
ON INFINITESIMAL CONCIRCULAR TRANSFORMATIONS

BY SHIGERU ISHIHARA

In 1940 to 42, K. Yano [5]υ introduced the concept of concircular trans-
formations of Riemannian manifolds and developed the theory of the concircular
geometry. Recently, we have discussed concircular transformations in Riemannian
manifolds, complete or compact [1]. We shall in the present paper introduce
the notion of infinitesimal concircular transformations and study the properties
of Riemannian monifolds, compact, complete or comformally complete, admitting
an infinitesimal concircular transformotion.

§1. Infinitesimal concircular transformations.

In a Riemannian manifold with the metric tensor gμλ, a geodesic circle is
by definition a curve xκ=xκ(s) such that2)

/Λ _ τr, 5V , 32χv S2xλ dxκ

 Λ
(1.1) VK = -z-y- + 9μl-Tτ"TT-J- = °>δs3 os2 δs2 ds

where s is the arc length of the curve and d/ds denotes the covariant differentiation
along the curve.3) Let vκ be an infinitesimal transformation, i.e. a vector field.
We suppose further that the infinitesimal point-transformation 'xκ — xκ + ε vκ(x)
carries any geodesic circle into another one, ε being an arbitrary infinitesimal
constant. Then, we shall call the vκ an infinitesimal concircular transfor-
mation.

Consider a family of vectors Vκ defined by the left-hand side of (1.1) along
a curve xκ = xκ(s), s being the arc length of the curve. Denoting by £ the Lie

V

differentiation with respect to an infinitesimal transformation vκ, we have4)

+2 (A τ d2χv dχμ dχλ ^F dχκ
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-
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Received January 3, 1960.
1) The numbers between brackets [ ] refer to the bibliography at the end of the paper.
2) κf λ, μ, v, ω, r, ξ = l,2, n.
3) We consider only differentiate manifolds, differentiable curves and quantities of

class C°°.
4) Cf. K. Yano [6] and [7]. As to the definition of £V, refer to [3].

V

45



46 SHIGERU ISHIHARA

where we have put

2 « ds ds

By means of the definition, an infinitesimal transformation vκ is a concircular
one, if and only if the equation £ Vκ = 0 holds good along any geodesic circle

V

χK — χκ(s)f {tQt if an(j only if

is valid for any curve xκ = xκ(s) such that

dxκ

If we take account of (1.2) and substitute the relation (1.3) into £VK, we
V

have a condition among dxκ/ds and d2xκ/ds2. This is equivalent to that the
relation

B
\_ 2 » «

(1.4)

v = 0
2

is valid for any two vectors Aκ, Bκ such that

We suppose now that (1.4) holds for any pair (A*, Bκ) of orthogonal vectors
such that gμλAPAλ = L Transvecting (1.4) with gκξA

ξ, if we compare the
coefficients of the terms containing BκBλ, we have

(1.5) £gμλ = 2pgμλ and p=--g^(£gμx\
υ n v

This shows that p is a function in the manifold. Accordingly, the given vκ is
an infinitesimal conformal transformation. We have thus

£\ κ} = dκ

μpλ + dlpμ-v [μ λ]
(1.6)

where pλ = dλρ and pκ = gκτpτ. Substituting (1.5) and (1.6) into (1.4), we see
easily that

(dκ

μ7vpλ + dϊ!7vpμ - 7vp
κgμλ - dκ

vFλpμ}AvAt*A* = 0

holds for any vector Aκ. This implies

(1.7)
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where φ= Fλp
λ/n.

Conversely, we suppose that (1.5) and (1.7) hold. Then, it is easily seen
that (1.4) is valid for a pair (A*, Bκ) of orthogonal vectors such as gμjίA

μAλ = 1.
This means that the given vκ is an infinitesimal concircular transformation.
Summing up the results above obtained, we have the following

THEOREM 1. In order that vκ is an infinitesimal concircular transfor-
mation, it is necessary and sufficient that

(1.8) £gμjL = 2pgμλ, 7μρλ = φgμλυ

hold, p and φ being certain functions.

