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1. Introduction.

The class of analytic functions regular in a circle and with the positive
real part has been extensively investigated from various points of view. It
has been shown to possess several interesting properties which are now mostly
classical. A natural analogue of this class in the doubly-connected domain is
the class consisting of analytic functions regular, single-valued and with the
positive real part in an annulus. Many propositions on the former class have
been transferred to the latter and the results thus obtained may be regarded
as extensions of original ones.

Let ΪR={Φ(z)} denote the class consisting of analytic functions, regular in
the unit circle | z \ < 1, satisfying

9tΦ(z)>0 for \z\<l

and normalized by

Φ(0) = 1.

A straightforward extension of 9ί is the class ίRq = {Φ(z; q)}, depending on a
parameter q with 0 ̂  q < 1, which consists of analytic functions regular,
single-valued in the annulus q<\z\<l, satisfying

m(z] 0)>0 for g < | z | < l

and normalized by

mφ(z; q) = l along \z\=q and —(* Φ(qe*θ; q)dθ = 1.
2π J _ π

According to the above-mentioned normalization, any Φ(z; q) may be supposed
to be continuous on the semi-closed annulus q^\z\<l. Consequently, based
on this boundary behavior, Φ(z; q) is moreover analytically prolongable beyond
the circumference | z \ — q by means of the functional equation

so that it becomes a function regular throughout a wider annulus q2 < \ z \ < 1.
The class 9Ϊ0 coincides with 9ϊ. In fact, the origin is only a removable sin-
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gularity for every function Φ(z 0) <Ξ 9ΐ0

We could observe here more generally a wider class $tq = {Φ(z; q)} which
is defined as an extension of 9^ by releasing its normalization on | z \ — q in
such a way that the constant term in the Laurent expansion is equal to
unity, i. e.,

^Γ Φ(re* ; q)dθ=l (q < r < 1).
UK J-π

However, the extended class 3ftβ is related to the restricted class in a very
simple way and can be really constructed in terms of the latter. In fact, as

was shown in a previous paper [7], any Φ(z; q)^&q is expressible in the form

Φ(z; q) = Φ(z; q) + Ψ(^;q}- 1; Φ(z;
\ z /

and moreover this decomposition is unique.

In the present paper, we shall establish a one-to-one correspondence be-
tween the classes $tq and 3ί which will be found to be of remarkable nature.
Functional equations determining this correspondence will be obtained in ex-
plicit forms. When a correspondence is established between the classes 3tg and
3ΐ, it will be readily transferred to that between two classes with any values
of the parameter q. In view of the decomposition theorem referred to above,

it can be further transferred to those between a class 3ΐg and a cross-class

(3V> 3V') as well as those between two classes $β/ and 3V/ with any values
of the associated parameter.

2. Correspondence in terms of series expansions.

To establish the desired correspondence between 9ϊβ and 3ΐ, we may choose,
as the starting point, any definition of the correspondence among several pos-
sible ones which are equivalent each other. As we shall actually do so in the
following lines, it seems rather intuitive to take as the starting definition,
the definition which is formulated in terms of the power series expansions
of functions of the respective classes. Thus, we begin with the following
theorem.

THEOREM 1. Let

Φ(Z) = l f Σ CnZ"
n=l

be any function belonging to the classs tit. Then, the function defined by

0(*;g) = l + Σ-

belongs to the class tftq. Conversely, let
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be any function belonging to the class Dϊg where the prime attached to the
summation symbol means the exception of the summand with n = Q. Then,
its Laurent coefficients satisfy the quasi-symmetry relation

and the function defined by

belongs to the class Cϊ.

Proof. In order to justify the first part of the theorem, we note that
the series defining Φ(z; q) converges in q<\z\<\ (and really in q2 < \ z \ < 1)
and hence it represents a function regular and single- valued in this annulus.
We observe the difference

Φ(z; q) - Φ(z) =

The last expression converges in the annulus q2 < \z\ <q~2 including the cir-
cumference I z I = 1 in its interior and the value

lim (Φ(Z', q) - Φ(z)) = 2ί f j ^

is purely imaginary. On the other hand, the boundary value of Φ(z\ q) along
\z\=q is given by

Φ(qeiθ; g) = l + 2i f]

so that $ΪΦ(z , q) is equal to unity everywhere along \z\=q. Consequently, in
view of the maximum principle, the real part of Φ(z\ q) remains positive
throughout q<\z\<l. Finally, it is evident that the mean value of Φ(z\ q)
along \z\=q is equal to unity since this quantity is nothing but the constant
term of its Laurent expansion.

