ISOMORPHISMS BETWEEN COMMUTATIVE BANACH ALGEBRAS WITH AN APPLICATION TO RINGS OF ANALYTIC FUNCTIONS

By Masao Nagasawa

1. Introduction.

Chevalley and Kakutani showed that if D_{1} and D_{2} are plane domains with no $A B$-removable boundary points, then they are conformally equivalent if and only if the rings $B\left(D_{1}\right)$ and $B\left(D_{2}\right)$ of all bounded analytic functions on D_{1} and D_{2}, respectively, are algebraically isomorphic (cf. [5]).

It is well known that two compact Hausdorff spaces are homeomorphic if and only if the Banach algebras of all real valued continuous functions on these spaces are isometric as Banach spaces, where the norm is defined by "sup" (the Theorem of Banach-Stone, cf. [1]), and also if and only if these Banach algebras are isomorphic as algebras (the Theorem of Gelfand-Kolmogoroff, cf. [4]).

If we define a norm in $B\left(D_{j}\right)$ by "sup", then $B\left(D_{j}\right)$ appear as Banach spaces with the unit ($j=1,2$). This suggests us an analogous question for the above mentioned rings of analytic functions: If $B\left(D_{1}\right)$ and $B\left(D_{2}\right)$ are isometric as Banach spaces, are D_{1} and D_{2} conformally equivalent?

This question will be solved in general form as the main Theorem of this paper which will be stated in terms of Banach algebras, say, let B_{1} (resp. B_{2}) be a commutative Banach algebra with the unit satisfying a norm condition $\left\|x^{2}\right\|$ $=\|x\|^{2}$ for all $x \in B_{1}\left(\operatorname{resp} . B_{2}\right)$, then B_{1} and B_{2} are algebraically isomorphic if and only if they are isometric as Banach spaces. Then a Banach-Stone type theorem for analytic functions is a direct corollary of the main theorem. In the course of the proof, the representation theory of Banach algebras and the Krein-Milman's theorem which asserts that any weakly* compact convex subset of the conjugate space of a Banach space has sufficiently many extreme points, play naturally essential role.

The author wishes to express his hearty thanks to Professor H. Umegaki, Mr. M. Takesaki and Professor M. Ozawa for their many suggestive discussions in presenting this paper.

2. Main theorems.

In the present paper we assume that any algebra and its subalgebras have always the unit.

Received June 27, 1959.

Theorem 1. Let B_{1} and B_{2} be commutative Banach algebras with the unit satisfying a norm condition $\left\|x^{2}\right\|=\|x\|^{2}$ for all $x \in B_{3}(j=1,2)$, then B_{1} and B_{2} are algebraically isomorphic if and only if B_{1} and B_{2} are isometric as Banach spaces.

As is well known, each maximal ideal M of B_{1} (resp. B_{2}) uniquely determins an algebraic homomorphism χ_{M} of B_{1} (resp. B_{2}) onto the complex number field. Furthermore the space of all χ_{M}, which is weak* compact and will be called the character space of B_{1} (resp. B_{2}), is homeomorphic to the maximal ideal space of B_{1} (resp. B_{2}). Therefore, in the following we identify the maximal ideal space and the character space of B_{1} (resp. B_{2}) and denote it by Γ_{1} (resp. Γ_{2}) (cf., e.g. [6]).

Now by the norm condition we have for any $b \in B_{j}(j=1,2)$

$$
\|b\|=\lim _{n \rightarrow \infty}\left(\|b\|^{2^{n}}\right)^{2^{-n}}=\lim _{n \rightarrow \infty}\left(\left\|b^{2^{n}}\right\|\right)^{2-n}=\sup \left\{|\chi(b)|: \chi \in \Gamma_{j}\right\} .
$$

If ϕ is the algebraic isomorphism of B_{1} onto B_{2}, then there is one-to-one mapping ϕ^{\prime} of Γ_{2} onto Γ_{1} defined by $\chi(\phi b)=\phi^{\prime} \chi(b)$ for all $b \in B_{1}$ and all $\chi \in \Gamma_{2}$, and therefore

$$
\begin{aligned}
\|\phi b\| & =\sup \left\{\chi(\phi b): \chi \in \Gamma_{2}\right\}=\sup \left\{\phi^{\prime} \chi(b): \chi \in \Gamma_{2}\right\} \\
& =\sup \left\{\chi^{\prime}(b): \chi^{\prime} \in \Gamma_{1}\right\}=\|b\| .
\end{aligned}
$$