We shall call the function p the factor of dilatation of the infinitesimal
concircular transformation vκ.

It is easily verified that for any two infinitesimal concircular transformations
their bracket product is always a concircular one. Thus, in a Riemannian
manifold the set of all infinitesimal concircular transformations forms a Lie
algebra.

We note here that an infinitesimal concircular transformation is a conformal
one and that an infinitesimal homothetic transformation is obviously a concir-
cular one. In the following sections, we shall confine our attention only to
infinitesimal concircular transformations which is not homothetic. So, the term
"concircular" will always mean ' ' non-homothetic concircular".

§2. The local structure.

We suppose that vκ is an infinitesimal concircular transformation in a
Riemannian manifold5) M with the metric tensor gμλ. By means of Theorem 1,
we have then (1.8). Differentiating the both sides of the last equation of (1.8)
covariantly and taking account of the Ricci formula, we have easily

(2. 1) Kvμλ

κpκ = - (φvgμλ - Φμgvχ),

Kvμλ

κ being the curvature tensor of the manifold, where φχ = dλφ.
A point of M is called a stationary point or an ordinary point of the

infinitesimal concircular transformation vκ, if the gradient vector pi vanishes
or not at the point respectively. In a sufficiently small neighborhood of an
ordinary point we consider the integral curves of the vector field p* = gκτpτ. By
means of (1.8) we can see easily that such an integral curve is a geodesic arc.
A geodesic is called a p-curve if it contains such an arc.

Let P be an ordinary point in M and U a sufficiently small coordinate
neighborhood of P containnig no stationary point. Then we can define in U a

5) Throughout the paper we suppose that manifolds are connected and of dimension
greater than 2.
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family of hypersurfaces defined by the equation p = const. There exists one and
only one hypersurf ace p = const, through a given ordinary point. Such a surface
will be called a p-hy per surf ace. Now, keeping the notations in §1, we can
prove the following theorem in the same way just as in a previous paper6).

THEOREM 2. // a Riemannian manifold M admits an infinitesimal
concircular transformation vκ, then for any ordinary point of vκ there exists
a coordinate neighborhood U of the point such that we can choose in U a
system of coordinates uκ having the following properties: The function p
depends only on the n-th variable un in U. The line element of M is given byΌ

(2.2) ds2 = (pΎffrdu'du1 + (dunγ,

the functions fzj being independent of the variable un, where and in the follow-
ing primes denote the differentiation with respect to un. The hypersurf aces
defined by the equation un = const, in U are p-hy per surf aces. The curves
defined by the equations uh=const, are p-curves and the variable un indicates
the arc length of the p-curves.

A system of coordinates uκ having the properties given in Theorem 2 will
be called a system of adapted coordinates.

With respect to a system of adapted coordinates, the Christoίfel symbols of
the line element (2.2) have the components

Γ h 1 Γ7Γ] Γ n } Γ n Ί , „, //'
\ r = ι -r i f = ι \ = -ppfji = - , 9 j i >O Jj (J ^J U ij I'2' Jj P

(2.3)

ί h ]__ ί h l_j°l^ / n 1_ / n

[n i\ [i n\ p'

where \ . . [ denotes the Christoffel symbols constructed from fjt.[J "2J
We shall give a formula for later use. If we take account of (2.3), we

can write down the equation

as below:
9nVn = P,

o „//

(2.4) dnVi + diVn ί—- Vi = 0,

P

-,,^(p-^,,}g,,.
6) See Theorem 1 in [1]; cf. also [5].
7) h, i, j, k = l, 2, •••, n-l.
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with respect to adapted coordinates uκ, where ~7^ denotes the convarient diffe-

rentiation with respect to j ^Λ. From the first equation of (2.4) it follows
w «J

(2.5) vn = Λ + V(uh),

where A is a function of the variable un such that Λ' = p and the function Fis
independent of un. Substituting this into the second equation of (2.4), and
putting Vi^ΰiV, we have

which is a linear differential equation with unknown function Vt and the
independent variable un. The function VΊ being independent of un, the function
t/ί has the form

