KA =K*~, Q.E.D.

LEMMA 3.15. Let p be a measure on 0R with p(E)=0 and
ue) = | Kz, Odu0).
Then Lau(z)=$ Kz, ) du(&) for any open set G tn OR. In particular
- #G) = Lou(zo).
Thus the measure p vn Lemma 3.14 is unique.

Proof. Take a sequence {K,} of compact sets in M such that K, ./ and
pM—K,)\0. We put

Un(2) = SK K(z, ©)du(©).

Then %,/ " u. As 0=ZLgu—Lgun=Le(u —u,) <u—u,\0, so we have Lgu,
/' Lgu. If we can prove

Loun(2) =j K(z, Q) du(),

~K

then we get
Lou(@) = L K@ Odu(©).

Thus we may assume that K=S,cM and so
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u(z) = LK(Z' 0 du(t).

We put F =K — G, which is a compact set. Let H be a compact set in G. If
We can prove

3.11) Lau(z) = X K(z, €)du(0),

K H
then taking the supremum with respect to H C G we get Lau(z) :§ K(z,0)dul).
K G
Hence we have only to prove (3.11).

Let A,€N(H) and A,\ H. First we prove that 1, ,K(2o, {) 0 uniformly
for £ =F. Contrary to the assertion, assume the existence of positive number
7 and points &, in F such that

lAnK(ZO, Cn) 2 '0-

Taking a subsequence, if necessary, we may assume {,—& €F. By Lemma
3.10, there exists a measure v, on R* with S,, cA, such that

14, K(z, Cn) =Kn()

on RB. As v,(R*) =K () =14,K(2o, £n), 50 )= v,(R¥) =1. Taking again a sub-
sequence, if necessary, we may assume that {v,} converges to v vaguely.
Clearly S,cH and 1= v(H)=7. Since

Kz, €)= L K(z, €)= L Kz, ) dval0),
SO

K(z, Co) gLK@, O du) > 0.

Easily, we can select a sequence {H,} of compact sets such that
HDHI DHg :)'--DHm-..

and the diameter of H,, is less than 1/m and v(H,) >0. As K(z, {) is mini-
mal and

K(z, Co) zj Kz, ©du0) >0,

m

so we get a sequence {a,} of positive numbers such that

K(z, &) = am j Kz, 0du(0.

Putting
2n(X) = @ X ~ Hn),
we have
K(z, Lo) =K*m(2)

on R and putting z =2, we see that A.(H.)=1. Selecting a subsequence, if
necessary, we may assume that A, converges to a measure 1 vaguely and
clearly
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S/l= F]Q Hny

m=1
which must consist of only one point & in H and A(§) =1. Thus we get K(z, £)
=K(z, £), which shows {,=¢&H. This contradicts the fact that {eF =K
— @G and HCG.
Now

ue)= | Ke 0dp0+ [ Ke 0du0.

A~

Asj K(z, £)du(€) is the limit of a sequence {v,} such that v, is the form
y
N
va(2) = X\ ¢, K(z, {.),
v=1

where €, €F, so from the above we can find a sequence a, \.0 such that
Lay¥m(20) = 35 614, K(2o, §) = 350,00 = 00 310K (20, ) = Gnvm(20).-
Hence by (vi) in Lemma 3.5,
LHLK(ZO, 9):77(@) éLAnL,K(Zo, Qdu(Q) = limy, Ly, vn(20) S @nLn L’K(zo, Odu@).
This shows that
.12 LHu(z)zLHjK Kz, 0dp(0).
By monotone continuity of Ly, making AG\ H we have
Liu) =Ln| K, 0du(0.

~

Next let H,={¢(€0R;d¢, ¢)=1/n, ' K H}. Then H, is compact and
H, (K~ H) is empty, so by considering (K ~ H, H,) as (F, H) in the preced-
ing argument, we see Lgnj Kz, ) du(€) =0 and
K~ H
Luw,|  KeOduOs L | K Od0) <[ K& 0du.
K H E~H R H
making n /o and so HH, /0R, we get
[, K@ OdxO=Lx j K(z, O du0).
K H K~ H
Combining this with (3.12), we get (3.11). Q.E.D.

From Lemmas 3.14 and 15, we finally obtain

THEOREM 3.1. For any u in P(R), there exists a unique measure p such
that p(OR—M)=0 and

u(z) = jK(z O du©),

where M is the totality of points £ im OR such that K(z, £) 1s minimal in
P(R).
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