Thus the necessity of the theorem is proved.
Next, let $B_{j}\left(\Gamma_{j}\right)$ be the Gelfand representations of $B_{j}(j=1,2)$ and $C\left(\Gamma_{j}\right)$ be the B^{*}-algebras of all complex valued continuous functions on Γ_{\jmath}, then B_{j}, identified with $B_{j}\left(\Gamma_{j}\right)$, are subalgebras of $C\left(\Gamma_{j}\right)(j=1,2)$. Furthermore, $C\left(\Gamma_{j}\right)$ are isometrically isomorphic as B^{*}-algebras to certain commutative C^{*}-algebras with the unit on some Hilbert spaces, respectively (cf. e.g. [7]). Therefore, the proof of sufficiency is reduced to the following theorem:

Theorem 2. Let $A_{1}\left(\right.$ resp. $\left.A_{2}\right)$ be a commutative C^{*}-algebra with the unit on some Hilbert space $H_{1}\left(\right.$ resp.$\left.H_{2}\right)$ and B_{1} (resp. B_{2}) be uniformly closed but not necessarily self-adjoint subalgebra of A_{1} (resp. A_{2}) also with the unit. If B_{1} and B_{2} are isometric as Banach spaces, then B_{1} and B_{2} are algebraically isomorphic. ${ }^{11}$

Before passing to the proof of the Theorem 2, we shall give several lemmas for operator algebras in next section and the proof of the theorem will be given in section 4.

3. Some lemmas.

Let A be C^{*}-algebra with the unit I, B a closed linear subspace of A with the unit but not necessarily self-adjoint, and A^{*} (resp. B^{*}) the conjugate space of $A($ resp. $B)$ as Banach space. Let " $U_{A}\left(\right.$ resp. $\left.U_{B}\right)$ " denote the unit

[^0]sphere of $A^{*}\left(\right.$ resp. $\left.B^{*}\right)$ and " E_{A} (resp. E_{B})" the set of all extreme points of U_{A} (resp. U_{B}). An element σ of U_{A} (resp. U_{B}) is said to be the state of A (resp. B), if σ satisfies the condition that $\sigma(I)=1$. Let " S_{A} (resp. S_{B})" be the set of all states of A (resp. B), which will be called the state space of A (resp. B), then S_{A} (resp. S_{B}) is convex and weakly* compact and hence by the Krein-Milman's theorem S_{A} (resp. S_{B}) contains extreme points. Denote by " Ω_{A} (resp. Ω_{B})" the set of all extreme points of S_{A} (resp. S_{B}). An element of Ω_{A} (resp. Ω_{B}) is called a pure state and Ω_{A} (resp. Ω_{B}) the pure state space of A (resp. B).

Remark 1. Any state $\sigma \in S_{B}$ is a restriction of certain state $\sigma^{\prime} \in S_{A}$ on B. Indeed, by the Hahn-Banach's extention theorem σ can be extended to σ^{\prime} on A and σ^{\prime} satisfies the condition that $\left\|\sigma^{\prime}\right\|=1$ and $\sigma^{\prime}(I)=1$, and hence by the Bohnenblust-Karlin's theorem [2], σ^{\prime} is a positive linear functional in A with $\left\|\sigma^{\prime}\right\|=1$, i.e. a state of A in the usual sense.

Lemma 1. If μ is any element of E_{B}, then there exists an element $\hat{\mu}$ of E_{A} such that the restriction of $\hat{\mu}$ on B is μ.

Proof. For any element $\mu \in E_{B}$, let $F_{\mu}=\left\{\sigma: \sigma \in U_{A}\right.$, and $\sigma=\mu$ on $\left.B\right\}$. By the Hahn-Banach's theorem we extend $\mu \in E_{B}$ to $\mu^{\prime} \in U_{A}$, which belongs to F_{μ}, so that F_{μ} is non-empty. Furthermore, F_{μ} is clearly a weakly* compact and convex subset of A^{*}, hence there exists an extreme point $\hat{\mu}$ of F_{μ} by the Krein-Milman's theorem. We now show that $\hat{\mu}$ is an extreme point of U_{A} i.e. an element of E_{A}. Assume that $2 \hat{\mu}=\nu+\rho$, where ν and ρ are elements of U_{A} not belonging to F_{μ}. Let $\hat{\mu}$ be restricted to B and ν_{B}, ρ_{B} denote the restrictions of ν and ρ on B, then $2 \mu=\nu_{B}+\rho_{B}$ holds on B, but μ is an element of E_{B}, so μ, ν_{B} and ρ_{B} must coincide in view of the extremity of μ. It contradicts the assumption that $\nu, \rho \notin F_{\mu}$. (Similarly, the case where one of ν, ρ is in \boldsymbol{F}_{μ}.) Thus $\hat{\mu}$ is an element of E_{A}. This concludes the proof.