(2.6) vί = PVτ + QUl,

where Ul is a function independent of the variable un and P, Q are two
functions depending only on un. Now, if we substitute (2.5) and (2.6) into the
third equation of (2.4), and trans vect the resulting equation with fjί, we have

(2.7) PfcV*) + QΪPiU*) + (w-l)//y V= (n-

where we have put Vi=fihVh and Uί=fίhUh.
Denoting by Kvμf and Kμχ = Kκμλ

κ respectively the curvature tensor and
the Ricci tensor of M, we have easily by means of (2.3)

(2.8) Knn = -(n~l)^-f KM=0
P

with respect to adapted coordinates uκ. Therefore, any ^o-curve is a geodesic
tangent to a Ricci direction at any regular point.

§3. Compact manifolds.

We consider now a compact Riemannian manifold admitting an infinitesimal
concircular transformation vκ. If we take account of Theorem 2, we can prove
the following lemma in the same way just as in §1 of a previous paper [1],
To formalize the lemma, we shall give some terminologies concerning the unit
sphere. Denote by Sn the unit sphere

in a Euclidean space En+1 of n + 1 dimensions, (a?1, •••, a?n+1) being a system of
rectangular coordinates in En+1. The points (0, •••, 0, 1) and (0, •••, 0, —1) of
Sn are called the antipodal points. The sphere defined in Sn by the equation

χn+ι — c (_ι<c<i) is called a small sphere.
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LEMMA 1. Let M be a compact Riemannian manifold. If M admits an
infinitesimal concircular transformation, then it is conformally homeomorphic
to a spherical space of curvature 1 and there exists in M exactly two stationary
points 0 and 0' of the infinitesimal concircular transformation. The homeo-
omorphism a of M onto the unit sphere Sn in En+1 carries these stationary
points 0 and 0' into the antipodal points of Sn, any p-hy per surf ace into a
small sphere of Sn and any p-curve into a great circle passing through the
antipodal points. Further, any p-hy per surf ace has positive constant sectional
curvature.

Keeping the same assumptions as above, we take an arbitrary />hypersur-
f ace S. Then the surface S is homeomorphic to a sphere of n — 1 dimensions
because of the above Lemma 1. By means of (2.7) we have

S
Vdσ = (n-l) \S\{p(p')2 -

where dσ is the volume element of the surface S and \S] denotes the total
volume of S. Now, we may assume ίsVdσ = 0 without loss of generality. The
above equation implies immediately

from which we have

A'" A'

A" A

Hence we have

Λ" + cΛ = Q

with a constant c. Differentiating the both sides, we find

(3.1) p" + cp = 0.

The function p satisfies (3.1) at any ordinary point of a /o-curve. Then the
equation (3.1) is valid at any point of a (o-curve, since there exist only isolated
stationary points in any p-curve because of Lemma 1.

The constant c appeared in (3.1) is necessarily positive, since the function
p is periodic along any ^o-curve and is not constant. We may therefore put
c = a2 (α>0). If we integrate (3.1), we obtain

p — A cos(aun + 6),

A and b being certain constants. Denoting by L the length of the arc of a
ρ-cuγve terminated by two stationary points 0 and 0', we have a — π/L. If we
consider the arc length un of any />curve such that un=Q at 0 and un = L at 0',
we have b = 0. In fact, along any ^-curve p vanishes at the two stationary points
and does not at any ordinary point. Consequently, we have along any
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A πS

> = A cos

and hence

(3.2)

where s denotes the arc length of ^-curves such that s = 0 at the stationary
point 0.

If we take account of the line element (2.2), we find by means of (3.2) that
the sectional curvature of the manifold is constant and positive at any ordinary
point. Thus, the manifold has positive constant sectional curvature everywhere.
Summing up and taking account of Lemma 1, we have the following

THEOREM 3. // a compact Riemannian manifold admits an infinitesimal
concircular transformation, then the manifold is a spherical space.