We next consider the second part. The series defining Φ(z) converges
evidently for | z \ < 1 and hence it represents a function regular there. Re-
membering the quasi-symmery property of the Laurent coefficients of Φ(z\ q),
we get the relation

0(s) - Φ(z; q) = - Σ qZn(Cn(q)zn - Cή5)« n).
71 = 1

The last expression converges in q2 < | z \ < q~2 and has the real part vanishing
everywhere along \z\ = l. Further we have Φ(0) = 1. Consequently, Φ(z) be-
longs to 3ϊ, as claimed.

3. Correspondence in terms of integrals of Herglotz type.

The correspondence between the classes 9tq and ΣR formulated in Theorem 1
will become more clear if it is transformed into the form expressed in con-
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nection with integral representations of Herglotz type of the respective
classes. These representations are classical, but for the sake of completeness
we re-formulate them here as lemmas; cf., for instance, [4, 5, 6].

LEMMA 1. It is necessary and sufficient for Φ(z) e 9Ϊ that Φ(z) is repre-
sentable by means of the Herglotz integral

i π 01ψ _L_ ΛT
^~dp(ψ)

—π e z

where p(ψ) is a real-valued function satisfying

dp(ψ) ^ 0 (— π ̂  φ ̂  π) and ( dp(φ) = 1.
J -π

LEMMA 2. It is necessary and sufficient for Φ(z; q) e $tq that Φ(z\ q) is
representable by means of the integral of Villat-Stieltjes type

Φ(*', Q) = Γ 4ΪC« lg * + Ψ) ~ %< lg * + ψ)}df>(φ)
J-π ^ V 7Γ /

where ρ(φ) is a real-valued function satisfying

J π
dp(ψ) = 1

-π

and the elliptic zeta-function depends on the Weierstrassian theory with the
primitive periods 2α>ι = 2π and 2ω8 = — 2i lg q.

Now, the Lemmas 1 and 2 are supplemented by the uniqueness assertion
of the increasing function p(φ) associated with a given analytic function of
every class.

LEMMA 3. The increasing function p(φ) associated with a given func-
tion Φ(z; gOeDΐg as in Lemma 2 is substantially unique, i.e., for any given
Φ(z; #)e9ΐg, p(ψ] is uniquely determined for —π ^φ^π under the norma-
lization

= -(̂  - 0) + ̂  + 0)) for -π<φ<π.
£t

Moreover, it is expressed by the limit equation

p(φ) = lim — Γ m(reίθ\ q)dθ (-
r->ι-o 2π J-π

Proof. The proposition for the class Dϊ = DΪ0 has been fully proved in a
previous paper [8]. Though the case of $tq with any q can be dealt with
quite similarly as in this particular case, it is more convenient to reduce the
proof to this case. In fact, the integral representation stated in Lemma 2
implies
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cf. [6]. The infinite series involved in the integrand represents a function
which is regular harmonic in re10 throughout the annulus q < r < q'1 and
which vanishes everywhere along r = 1, —π^θ^π. Hence, we get

lim — Γ %Φ(rei9', q)dθ = lim — f dθ(' -
+ι-o2π],, r-M-o 2ττ J _» J -π 1 - Λ- 0) + r2

provided that the limit exists, which is really the case. Namely, the right
hand member of the last equation represents nothing but the corresponding
expression for the particular case of the class 9ϊ and has been shown to be
equal to p(<p).

It should be noted that, for the particular class 9ΐ, the uniqueness asser-
tion formulated in Lemma 3 has been implicitly described also in [3] from
the standpoint of the trigonometric moment problem.

Now, by means of the lemmas enumerated above, it follows from Theo-
rem 1 the following proposition formulated in terms of the associated func-
tions in the integral representations of the respective classes.

THEOREM 2. The one-to-one correspondence between ffi and ΪRq introduced
in Theorem 1 is of the nature such that the increasing functions ρ(ψ) asso-
ciated with Φ(z) e 9ΐ and with Φ(z\ q) e $tq in Lemmas 1 and 2 respectively
are the same.

Proof. Let the Taylor expansion of Φ(z) and the Laurent expansion of
Φ(z; q) defined with the same function p(ψ) in Lemma 1 and Lemma 2 respec-
tively, be expressed by

Expanding the kernels of the respective integral representations, we get

Cn = 2 Γ e-ιnψdρ(ψ) (n=l, 2, •),

Cn(q) = 2-- \ e-ιnψdρ(φ) (n=±l, ±2, •);
l — qzn J _ π

cf. [6, 9]. Hence, it follows readily the relations

and

Cn(q) = ~2nCn (n = 1, 2,

This shows that Φ(z) and Φ(z; q) constitute a pair of corresponding functions
in Theorem 1. In view of Lemma 3, the correspondence is one-to-one.