Lemma 2. If ω is an element of Ω_{B}, then there exists an element $\hat{\omega}$ of Ω_{A} whose restriction on B is ω.

Proof. For any element $\omega \in \Omega_{B}$, let $F_{\omega}=\{\mu: \mu$ is a state of A which coincides with ω on $B\}$, and following the same process as in the proof of Lemma 1, we can complete the proof.

In the following, we assume that the C^{*}-algebra A considered is commutative.

Lemma 3. Any element $\mu \in E_{A}$ is represented as $\mu=\lambda \omega$ by a complex number λ with $|\lambda|=1$ and $\omega \in \Omega_{A}$, and therefore it satisfies $|\mu(I)|=1$.

Proof. This follows from the proof of Arens-Kelley's lemma (cf. Lemma 3.2 [1]) under a little modification for the present complex case. We give
another proof in footnote. ${ }^{2)}$
Lemma 4. If A is commutative and B is its subalgebra, then any element ω of Ω_{B} is multiplicative, i.e. $\omega(x y)=\omega(x) \omega(y)$ for any $x, y \in B$.

Proof. If ω is extended to $\widehat{\omega}$ as Lemma 2, then $\widehat{\omega}$ is a pure state of A, which is multiplicative. Thus ω, the restriction of $\widehat{\omega}$ on B, is multiplicative. This concludes the proof.

Remark 2. As is well known, the maximal ideal space Γ_{A} of a commutative C^{*}-algebra A coincides with the pure state space Ω_{A} of A. Therefore, noticing that Γ_{A} is defined by algebraical terms and that Ω_{A} is defined by metrical terms, we may be convinced, glancing at the relation $\Gamma_{A}=\Omega_{A}$, that the commutative C^{*}-algebras are algebraically isomorphic if and only if they are isometric as Banach spaces. But for a uniformly closed subalgebra B of A which is not self-adjoint we have in general $\Omega_{B} \subseteq \Gamma_{B} .{ }^{3)}$ Therefore, there is no such simple relation for not self-adoint subalgebras as in the case of C^{*}-algebras.

By above mentioned lemmas, we are able to concider another representation of B different from the Gelfand's one, if B is a not necessarily selfadjoint uniformly closed subalgebra of a commutative C^{*}-algebra A. Let $C\left(\bar{\Omega}_{B}\right)$ be the algebra of all complex valued continuous functions on $\bar{\Omega}_{B}$, where $\bar{\Omega}_{B}$ is the weak* closure of Ω_{B} in Γ_{B}, then B is imbedded into $C\left(\bar{\Omega}_{B}\right)$ in isometrically isomorphic manner, which will be called the Ω_{B}-representation of B. When B is self-adjoint, Ω_{B}-representation of B coincides with the usual Gelfand's representation.

In this paper, when Ω_{B}-representation of B will be considered, B and its Ω_{B}-representation will be always identified.
2) Let $\hat{\Omega}_{A}=\left\{\lambda \omega:|\lambda|=1, \omega \in \Omega_{A}\right\}$, then the bipolar $\hat{\Omega}_{A}{ }^{00}$ of $\hat{\Omega}_{A}$ coincides with U_{A}, where the definitions of polar and bipolar are in the sense of Bourbaki [3]. For, the polar $\hat{\Omega}_{A}{ }^{0}$ of $\hat{\Omega}_{A}$ is Σ_{A}, the unit sphere of A, and $\Sigma_{A^{0}}=U_{A}$, which imply $\hat{\Omega}_{A}{ }^{00}=U_{A}$. Furthermore, $\hat{\Omega}_{A}{ }^{00}=K\left(\hat{\Omega}_{A}\right)$, the closed convex hull of $\hat{\Omega}_{A}$, (cf. chap. IV, § 1, Prop. 3 [3]). Therefore $E_{A}=\hat{\Omega}_{A}$, since $\hat{\Omega}_{A}$ is weak* compact (cf. chap. II, Prop. 4 [3]). This concludes the proof.
3) For example, let A be the ring of all functions that are analytic inside of the unit sphere $\{z ;|z| \leqq 1\}$ of complex plane and continuous on the unit sphere. Let B be the ring of all functions \hat{f} which are restrictions of $f \in A$ on the unit circle $\{z ;|z|=1\}$ as their domain. Then $B \subset C$, where C is the ring of all complex valued continuous functions on the unit circle. Clearly C is a C^{*}-algebra and B is its uniformly closed and not self-adjoint subalgebra. Therefore, Ω_{C} and Γ_{C} coincide with the unit circle, but Γ_{B} is the unit sphere (cf. pp. 182-183 [7]), hence $\Omega_{C} \subseteq \Gamma_{B}$. Any element of Ω_{B} can be extended on C but any element of $\Gamma_{B}-\Omega_{C}$ is not the extension of any element of Ω_{B}. Thus $\Omega_{B} \sqsubseteq \Gamma_{B}$.

