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Introduction.

Recently we have proved [2] that a complete connected Riemannian space
M, 2<dimM", with parallel Ricci tensor does not admit a non-isometric con-
formal transformation, unless M is isometric either to the Euclidean space or
to the sphere. An analogous fact is true for a protective transformation, as
the following main theorem of this paper shows.

THEOREM 1. Let g and g be two complete Riemannian metrics on a con-
nected manifold M with dimension > 1 whose Ricci tensors R and R! are
parallel. If g and g are protectively related, then 1) Levi-Civita connec-
tions of g and g coincide, or 2) g and g are of positive constant curvature.

On the other hand Tanaka [5] studied protective transformations of affine
connections. To describe his theorem we explain some terminologies. Two
affine connections without torsion L and L (on the same manifold) are said
protectively relaled when there exists a 1-form φ satisfying

(0.1) L% = L

where d is Kronecker's delta, φ is then called the associated form. Two
Riemannian metrics on the same manifold are said protectively related when
their Levi-Civita connections are protectively related. B denoting the Ricci
tensor of L, the symmetrized Ricci tensor R shall have the components
RtJ — (Bίj+Bji)/2. Now Tanaka's theorem states:

THEOREM T. Let L and L be two complete and torsion-free affine con-
nections (on a connected manifold M ivith άimM>l) whose Ricci tensors
are parallel. Assume that they are protectively related.

1) / / the symmetrized Ricci tensors R and R are both positive semi-
definite, then, for any point x in M any vector X at x, Rtj(x)Xi = 0 is
equivalent to Rij(x)Xi = 0 and implies φi(x)Xi = 0, φ being the associated
form

2) In the other case, L and L coincide.

By Theorem T we have only to prove Theorem 1 in the two cases I) and

II); I) R and R are non-zero, degenerate and positive semi-definite, II) R and R
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are positive definite. But we shall give a complete proof.
From Theorem 1 follows easily Theorem 2 which is not covered by

Theorem T.

THEOREM 2. Under the hypothesis of Theorem T, if R and R are posi-
tive definite then 1) L and L coincide, or 2) L and L are the Levi-Civita
connections of Riemannian metrics of positive constant curvature.

To close Introduction we must pay attention to Tashiro's results [6]: if
one of two complete Riemannian. metrics which are protectively related is
(locally) reducible then their Levi-Civita connections coincide. Ishihara, Sumi-
tomo and Yano-Nagano obtained some results concerning protective trans-
formations, which are covered by the above theorems.

The author wishes to express his thanks to Professor K. Yano for
encouragements and valuable suggestions. He also appreciates conversations
with Professor Y. Tashiro gratefully.

1. Construction of Mf.

Let M be an w-dimensional diίferentiable (i.e. C°°-differentiable) manifold,
l<n, and E the one-dimensional Euclidean space. We consider the direct
product M X E of these differentiate manifolds, which will be denoted by
M'. M' is covered by the coordinate systems (α?°, xι) which are pairs of a
fixed cartesian coordinate (x°) on E and arbitrary coordinate systems (xl) on
M. Given an aίfine connection L on M without torsion, we define two aίfine
connection L" and L' on Mf in terms of these coordinates by

(1.1) L"λ

μv = 0 if λμ»=*0, and = Lx

μv if

(1.2) L'U = L'% + δffi +δlδμ- g"μvw
ι,

where w is the vector field on Mf with the components wλ = do, and g" is
the tensor field defined at ίc'eikP by

(1.3) flrVX'X' = (X0)2 + XlXjR%J / (n - 1)

for any vector X at x't R being the symmetrized Ricci tensor of L. We have
here adopted the conventions: Greek indices run over 0, 1, •••, n and Latin
ones run over 1, , n. The affine connection 1/ will be called the Thomas
connection of L or of a Riemannian metric g when L is the Levi-Civita
connection of g [7].

(1.4) Any geodesic (=path) of the Thomas connection is mapped to that of
L by the natural projection of Mf onto M.

