
A SET OF CAPACITY ZERO AND THE EQUATION Au =

BY MlTSURU OZAWA

In our previous papers we introduced a method of classification of Riemann
surfaces in terms of the solutions of the differential equation of elliptic type

(A) Δu = Pu.

Let F be an open Riemann surface and P\dz\2 be a non-negative invariant
expression whose coefficient P has continuous first derivatives on F. We shall
always assume that P is positive except at most on a set of two-dimensional
measure zero.

We recall briefly the classification scheme in terms of the equation (A) and
the harmonic case. We denote by OG the class of surfaces which have no
harmonic Green function, and denote by F e 0PB and F <Ξ 0PD when there are
no bounded solutions and no solutions with finite energy integral on F,
respectively. Then it is- known that

If the integral of P on F is of finite value, that is,

P(p)dσp< oo,

then OPB = OPD holds. We remark that this is the case for any subsurface F
obtained from a closed Riemann surface W by deleting a closed set E, when
P(p) is well defined on the whole W. If K is a compact subsurface con-
taining E, then a necessary and sufficient condition in order that any bounded
solutions of (A) on K— E are prolongable onto the whole K in the sense of (A)
is that F^Ops. By this theorem we see easily that, if E is of logarithmic
capacity zero, then E is removable for bounded solutions of (A) around E.
These results have been already given in [4]. In particular, the last statement
has been given explicitely in [3] and recently in [7]. If the coefficient P is
not smooth at E, then the situation is not so simple. In the case where E
consists of only one point, Brelot [1] discussed the matter in detail.

Let F be an abstract open Riemann surface. Its exhaustion in the usual
sense will be denoted by {Wn}. Let Ωn(p) be a bounded solution of (A) on

Wn - Wι such that
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U) on dWn,

and ωn(p) = ω(p, 9Wn, Wn— Wi) be the harmonic measure. It is known that
the limit functions Ω(p) = \ιmn+<χ>Ωn(p) and ω(p) = limn+ooωn(p) exist and that
they satisfy

0 ̂  Ω(p) ^ 1 - ω(p) ^ 1 .

LEMMA 1. (Mori [2]) If F^OG, then Bupp-wio>(p) = 1.

LEMMA 2. If D is a compact region and u is a bounded solution of (A)
whose boundary value on 8D is strictly positive and if F^OPB, then u is
positive in D.

It is easy to prove this by making use of the so-called Harnack's inequality
for a non-negative solution of (A). See [5].

LEMMA 3. (Myrberg [3]) On any surface F, there exists the Green
function G(p, q) for (A) which satisfies an inequality

jf

THEOREM 1. If mfp-WιΩ(p) > 0, then

Proof. Suppose F<£0G, then we have

sup ω(p) = 1

by Lemma 1. Therefore 0 ̂  Ω(p) ^ 1 — ω(p) implies that

inf Ω(p) = 0,

which is absurd.

This theorem has been already established in [5] under some inessential
assumptions on a given surface F.

LEMMA 4. ([5]) // F belongs to the class 0PB and

i f P(p)dσp=oo,

then mfF-wi&(p) = 0.

The proof is simple if Lemma 3 is applied.

COROLLARY 1. // inf^-^^C^) > 0, then

P(p) dσp < oo.
F
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Proof. By Theorem 1 we have F^OG and hence F^OPB. Therefore by
Lemma 4 we have the desired fact.

THEOREM 2. Let F be a subsurface obtained from a closed Riemann
surface W by deleting a closed set E. Let K be a subregion of W containing
E, and suppose that P(p) is defined on the whole W. Then a necessary and
sufficient condition in order that all the bounded solutions of (A) on K—E
are prolongable onto the whole Kin the sense of (A) is that F^OG, namely,
E is of capacity zero.

Proof. Sufficiency has been already explained. So we shall prove its
necessity. We may put F— K as the first member of the exhaustion of F.
Then Ω(p) is a non-negative bounded solution of (A) on K—E. Therefore Ω(p)
is prolongable onto the whole K as a bounded non-negative solution of (A).
Since Ω(p) is constant 1 on ΘK, Ω(p) is strictly positive in K by Lemma 2.
Therefore

inf
K-E

which implies that

REMARK. If P(p) is continuous without its smoothness on W, more generally
around E, then the corresponding statement cannot be expressed in terms of
the ordinary Laplacian operator. However, the result also holds and can be
expressed in terms of the so-called generalized Laplacian operator. If P(p) has
the Holder continuity, the theorem 2 remains valid with the ordinary Laplacian
operator.

Now we shall enter into the corresponding theorem for the energy-finite
solutions of (A).

LEMMA 5. ([4]) Let F be an open Riemann surface. If F<^0PD, then

there is no non-constant energy-finite solution of (A) on F-WΊ with vanishing
boundary value on dWΊ.

LEMMA 6. Let un be a positive solution of (A) on Wn—Wί satisfying a
boundary condition

„ _Γ/(>0) on ΘWί9Usn — \

lθ on dWn

and u = limn+00un, then u is of finite energy on F-WΊ.