4. Proof of Theorem 2.

First we prove the case where the isometry θ of B_{1} onto B_{2} preserves the unit. Under the same notations as in Theorem 2 we have:

Theorem 3. If B_{1} and B_{2} are isometric as Banach spaces and the isometry θ preserves the unit, i.e. $\theta(I)=I$, then θ is also an algebraical isomorphism between B_{1} and B_{2}.

Proof. If we define the transpose θ^{\prime} of θ by $\mu(\theta x)=\theta^{\prime} \mu(x)$ for all $x \in B_{1}$ and $\mu \in B_{2}{ }^{*}$, then θ^{\prime} is an isometry of $B_{2}{ }^{*}$ onto $B_{1}{ }^{*}$ and θ^{\prime} carries the pure state space Ω_{2} of B_{2} onto Ω_{1} of B_{1} in one-to-one manner, because θ preserves the unit. By Lemma 4 any element of $\Omega_{\jmath}(j=1,2)$ is multiplicative, so that

$$
\begin{aligned}
\omega(\theta(x y)) & =\theta^{\prime} \omega(x y)=\theta^{\prime} \omega(x) \theta^{\prime} \omega(y) \\
& =\omega(\theta x) \omega(\theta y)=\omega(\theta x \theta y)
\end{aligned}
$$

for any $\omega \in \Omega_{2}$ and any $x, y \in B_{1}$ Therefore, considering Ω_{2}-representation, we have $\theta(x y)=\theta(x) \theta(y)$, which implies multiplicativity of θ. Thus θ is an algebraical isomorphism, because θ preserves the unit by assumption. This concludes the proof.

Proof of Theorm 2. Let θ be the given isometry of B_{1} onto B_{2}. If we can construct from the given isometry θ an isometry θ_{0} of B_{1} onto B_{2} which preserves the unit, then by Theorem 3 the proof will be completed.

First we show that $\theta(I)$ is unitary. Let θ^{\prime} be the transpose of θ, then θ^{\prime} is an isometry of $B_{2}{ }^{*}$ onto $B_{1}{ }^{*}$, and therefore carries the pure state space Ω_{2} of B_{2} into the extreme point space E_{1} of B_{1}. So, we have by Lemma 2 and Lemma 3,

$$
|\omega(\theta(I))|=\left|\theta^{\prime} \omega(I)\right|=1
$$

for any $\omega \in \Omega_{2}$. Considering in Ω_{2}-representation, $\theta(I)$ is unitary.
In the following part we consider B_{2} in Ω_{2}-representation. Put $u=\theta(I)$, $\theta_{0}=u^{-1} \theta$ and $B_{3}=u^{-1} B_{2}$. Then B_{3} is a uniformly closed linear subspace of $C=C\left(\bar{\Omega}_{2}\right)$ and has the unit. θ_{0} is an isometry of B_{1} onto B_{3} preserving the unit. If we show that $B_{3}=B_{2}$, the proof is finished.