PROPOSITION 1. Let L and L be affine connections without torsion on a
differentiable manifold. Assume that the Ricci tensors of L and L are
symmetric and that M is simply connected. If these affine connections are
protectively related, then there exists a transformation a of Mf {i.e. a dif-
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feomorphism of Mf onto itself) which transforms the Thomas connection Lf

of L to that of L. (See [8].)

Proof. The associated one-form φ is exact; i.e. there exists a function p
on M with dp = φ, because the Ricci tensors are symmetric and M is simply
connected (see [4] for example). Now a is defined by a(x°, xi) = (x° + p, xl),
and satisfies the required condition as is easily seen.

REMARK. When L and L are Levi-Civita connections, simple-connected-

ness of M is a redundant condition, as we have φ = d[log(G/G)] /2(n +1)

where G and G are the determinants of the metric tensors.

(1.5) / / R is parallel with respect to L then the tensor field exp(2x°)-g" is
parallel with respect to the Thomas connection L', as is seen by means of
some straightforward calculation.

2. Tanaka's method.

Based on Tanaka's idea [5], but using no protective connection, we shall

prove his Theorem T under some restrictions:

(2.1) Let L and L be complete affine connections on a manifold M such

that the Ricci tensors are symmetric and parallel. Assume that these con-

nections are protectively related. 1) In case both of the Ricci tensors are

positive semi-definite, we have RtJX
J = 0 if and only if RZJX

J = 0 for any

vector X, and this implies φiX1 = 0, φ being the associated form. 2) Other-

wise we have L = L.

Proof. We can suppose that M is simply connected. For the moment
we consider L only and put L aside. Given a geodesic Tf of Lf on M with
an affine parameter ί, the equation of γf is written as

(2.2) DDxλ + LfivDx^Dxv = 0, D denoting d/dt.

Let / be the function exp(2#°) on Yr. By (1.5) we get the first integral
of (2.2).

(2.3) f'gιr

μvDxΦxv = a (a = const.).

Solving (2.2) for λ = 0, we obtain

(2.4) / = at2 + 2bt + c (b,c = const.),

and

(2.5) b/c = X°,

where X° is the first component of the initial tangent vector Xf = Dx(0).
We note that c is strictly positive.

Let s denote an affine parameter of the image geodesic πϊr (see (1.4)) of
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P. s is a function of t. Then fDs is a non-zero constant k: fDs = A;. Since
L is complete, the range of s is (— oo, oo). By Cauchy's theorem applied to
the differential equation fDs = k, we infer that the domain of t is the inter-
val containing 0 given by 0 < / . Owing to (2.3), (2.4) and (2.5) this implies

0 < g^^WX* + 2XH + 1 , x = r'(0).

In other words, given a direction X7 at α?' e M', the geodesic Γ' with an
initial vector Y' in that direction Xr is defined exactly for the interval

of the affine parameter it, provided that Y' satisfies

0 g

= (Γ° +1)2 + YΎ'Rxfa)/(n -1).

Γ'" is defined for 0 ̂  % < oo if no vector Y' in that direction satisfies (2.6).

Given an affine connection L mentioned in (2.1), we assign to each point

a/eikP a quadric Q(xf) on the tangent space at xr defined by (2.6). To L in

(2.1) corresponds Q(xf) in the same way. By Proposition 1 these two figures

must coincide, or precisely δaQ(x') = Q(a(x')), where da is the differential of

a. Since δa(Y) has the components (Γ° + YaVaρ, Y*), this gives that (2.6)

implies

(2.7) (F° +YaFap + iγ + YΎ'&j/in - 1) = 0.

Now assume that some vector Y=(Yi) at a point x&M satisfies

(2.8) Έ

Then there exists a number Γ 0 ^ — 1 such that the vector P = (Γ°, YL) at
any point %' G π~\x) c ϋf' satisfies (2.6). We have (2.7). Since the vector
Y" = (γo, -Γ*) satisfies (2.6) too, it follows

(F° + \)YaVap = 0, and so YaFap = 0.