We notice here, by the way, that the variability-region of the Taylor coeffi-
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cients for the class 9ϊ has been determined by Caratheodory [1, 2] and re-for-
mulated by Rogosinski [10] and others. It is shown that this classical result
can be briefly derived by means of the integral representation of the coefficients
for 9ί which has been given in the proof of Theorem 2. The variability-region
of the Laurent coefficients for the class $tq can be also determined in a similar
way and its actual determination has been carried out by Nishimiya [9]. Ac-
cordingly, Theorem 1 may be regarded as a statement expressing the corres-
pondence between the coefficient-regions of {Cw}Γ=ι for $t and {C_w(#), Cn(q)}™=ι
for $tq with any positive integer m. It further gives the correspondence
between the respective functions bearing the corresponding coefficients in
series form while Theorem 2 transforms this into the integral form of Her-
glotz type.

4. Equivalent functional equations defining the correspondence.

Now, the expressions determining the correspondence established in Theo-
rem 1 or 2 can further be transformed in such a way that the resulting rela-
tions contain neither the coefficients of series expansions nor the functions p(φ)
in the integral representations. The transformed relations thus obtained will
become a pair of functional equations connecting the corresponding functions
of the respective classes. Each of the equations may be then regarded as the
inversion formula of another. We shall give below two pairs of such func-
tional equations, one in the present section and the other in the following.

THEOREM 3. For any Φ(z) e 3ϊ, the function defined by

Φ(z; q) = Φ(z) + Σ (Φ(q2vz) ~ Φ(q2vz~1))
v=l

belongs to $tq. Conversely, for any Φ(z; q) e 9 ,̂ the function defined by

Φ(z) = 1 + -M Φ(t; <?)f T -̂ - -r^-r] dt

2m JΓ \t — z t — q2zj

belongs to 9ΐ, where Γ is any simple contour lying in thea nnulus q < 1 1 \ < 1 and
surrounding the origin as well as the points z and q2z in the positive sense.
Further, the correspondence thus determined is the same as that of Theorem
1 or 2 so that each of the equations represents the inversion of the another.

Proof. It suffices to justify the final part of the theorem. First, sub-
stituting the Taylor expansion of Φ(z) given in Theorem 1 into the first equa-
tion of the present theorem, we get

Φ(*l q) = 1 + Σ Cnz
n + Σ Σ (Cnq

2nvzn - Cnq
2/nvz-n)

= i + Σ (cnz
n Σ q2nv - cnz~n Σ q2nv]

71=1 \ v=o v=l J

= 1 + Σ -~n (Cut* ~ qΐnCnZ-n).



CORRESPONDENCE BETWEEN CLASSES OF ANALYTIC FUNCTIONS 153

The last expression coincides with the Laurent expansion of Φ(z; q) given in
Theorem 1. Next, substituting the Laurent expansion of Φ(z\ q) given in the
theorem and reproduced just above into the second equation of the present
theorem, we find, by means of a simple calculation of residues,

Φ(z) = 1 + ~
~q2z

The last expression coincides with the Taylor expansion of Φ(z) given in
Theorem 1.

The proof of Theorem 3 given just above depends on the intermediation
of Theorem 1 in order to verify the coincidence of the correspondence with
that introduced there. However, if the assertion of this coincidence is ex-
cluded, the remaining part of Theorem 3 together with the one-to-one corres-
pondence can be proved also independently of Theorem 1 or 2 and directly as
in the proof of the theorem.

To verify this, we first observe the boundary behaviors of the referring
functions. The first equation of Theorem 3 shows that for any Φ(z) e 9ΐ the
function Φ(z; q) thus defined is regular and single-valued in q < | z | < 1 (and
moreover in q2 < | z | < 1). We now observe the difference

Φ(z; q) - Φ(z) = Σ (Φ(q*»z) -Φ(q^)).
v=l

The last series converges in the annulus q2 < \ z \ < q~2. Its value on | z | = 1
is given by

lim (Φ(z; q) - Φ(z)) = 2i f] 3 Φ(q^eiθ) (-π^θ<π)
z+βίθ v = l

which is purely imaginary everywhere along | z | = 1. On the other hand, the
boundary value of Φ(z\ q) along \z\=q is given by

Φ(qeiθ\ q) = 1 + 2i f] 3 Φ(q2v~1eίff) (-π^θ<π)
v=l

and hence its real part is always equal to unity. Consequently, 9ΐΦ(z; q) re-
mains positive throughout the annulus q<\z\<l. Finally, the last relation
readily implies

so that Φ(z\ q) belongs to the class SR3.
Next, for any Φ(z; q) e ̂ β, the second equation of Theorem 3 defines a

function Φ(z) regular in | z \ < 1. Since Φ(z\ q) is regular and single-valued for
q^\z\<\, we have by Cauchy's integral formula
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every integral being taken in the positive sense with respect to the interior
of respective contour. Hence, we get

