
ON COEFFICIENT-REGIONS OF LAURENT SERIES
WITH POSITIVE REAL PART

BY HAN NISHIMIYA

1. Introduction.

Let 3ΐ0 = {$(%)} be the class of analytic functions which are regular and
of positive real part in the unit circle | z \ < 1 and normalized by Φ(0) = 1. It
is well known that Caratheodory [1, 2] has established a result on the varia-
bility-region of Taylor coefficients for Φ(^)e9?0; cf. also Rogosinski [6].

We now consider, besides $to, the class $tq = {Φ(z)} consisting of analytic
functions which are single-valued, regular and of positive real part in an
annulus (0<)q<\z\<l and normalized by the conditions

ίRΦ(z) = 1 along \z\=q and ~ ( * Φ(qeίθ) dθ = l.
Δπ J_,r

Let the Laurent expansion of a function Φ(z) e 9?α be

Φ(z) = 1 + f]' cvz
v (q<\z\<l)

V = — OO

where the prime means that the summation extends over all integers except
u — 0. Then, for any two positive integers m and n, the point P = Plm[φ]
with the coordinates {cv; — m^u^n, v%0} in the complex (n + m)-dimen-
sional space is called the (— m, n)th coefficient-point of Φ(z). The purpose of
the present paper is to determine precisely the variability -region, that is,
the range of the point-set consisting of all possible points P-«,[Φ] when Φ(z)
extends over the class 9ϊe. The class 9 0̂ is, of course, regarded as a limiting
case where the interior boundary component of the annulus degenerates to a
single point, i.e. the origin.

On the other hand, if the first normalization for 3ϊβ that | z — q corres-
ponds to a segment parallel to the imaginary axis is rejected, there occurs
an extended class $tq which includes SRβ as a subclass. Namely, let $tq = {Φ(z)}
denote the class of analytic functions which are single-valued, regular and
of positive real part in the annulus (0<)g<|2|<! and normalized by the
condition

2π .

Corresponding to the case of $tq, we shall consider also an analogous problem
with respect to this extended class.
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26 HAN N1SHIMIYA

2. Lemmas on representation formulas.

We enumerate integral representations of Stieltjes type valid for any
function of the respective classes under consideration. Though they are
consequences of a more general representation formula previously given by
Komatu [3] and, in particular, the representation for 9ΐβ has been re-for-
mulated by the same author [4], we first state it below as lemma 1 for
the sake of convenience, since it will play important roles in subsequent dis-
cussions.

Let Φ*(z) denote an analytic function defined by

0*00 = 4

^
where the elliptic zeta-function concerns Weierstrassian theory with primi-
tive periods

2α>ι = 2τr and 2ω3 — — 2i Ig q.

Since Φ*(z) maps q<\z\<l onto the right half -plane cut along a rectilinear
segment parallel to the imaginary axis, it belongs surely to 9ϊg. It will
play the role of kernel of the integral representation and also, combined
with a rotation of the 2-plane, the role of extremal function.

LEMMA 1. For any Φ(z) e $tq we have an integral representation

Φ(z) = Γ Φ*(ze-ίφ}dp(ψ)

where p(<f) = pφ(<f>) is a real-valued function satisfying the conditions

dρ(<f)^0 and I dp(φ) = l.
J — *

From lemma 1, by expanding the kernel Φ*(ze~lφ) into the Laurent series,
there follows readily an integral representation for the coefficients of
Φ(z) e SRβ.

LEMMA 2. For any Φ(z) e 3tg the Laurent coefficients are represented by

,
1 Q

where ρ(φ) is the function associated to Φ(z) in lemma 1.

The representation formula given in lemma 1 for tftq has been generalized

by Komatu [5] to that for $tq which may be re-stated as follows.

LEMMA 3. For any Φ(z)^$tq we have an integral representation
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where Φ*(z) and Ψ*(z) are analytic functions defined by

V*(z) - Φ*4-} = 1 - Cβ(i lg z) - -?ii lg z\

and p(φ) = pφ(ψ) and τ(φ) = τφ(φ) are real-valued increasing functions both
defined for —π<φ^π and with the total variation equal to unity.

By expanding the kernels of the representation given in lemma 3, we

get the representation for the Laurent cofficients of Φ(z)

LEMMA 4. Let the Laurent expansion of Φ(z) e &2 be

Then we have

A 2 Γ* 2qv Cπ

cv = - r-\ e'lvφdρ(φ)—- —1 e 1

1 — q J-7Γ 1 — ^ j-π

where p(φ) and τ(φ) are the functions associated to Φ(z) in lemma 3.

3. The class 9ΐg.

We first observe a point C(^) with the coordinates

φ being a real parameter. It is obviously the coefficient-point of the function
Φ*(ze~lψ). Let & denote the locus of C(φ) when φ varies from — π to π:

Now, we can characterize the set of coefficient-points for tRq in terms of (£.

THEOREM 1. Let K = K-m denote the variability-region consisting of all
possible coefficient-points P = Pϋ.OT[φ] = {cv; —m^ι>^n,ι>^0} when Φ(z) ex-
tends over the class 3ig. Let ® = ffilm denote the smallest closed convex hull
which contains ®. Then we have

τr _ β>
A. = Λ.

Any point P = {c,} e ̂  can be expressed in the form

cv = „ 2 . Σ ̂  e- ίy f jj (- m ̂  v ̂  w, y ^F 0);
1 — q 3=1

λ3 > 0 (j = 1, - , p; 0 ̂  p ̂  n + m), , ̂  1, - TT < φt < - < φp ̂  π.