The last equation is satisfied by every vector Z sufficiently near to Y;
ZaVap = 0. This shows φ = dp = 0 at x. Since R is parallel, at any point in
M there exists a vector Y" satisfying (2.8) under the above assumption and
we have <£ = 0 on M. The second half 2) of (2.1) is thus proved.

Next we assume that a vector Y satisfies

Then, putting Γ ° = - l , the vector F = (F°, Γ*) tangent to ΛP satisfies (2.6),
and (2.7) reads

(2.9) (JaVap) + Y'Y'Rij/fa -1) = 0.

It follows

(2.10) YaFr

ap — 0,

because otherwise we should have YiYJRiJ<0 and so by the above arguments

FαΓαio = 0. (2.9) and (2.10) give YΎJRIJ = O. When R is symmetric and
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positive semi-definite, RιJY
ίYJ = 0 is equivalent to RιJY

J = 0. Thus the first
half 1) of (2.1) is also proved.

3. The positive definite case.

This section is devoted to the proof of Theorem 2 in the introduction.
The hypothesis of Theorem 2 and the notations in Section 1 will be preserved.

Let / be the function exp(2α°) on M'. Then g'=fg" (see (1.3)) and
g!=fg" define Riemannian metrics on Mr whose Levi-Civita connections are
Lr and Lr respectively by (1.5).

PROPOSITION 2. Under the above hypothesis, Mr ivith gf is either irre-
ducible or locally flat. In the latter case L is a Levi-Civita connection of
positive constant curvature.

Proof. Assume that Mf with gf is reducible; i.e. the homogeneous holo-
nomy group Hr of gf is reducible. Then there exists a parallel tensor field
P of type (1.1) on M' such that, for each point xf in M'f P{x') is an ortho-
gonal projection of the tangent space at xf onto a non-trivial subspace in-
variant under H. We identify P with the distribution assigning this subspaee
to xι. Let Q denote I—P; i.e. Qμ = dμ — Pμ. Proposition 2 will be proved
after several lemmas.

(3.1) Given any real number c the subset {xf e ikF; 0 ̂  x0} of Mf is complete
with respect to the metric on Mr defined from g'.

(3.2) The vector field w defined in Section 1 is concurrent: Vr

μw
x = dλ

μ. Pw
is concurrent on any integral manifold of P, where Pw is the vector field
with {Pw)λ = Piw".

(3.3) Γ'(Qw) = Q.

(3.4) The length of Qw is constant on a connected integral manifold of P.
In fact from (3.3) follows

= 2Pa

v(Qw)βQβ« = 0.

(3.5) The union U of integral manifolds of P to which w is tangent at
each point is nowhere dense.

Proof. Let V be an open subset contained in U. We have Qw = 0 on V,
whence P'(Qw) = 0, contrarily to (3.3). Thus V is vacuous.

(3.6) A connected integral manifold N of P is locally fiat, if w is not tan-
gent to N (at a point).

Proof. Then w is not tangent to N at any point by (3.4). It suffices to
verify (3.6) in case N is a maximal connected integral manifold. Let z be
an arbitrary point of N. Assume that Pιv = 0 at z. By (3.2) the curvature
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tensor S of N is invariant by Pw; XpwS = 0, X denoting the Lie derivative
[9]. By (2.2) and the equality Pw{z) = 0, we find that S(z) = 0. Next suppose
that Pw Φ 0 at z. Consider the trajectory ϊ of Pw issuing from z in such a
direction that the length λ of Pw is a decreasing function of the arc length
s of T. By (3.2), 2λ + s is constant on F. By (3.4) and the assumption of
(3.6) the length || w\\ of w is bounded below on ϊ. This shows that the first
coordinate x° = log || w || is bounded below. From (3.1) it follows that s can
attain the value sQ such that 2λ + so = 0; i.e. there exists a point y on ϊ at
which Pw = 0. We have S(y) = 0 as shown before. On the other hand
is constant on ΐ [10] where

Therefore S must vanish on ΐ. In particular we have S(z) = 0, and (3.6) is
proved.