We shall prove that if $\omega_{1}, \omega_{2} \in \Omega_{C}$ are such that $\omega_{1}=\omega_{2}$ on B_{3}, then $\omega_{1} \equiv \omega_{2}$. Notice that any element $x \in C$ has the form

$$
x=\lim _{\nu} \sum_{i=1}^{n \nu} x_{i, \nu}^{*} y_{i, \nu}=\lim _{\nu} \sum_{i=1}^{n \nu}\left(u^{-1} x_{i, \nu}\right) *\left(u^{-1} y_{i, \nu}\right)
$$

where $x_{\imath, \nu}, y_{i, \nu} \in B_{2}$ and the limit is of uniform sense. Then,

$$
\begin{aligned}
& \omega_{1}(x)=\lim _{\nu} \sum_{i=1}^{n \nu} \omega_{1}\left(x_{i, \nu}^{*} y_{i, \nu}\right)=\lim _{\nu} \sum_{i=1}^{n \nu} \overline{\omega_{1}\left(u^{-1} x_{i, \nu}\right)} \omega_{1}\left(u^{-1} y_{i, \nu}\right), \\
& \omega_{2}(x)=\lim _{\nu} \sum_{i=1}^{n \nu} \omega_{2}\left(x_{i, \nu}^{*} y_{i, \nu}\right)=\lim _{\nu} \sum_{i=1}^{n \nu} \overline{\omega_{2}\left(u^{-1} x_{i, \nu}\right)} \omega_{2}\left(u^{-1} y_{i, \nu}\right) .
\end{aligned}
$$

Since $u^{-1} x_{\imath, \nu}, u^{-1} y_{i, \nu} \in B_{3}$ and $\omega_{1}=\omega_{2}$ on B_{3}, the right hand sides of the above equalities are equal. Thus $\omega_{1}=\omega_{2}$ in Ω_{C}, which implies that $\omega \in \Omega_{3}$, the pure
state space of B_{3}, has unique extension property to an element of Ω_{c}. Hence we can regard as $\Omega_{3} \subset \Omega_{C}$.

For any element $\omega \in \Omega_{2}$, regarded as an element of $\Omega_{C}, \omega\left(u^{-1} x\right)=\bar{\omega}(u) \omega(x)$ on B_{3}, and therefore ω, restricted on B_{3}, is a state of B_{3}. Moreover, we shall show that ω is a pure state of B_{3}. Considering ω as an element of Ω_{C}, we have for any $x \in B_{2}$,

$$
\begin{equation*}
\omega(x)=\omega\left(x u^{-1} u\right)=\omega\left(x u^{-1}\right) \omega(u)=\omega\left(u^{-1} x\right) \overline{\omega\left(u^{-1}\right)} . \tag{}
\end{equation*}
$$

We assume that ω is not a pure state of B_{3}, then $2 \omega=\sigma+\sigma^{\prime}$, where σ and σ^{\prime} are states of B_{3}, and hence by $\left({ }^{*}\right)$ for any $x \in B_{2}$,

$$
\begin{aligned}
4 \omega(x)= & 2 \omega\left(u^{-1} x\right) \overline{2 \omega\left(u^{-1}\right)} \\
= & {\left[\sigma\left(u^{-1} x\right)+\sigma^{\prime}\left(u^{-1} x\right)\right]\left[\overline{\sigma\left(u^{-1}\right)}+\overline{\sigma^{\prime}\left(u^{-1}\right)}\right] } \\
= & \sigma\left(u^{-1} x\right) \overline{\sigma\left(u^{-1}\right)}+\sigma\left(u^{-1} x\right) \overline{\sigma^{\prime}\left(u^{-1}\right)} \\
& +\sigma^{\prime}\left(u^{-1} x\right) \overline{\sigma\left(u^{-1}\right)}+\sigma^{\prime}\left(u^{-1} x\right) \overline{\sigma^{\prime}\left(u^{-1}\right) .} .
\end{aligned}
$$

Put $\sigma_{1}(x)=\sigma\left(u^{-1} x\right) \overline{\sigma\left(u^{-1}\right)}, \quad \sigma_{2}(x)=\sigma\left(u^{-1} x\right) \overline{\sigma^{\prime}\left(u^{-1}\right)}, \quad \sigma_{3}(x)=\sigma^{\prime}\left(u^{-1} x\right) \overline{\sigma\left(u^{-1}\right)}$ and $\sigma_{4}(x)$ $=\sigma^{\prime}\left(u^{-1} x\right) \overline{\sigma^{\prime}\left(u^{-1}\right)}$ for any $x \in B_{2}$, then $\sigma_{3}(j=1,2,3,4)$ are elements of the unit sphere of $B_{2}{ }^{*}$, moreover states of B_{2} and $4 \omega=\sigma_{1}+\sigma_{2}+\sigma_{3}+\sigma_{4}$ on B_{2}, which contradicts the extremity of ω. Therefore $\omega \in \Omega_{3}$, and $\Omega_{2} \subset \Omega_{3}$. Analogously we have $\Omega_{3} \subset \Omega_{2}$, hence $\Omega_{3}=\Omega_{2}$.