Proof. By Green's formula we have

f)Π // ft \ 2 / ft \2 \ Γ
((-~-Un}+(^-Un} + PUn2}dxdy = - f

_\\dx J \dy J ) }
Wn-Wi dwl

Evidently un ̂ um for n<m and 0 ̂  un ̂  maxaτrι /, so that
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0^--^— Um^-—-Unou σv

on ΘWi for n<m. Therefore we have

d( ύv

THEOREM 3. // F, W, E and K are the same as in Theorem 2, then a
necessary and sufficient condition in order that all the energy-finite solutions
of (A) on K—E are prolongable onto the whole K in the sense of (A) is that
E is of capacity zero.

Proof. By Lemma 6, Ω(p) is non-negative and of finite energy, a fortiori,
of finite Dirichlet integral on F— Wι~ K— E. By the assumption Ω(p) is
prolongable onto the whole K. By the same reasoning as in Theorem 2, we
have F^OG and capC£7) = 0. The proof of necessity part is now complete. To
prove the sufficiency part let us remark that F^OG implies F^OPD Let u
be an energy-finite solution of (A) on F— Wι and let v be a solution of (A) on
K such that v = u on dWι = dK. Then we have Eκ(v) < oo by the smoothness
of P(p) on W. On denoting by U—u — v, we see that EK-E(U)<oo by the
facts that EK-E(U)>Q° and Eκ(v)<oo. Since U= 0 an dK, by Lemma 5, F^OPD

implies U = 0 on K—E, whence follows that u = v on K—E. However, v
satisfies the differential equation (A) on the whole K. Thus u is prolongable
onto K in the sense of (A).

REMARK. In our Theorem 3, the assumption of the necessity part can be
considerably weakened, that is, the energy-finiteness can be replaced by the
finiteness of Dirichlet integral, since the function Ω(p) is of finite Dirichlet
integral. For the sufficiency part Royden [7] gave its alternative proof under
the assumption of Dirichlet-finiteness. Thus the Theorem 3 holds for the
Dirichlet-finite solutions.

In [4] we discussed the relations between the maximum principle for any
bounded solutions of the equation (A) and the class 0PD. Now we shall discuss
a maximum principle for the energy-finite solutions of (A) and the class 0PD.

LEMMA 7. ([4]) // F$0PD, then there is the so-called reproducing
kernel K(p, q) of (A) on F for the Hubert space consisting of energy-finite
solutions of (A) on F. K(p, q) satisfies

K(p, q) = K(q, p) and 0 < K(p, q)<M<oo

on F. Therefore 0PB c 0PD = 0PBD .

LEMMA 8. Every energy-finite non-negative solution u of (A) on F—WΊ
can be decomposed into two energy-finite non-negative solutions Ui and uz of
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(A) on F—Wi in such a way that u = u1 + u2on F—WΊ, ut=u and u2=Q on

dWi and ut satisfies the maximum principle on F—W\. Here the maximum
principle means that

sup u(p) = sup u(p).
F—Wλ 3W1

Proof. Let uln be a solution of (A) on Wn—Wι such that

[u on dWl9Uin — <

lθ on dWn,

then Uι = lim^oo uίn exists and is non-negative. By Lemma 6 Uι is of finite
energy, so that u2 — u—u^ is also of finite energy and has the desired properties.

THEOREM 4. If F<=0PD, then the maximum principle holds for any

positive energy-finite solutions of (A) on F— W\, and vice versa.

Proof. By Lemma 8 we have u=u1 + u2, EF-wι(Uί)<oo9 EF-wι(u2)<oo

and Uι=u and u2=0 on dWi. By Lemma 5, u2 = 0 on F—Wlf whence follows

u = Uι on F—Wί. On the other hand, uln^&updWιU on Wn—Wι which shows
that supjp_jFϊ u = sup^-ίFi Uι ^ supdwi u. Conversely, if F<ξOPD, then there is
at least one non-constant non-negative energy-finite solution K(p, q) of (A) on
F by Lemma 7. The maximum principle implies that

sup K(p, q) — sup K(p, q) and sup K(p, q) — sup K(p, q).
F-Wi Wi Wi Wι

This is absurd, since no positive solution has its maximum in an inner point
of the domain.

SUPPLEMENTARY NOTE. We shall mention here a correction to [4]. In
that paper we claimed the following theorem ([4], Theorem 5.2).

Let G be a non-compact connected subregion of F with an analytic boundary
C. If there exists a non-constant solution U(z) of (A) on G, such that U=0
on C and DG(U)<oo, then F$0D. Conversely, if F$0D, then we can find
such a domain G and a solution U(z) of (A).

Notations DG(u) and 0D in [4] coincide with the energy integral EG(u) and
OPD in the present paper, respectively.

The proof of the latter half should be corrected as follows: F φ 0PD

implies the existence of the reproducing kernel K(p, q) (> 0) of (A) on F. Let

G be a domain F—WΊ, Let un(p) be a solution of (A) on Wn—Wί such that
un(p) = K(p, q) on dWj. and un(p) = Q on ΘWn. Then u(p) = \imn^un(p) exists
and u(p) ^ K(p, q), u(p) ^ K(p, q) on G. Moreover EG(u) < oo by Lemma β.
The function U(p) = K(p, q) — u(p) on G is the desired.
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