§4. Einstein spaces.

Let M be an Einstein space and suppose that M admits an infinitesimal
conformal transformation v*9 that is,

p being a function in M. The following formulas are well known:

Substituting (1.6) into the right-hand side, we have

Contracting with respect to K and v, and putting Kμι = Kκμf, we find

(4.1) £Kpl = -(n-2)7fpl-7fp'gld.
v

The manifold M being Einsteinian, we have

V - K n*μi-—9μ*>

where K=Kμ^gtίλ is a constant. Substituting this into (4.1), we obtain

= Φ f f μ λ t

where φ is a function. This shows that the infinitesimal transformation vκ is
concircular. Thus, we have the following

LEMMA 2. In an Einstein space any infinitesimal conformal transfor-
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mation is concircular.

This lemma implies together with Theorem 3 the following

THEOREM 4. // a compact Einstein space admits a non-homothetic in-
finitesimal conformal transformation, then the space is a spherical space.

§5. Conformal circles.

We shall give for later use some remarks on conformal circles. Keeping
the same notations concerning a Riemannian manifold M as in §1, we define
in M the tensors

(5.1) 77 A" ̂ λ — ι ' r»/ ϊ \ / r>\ > **oo/ί — J/ « j ι j l»tt—l 2(w—l)(n —2)

and consider a curve x* = xκ(s) satisfying the differential equations

(5.2) + B A + f f ^ _
* 2 2ds \ ds2 δs2 ds ds J ds

where s denotes the arc length of the curve. We call such a curve a conformal
circle. It is well known that any conformal circle is mapped into a conformal
circle by every conformal transformation of the Riemannian manifold M [2, 4],

Let g : x1*- — xκ(s) be a geodesic of M, s being its arc length. We suppose
that g is tangent to a Ricci direction at any point. Then, from (5.1) we see
that it holds along g

dxκ

 π o dx? dxλ . π κ dxλ

 Λuμλ — - ---- -- — h llπλ ~~— = υ.
ds ds ds ds

Taking account of this fact, we find from (5.2) that the geodesic g is a con-
formal circle. Thus we have the following

LEMMA 3. In a Riemannian manifold M, if a geodesic is tangent to a
Ricci direction at any point, then it is a conformal circle.

In a Riemannian manifold M, we consider a curve C: xκ = xκ(s), s denoting
its arc length. Let t be a parameter of the curve C and put

**' 8^=~d^/Ί^^~2\d^/~d8

A parameter t of the curve C is called a protective parameter of C, if it
satisfies the differential equation

,κ Q. ,. , V π o dx? dxλ
(5'8) {t' S}= ~0tt*~~~~~~ μλ
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along C. It is known that, if the curve C is mapped into a curve fC by a
conformal transformation of M, the parameter ft induced naturally in 'C from
the projective parameter t of C is also protective on 'C [4].

In a Riemannian manifold M we consider a conformal circle C. For any
point P of C we suppose that any projective parameter t of C vanishing at P
takes any real values along the conformal circle C. If any conformal circle of
M satisfies these conditions, we say that the Riemannian manifold M is con-
formally complete.

§6. Manifold with constant scalar curvature.

Keeping the same notations concerning a Riemannian manifold M as in § 1,
its scalar curvature K is given by K= Kμ^

λ. Let vκ be an infinitesimal conformal
transformation in M. Then, by means of (4.1), we have

£K=- 2pK-2(n - 1)7 κp
κ.

υ

If we now assume that the scalar curvature K is constant in M, we find

^+~τ=°
We suppose here that vκ is an infinitesimal concircular transformation. Then,
from the second equation of (1.8) it follows

(6.1) μ Ύl — JL

Let uκ be a system of adapted coordinates of the infinitesimal concircular
transformation vκ in a regular neighborhood U. From (6.1) it follows that the
function p satisfies

(6.2) p» + - -Kt ̂ - = 0
n(n—ϊ)

along ,0-curve, where p" = d2p/(dun)2.
As has been noted at the end of § 2, any />curve is a geodesic and tangent

to a Ricci direction at any regular point. On the other hand, since the function
p is a solution of the differential equation (6.2) along any ,o-curve, any singular
point lying on a jo-curve, if it exists, is isolated. Hence, the ^o-curve is tangent
to a Ricci direction at any point. Consequently, by virtue of Lemma 3 we see
that any ^o-curve is a conformal circle.