Now if we take $x, y \in B_{1}$, then for any $\omega \in \Omega_{3}$,

$$
\begin{aligned}
\omega\left(\theta_{0}(x y)\right) & =\theta_{0}{ }^{\prime} \omega(x y)=\theta_{0}{ }^{\prime} \omega(x) \theta_{0}{ }^{\prime} \omega(y) \\
& =\omega\left(\theta_{0} x\right) \omega\left(\theta_{0} y\right)=\omega\left(\theta_{0}(x) \theta_{0}(y)\right)
\end{aligned}
$$

where $\theta_{0}{ }^{\prime}$ is the transpose of θ_{0}, and hence

$$
\theta_{0}(x y)=\theta_{0}(x) \theta_{0}(y) \in B_{3} .
$$

Thus B_{3} is an algebra and so $u^{-1} x u^{-1} y \in B_{3}$, which implies $x u^{-1} y \in B_{2}$. In particular putting $x=y=I, u^{-1} \in B_{2}$ and hence $B_{2}=B_{3}$. This concludes the proof.

5. An application to rings of analytic functions.

Let D_{1} (resp. D_{2}) be a plane domain with no $A B$-removable boundary points and $B\left(D_{1}\right)$ (resp. $B\left(D_{2}\right)$) be the ring of all bounded analytic functions in D_{1} (resp. D_{2}), then the Theorem of Chevalley and Kakutani [5] is stated as follows: D_{1} and D_{2} are conformally equivalent if and only if $B\left(D_{1}\right)$ and $B\left(D_{2}\right)$ are algebraically isomorphic.

Moreover, if we define a norm of f in $B\left(D_{j}\right)$ by $\|f\|=\sup \left\{|f(z)|: z \in D_{j}\right\}$ $(j=1,2)$, then $B\left(D_{j}\right)$ are commutative Banach algebras satisfying the norm condition $\left\|f^{2}\right\|=\|f\|^{2}$. Therefore, by Theorem $1 B\left(D_{1}\right)$ and $B\left(D_{2}\right)$ are algebraically isomorphic if and only if they are isometric as Banach spaces. Thus we have obtained the following:

Theorem 4. The following assertions are mutually equivalent:
(1) D_{1} and D_{2} are conformally equivalent,
(2) $B\left(D_{1}\right)$ and $B\left(D_{2}\right)$ are algebraically isomorphic,
(3) $B\left(D_{1}\right)$ and $B\left(D_{2}\right)$ are isometric as Banach spaces.

Remark 3. When D_{1} (resp. D_{2}) is not assumed to satisfy the above condition, let $D_{1}{ }^{\prime}$ (resp. $D_{2}{ }^{\prime}$) be the smallest plane domain with no $A B$-removable boundary points containing D_{1} (resp. D_{2}), then by Rudin [8] the assertion (1) in the above theorem is to be replaced by
(1') D_{1}^{\prime} and D_{2}^{\prime} are conformally equivalent.

References

[1] Arens, R. F., and J. L. Kelley, Characterization of the space of continuous functions over a compact Hausforff spaces. Trans. Amer. Math. Soc. 62 (1947), 499-508.
[2] Bohnenblust, H. F., and S. Karlin, Geometrical properties of the unit sphere of Banach algebras. Ann. of Math. (2) 62 (1955), 217-229.
[3] Bourbaki, N., Espaces vectoriels topologiques. Paris, Hermann, (1953), (1955).
[4] Gelfand, I., and A. N. Kolmogoroff, On rings of continuous functions on topological spaces. C. R. (Doklady) Acad. Sci. URSS 22 (1939), 11-15.
[5] Kakutani, S., Rings of analytic functions. Lectures on functions of a complex variable. Univ. of Michigan Press, Ann Arbor (1955), 71-83.
[6] Loomis, L. H., An introduction to abstract harmonic analysis. New-York, (1953).
[7] Наймарк, М. А., Нормированные кольда. Москва (1956).
[8] Rudin, W., Some theorems on bounded analytic functions. Trans. Amer. Math. Soc. 78 (1955), 333-342.

Department of Mathematics, Tokyo Institute of Technology.

[^0]: 1) Here, the induced isomorphism is in general different from the given isometry.