It is evident that in the first integral of the last expression the contour Γ
may be replaced by the circumference 1 1 \ = q. In view of the functional equa-
tion satisfied by Φ(z; q), the last integral is further transformed. In fact,
remembering that along \t\ =q we have t—qH~l and dt = — q2t~2dt, it becomes

2πi}\t\=q t — z 2πij\t\=g t — z

J|<|=9

2πi }\t\=qt — q2z

Thus, we get the relation

The right hand member of the last relation represents a function regular and
single-valued in q<\z\<q~l (and further in q2< \ z\ < q~2). Its value on
I z I = 1 is given by

lim (Φ(z) - Φ(z; q)) = - M%~^ ~-~
z+eM \2π^ J i ί | = r f f ί — q2elθ

which is purely imaginary everywhere. It is evident that 0(0) = 1. We thus
conclude that the real part of Φ(z) remains positive in | z \ < 1 and hence this
function belongs to 3ΐ.

Finally, we shall verify that the equations given in Theorem 3 are
mutually inverse. We first show that the right hand member of the second
equation after substituting the first equation reproduces the function Φ(z). For
this purpose, we note that by Cauchy's integral formula it follows the relation

J α Λ - Φ t e .) (-0,1,...),

and further, since Φ(q2vt~1) 0^1) is regular in \ t \ <q2,

1 Γ Φ(q2vt~ϊ) 7 , _ __ p.., 2v/- ι\Ίt=oo _ ffifTft — ι ( —1 9 \
2ττ£ J Γ £ — z
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Hence, we get for | z \ < 1

~τ[ (φ(ί) + Σ U v , ~, -v* - , / ι ,zraJA "-i Jt — z

Consequently, we obtain the equation

= 1 + Φ(z) + Σ (Φ(q*"z) - 1) - Φ(q2z) + Σ (Φ(q2"+2z) - 1)

which is the desired one. In order to show the converse, we substitute the
second equation of Theorem 3 into the right hand member of the first equa-
tion. It then becomes

/ I 1

r-}dt
l—qΔz,

7Γ. -. ~^r-}dt

. \ v\*Ί y / l , o
n J r \t-q2

For g < I z \ < 1 we have q2 < \q2z 1 \ < q, and hence the contour Γ of the last
integral may be replaced by the circumference \t\=q, from which it follows
by remembering again the previous calculation the relation

Φ(ί; g ) — - Γ - - dt
τ J Γ \t — q*zl t

— - — - .ί - 922"' ί / 2τri J I,,., t - «

Consequently, in view of the Cauchy's integral formula, the above expression
is really equal to Φ(z; q) what is to be proved.
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5. Another form of functional equations.

While the correspondence introduced in Theorem 1 or 2 has been trans-
formed into the form as stated in Theorem 3, it is possible to transform it
into another alternative form. We supplement here a form of this nature.

THEOREM 4. For any Φ(z) e 9ΐ, the function defined by

Φ(z-, q) = Φ(z) + Q-r [ Φ(t}A(t, z)dt - -1-.- f Φ(t)A(t, z'^
Zπ^ J r &πt' J r

belongs to the class $tq, where Γ is any simple contour lying in the annulus
q < 1 1 1 < 1 and surrounding the origin in the positive sense, and A(t, z)
is defined by

r+1 - 2t2πi rS-

~ ̂  lg s = 1 + 2 f]'

simple contour lying in q < \ s \ < 1 and surrounding the origin
as well as the point q2zt~1. Conversely, for any Φ(z; q) e 9ΐρ, the function
defined by

2τri . . . _

is analytically continuable throughout \z\<l and belongs to the class 9ΐ.
Further, the correspondence between two classes thus determined is the same
as in either of Theorems 1, 2 and 3 so that each of the equations again re-
presents the inversion of another.

Proof. It suffices to justify the final part of the theorem. For this pur-
pose, we first show that the first equation of Theorem 3 can be transferred
into the first equation of the present theorem. In fact, based on the Cauchy's
integral formula, the former is written in the form

• / [ I ~ I ' (juu ~ I ~ d / ( / 1.
_i \ 2τΓ'7 I n / Π % 27Γ9 I T f Cί 2~ J

Now, in view of Φ(0) = 1, we have

2><iί

Putting ^-1 instead of z in this relation, we get correspondingly
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riT'--i dt ~l} = 2~~' \ Φ(V>A(Ϊ> t'Wt.

Combining these relations, it follows readily the desired equation.
Similarly, the second equation of Theorem 3 is transferred into the second

equation of the present theorem. This fact has been, however, already shown
subsequently to the proof of Theorem 3.

Of course, we may supplement here a remark similar to that stated sub-
sequently to the proof of Theorem 3. But, since it proceeds quite similarly
as before and really it is implicitly involved in the arguments until now, the
details will be left to the reader.
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