By (3.5) and (3.6) any integral manifold of P is locally flat. The analogue
holds good for Q too. Thus Mr is locally flat, and the first half of Proposi-
tion 2 is established. Since the symmetrized Ricci tensor R of an aίfine con-
nection L without torsion is parallel and positive definite, L is the Levi-Civita
connection of the Riemannian metric R, and R coincides with the Ricci tensor
of L. In particular M with the metric tensor R is an Einstein space. If
Mr with g'=fg" is locally flat, then g" is locally conformally flat. Since M'
with g" is the Riemann product of the Euclidean space E and the Einstein
space M with R, it follows that M with R is locally conformally flat. Thus
M with R is a space of constant curvature. This completes the proof of
Proposition 2.

Proof of Theorem 2. By Proposition 1, Mr with g" is irreducible if and
only if Mf with g" is irreducible. Then a is a homothetic transformation
([1]> [3]). Owing to the definition (1.3) of g" and g" a is then an isometry.
Hence R coincides with R, Hence the Levi-Civita connection L of the metric
tensor R coincides with L. If Mf is reducible, Theorem 2 follows from Pro-
position 2 immediately.

4. The non-definite case.

Eventually we have to survey the case that the Ricci tensors of g and g
are positive semi-definite but not definite in order to complete the proof of
Theorem 1. In this case applies Tanaka's theorem mentioned in the intro-
duction, since both g and g are then reducible. We shall however give an
independent proof. M can be assumed to be simply connected. M with g (or
g) is then a Riemann product of a space N with the vanishing Ricci tensor
and a space S (or S) with the parallel positive definite Ricci tensor. N is
common to g and g because of 1) in Theorem T. Let D be the distribution
on M which is parallel with respect to g and whose maximal connected in-
tegral submanifolds are isometric to S. The distribution D is defined ana-
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logously from g.
If D coincides with D, then the associated form φ vanishes on M, as

follows immediately from (0.1). In this case Theorem 1 is thus proved.
Now assume D ΦD. Then there exists a point x m M such that the

maximal connected integral submanifold S(x) of D which contains x is dif-
ferent from S(x). For the sake of brevity we write S for S(x), S for S(x)
and N for the (totally geodesic) submanifold containing x isometric to N
whose tangent space at x is orthocomplement of that of S at x with re-
spect to g.

Let μ be the orthogonal projection of M with g onto S, and u that of M
with g onto N. μ and ΐ> are analogously defined from g; ΐ>(M) = v(M) = N.

S with βr and S with (/ are isometric to the sphere. Hence S with g and
S with g are projectively flat and so spaces of constant curvature. Being
compact and simply connected, they are isometric to the sphere. Restricted
to S with g, μ is a mapping onto S and sends any geodesic to a geodesic
with the affine parameters preserved. Restricted to some neighborhood U of
x in S with g, μ is a diffeomorphism and so an affine transformation. Since
U with g is irreducible, it is a homothetic transformation. It follows that
μ, restricted to S with g, is a homothetic transformation onto S; in parti-

Λ <

cular it is a diffeomorphism of S onto S. Therefore v, restricted to S with
g, is a homothetic taansformation of S onto v(£) c N.

Consider the submanif olds B and B of M such that JB = {p e M; v(p)
<= *($), Kί?) e S} and B = {pε=M; D(p) e K^) and A(p) e ^}. 5 with ^ and i?
with ^ are both isometric to the Riemannian product Sx S. Let λ be the
map of B into B defined by the conditions: £ = vλ and μβ = μλ on 5. Then λ
is a projectiue transformation of B with £ onto B with #. By theorem 2, Λ
is an affine transformation. Restricted to S, λ coincides with μ. Hence g
and g on S has the same Levi-Civita connection. By (0.1) and 2) in Theorem
T we conclude that ψ vanishes on S and so on M.
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