Consider a ^o-curve and let t be its projective parameter. Denoting by s
the arc length of the /o-curve xκ — xκ(s) and taking account of d2xκ/ds2 = 0, we
find from (5.3)
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Using of adapted coordinates uκ and taking account of (2.8) and (5.1), we have
from the above equation

(6.3) 0,.} = -*=!^ K .
^ x s n-2 p' 2(n-l)(n-2)

Now, differentiating the both sides of (6.2), we find

p"' K

If we substitute this into (6.3), we obtain

f, -, jfV
(6.4)

2n(n-l)

We suppose moreover that the Riemannian manifold M is conformally
complete. We consider now the three possible cases: (i) K=Q, (ii) K<Q and
(iii) K>0.

In the case (i) K=Q, we consider a ^o-curve and its arc length s vanishing
at a point P. For a constant s0 =£ 0, we have a solution of (6.4)

«=-?-.

The protective parameter t of the ^o-curve vanishes at the point P, but it does
not, however, take the value 1. This contradicts the fact that the manifold M
is conformally complete. Therefore, the case (i) does not occure.

In the case (ii) K<0, we consider a |0-curve and its arc length s vanishing
at a point P. Then, the function

, 2 , , ks 7 I Hϊf
+ 4-e\-r\V\ //» / •*••*•

k 2 ' V n(n-l) '

is a solution of (6.4). The protective parameter t of the 4o-curve vanishes at
the point P, but it takes only the values in the interval (—1, 1). This contra-
dicts the fact that the manifold M is conformally complete. Therefore, the
case (ii) does not occur.

Finally, we consider the case (iii) K > 0. We take a ^o-curve and its arc
length s vanishing at a point P. Then, the function

k-/v —
k 2 ' V n(n-l) '

is a solution of (6.4). The protective parameter t of the ^o-curve vanishes at
the point P. Since the manifold M is conformally complete, the projective
parameter t takes any real value. The arc length s has to take hence any
value contained in the interval I0 = (—π/k, π/k). Consequently, the |0-curve
must contain an arc C consisting of all points corresponding to s e 70. The



INFINITESIMAL CONCIRCULAR TRANSFORMATIONS 55

length of the arc C is obviously equal to 2π/k. The point P being taken
arbitrarily in the /o-curve, we see that for any point of the p-curve there exists
in the |0-curve an arc of length 2π/k having the point as its middle point.
Therefore, we can say that in any ,0-curve its arc length s takes any real value.

Taking the arc length s of a <o-curve suitably, and integrating (6.2), we
have along the ^-curve

p — A sin ks,

where A is a constant. Since the arc length s takes any real value, there
exist at least two isolated singular points in the |0-curve. Consequently, in the
same way just as in §3, we can prove the following

THEOREM 5. Let M be a conformally complete Rίemannian manifold
having constant scalar curvature. If M admits an infinitesimal concircular
transformation, then M is a spherical space.

In a similar way, we can prove the following

THEOREM 6. Let M be a conformally complete Einstein space. If M
admits a non-homothetic infinitesimal conformal transformation, then M is
a spherical space.

§7. Holonomy groups.

If we take account of Theorem 2 we can prove the following theorems in
the same way just as in a previous paper [1].

THEOREM 7. // a complete non-fiat Riemannian manifold admits an
infinitesimal concircular transformation, then its local homogeneous holonomy
group at any ordinary point is the special orthogonal group S0(n).

THEOREM 8. // a non-flat conformally flat Riemannian manifold admits
an infinitesimal concircular transformation, then the local homogeneous
holonomy group at any ordinary point is the group S0(n).
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