The representation of coefficients in this form is unique. In other words,
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under the conditions imposed on (λ, φ, p), ® is covered without repetition
by the set of points with the coordinates {cv} = {cv(λ, φ, p)} when (Λ, φ, p)
extends over the whole range. The boundary O = O-OT of $ is characterized
by Σ J-i λj = 1 and every point of O is attained only by a function of
the form

where {/^}, {ψ3} and p correspond uniquely to any assigned point of D.

Proof. Any point P = tPi + (1 - ί)P2 with Pi, P2 e K and 0 ̂  t ̂  1 belongs
to .£", since a function Φ=tΦι + (l — t)Φ2 belongs to $tq for any pair Φlt Φ2 e ft^.
Hence, the set K is convex. The set K is closed, because the family $tq is
compact and normal. Since G(ψ) is the coefficient-point of Φ*(ze~ίψ) e ftβ, we
have C(0 e ^Γ for any ,̂ whence follows (£ c if. Therefore, we conclude
that

On the other hand, the coordinates of the center of gravity consisting of
2(n + m) points C(μπ/(n + m)) e $ (μ = 1, , 2(π + m)) are given by

O 2(«+m)

•- ------- — Σ e-»"/«/c»+» ) = 0 (- m ̂  y ̂  w, v ^F 0).2v2(n + m) 1 —

Accordingly, ff contains the origin Oϋm^ίO, ..., 0}. Let Π denote the sup-
porting hyperplane of β through any point {ϊv} e O. Let its equation be

Π: m Σ' uv(zv-rv)=Q,
v = —m

where the complex constants uv are supposed to satisfy the normalizations

Σ7 I uv I 2 = 1 and ft Σx ^^ ̂  0.
y = — ?» v = — m

Since the left-hand member of the equation of Π is non-positive at the origin
Oe$, we see that $ belongs to its non-positive region. In particular, for
any point G(φ) which surely belongs to S, we have

Consequently, in view of the representation given in lemma 2, any point
P = {CV}<Ξ K satisfies

ft Σ' uv(cv - Γv) - f * ft Σ7 uv(--^-Γe-^ - TV] dp(ψ) ^ 0.
»—m J-π v = -m \1 — q J

This shows that P belongs to $, i.e.

Thus, it has been verified that K coincides with S.
We next consider a function defined by
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S(φ; u) = Σ' uvv = —m

uv being the coefficients of Π introduced above, and put

M(u)= Max 3tS(φ; u).

Let

<pj = <f>j(u) W = l, •••, P; 1^;

denote the values for which the maximum Λf(w) is attained. Here the
integer p which may depend on {ϊv} does not exceed n + m, since 9?S(̂ >; %)
is a trigonometric polynomial of degree at most n + m. By means of the
formula given in lemma 2, we get for any point {Γv}eO(c®) the in-
equality

= Γ
J-jr

Now, based on the definition of M(u), we get an inequality

M(u)= Max 31 fy %v— -^-^e-^^MaxJR Σ' ^υcu.
-ff<P^ff v = -m 1 — ^Zυ Peβ v=-τn

On the other hand, since {ϊv} lies on the supporting hyperplane Π, we have

9ϊ Σr ^c.^^ Σ7 ujv.
V = _77l v = — m

Thus, we obtain the relation

By virtue of lemma 2, this equality implies

= gϊ fy ^τ-^ιrΓ e~ivψdf>*(& = Γ„— m l _ ^ J _ f f J_

i.e.

p;uy)dρΦ(φ) = 0,Γ (Λf(
J — w

where ^φ(^) is the function associated to Φ(z) with {Γυ} as its coefficient-point.
Now, the difference M(u) — 9tS(φ; u) becomes never negative and vanishes only
for <p = <fj O' = l, •••, p). On the other hand, p(<ρ) is an increasing function
with the total variation equal to unity. Hence the last equation holds if and
only if dρΦ(φ) = Q except at φ = <f>j (j = 1, •••, p) where pφ(ψ) possesses jumps
with the heights λ3, respectively, λ3 being any constants with λ3 ̂  0 and
Σ?-ϊ λ3 = 1. Consequently, the coordinates {ΐv} of a boundary point of $ and
its corresponding function Φ(z) are given by
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?» = ,*y-j] λje~iv^ (- m g v ̂  n, v ̂  0),
J. (/ .7=1

and

Φ(«)=g^Φ*(«e"^),

respectively, where

^ ̂  0 (j = 1, , p; 1 g p ̂  % + m), Σ Λ ? = 1, - π < ψi < < φp ̂  TT.

Conversely, for any (Λ, ,̂ p) satisfying the requirements just above, we have
to prove that the point P with the coordinates {Tv} of the last-mentioned
form is a boundary point of ®. Evidently, P belongs to ff as a coefficient-
point of Φ(z) e 9?β. Moreover, we shall show that P is contained in a sup-
porting hyrerplane of (£, i.e. that of ®. For this purpose, we fill up the
sequence {̂ }J-ι to an arbitrary wider sequence {<pj}"-T such that it consists
of n + m different values. Every hyperplane through n + m points

= fy m)

always contains P. By a system of 2(n + m) linear equations
•n O n O

Σft Σ' ^—~~2y e"'"50-7' - d = 0, 3 Σ' m, — ~-ϊv-e~iv9ι = 0

we can determine the ratio of n-i-m + l values uv (~ m ^v^ί n, v^O) and
cZ^O. Then the equation

n

Π 5)? Vx -ί/ v — r/• v l / i IΛ/vΛ/v — \λ/

represents a tangent hyperplane of (£ through n + m points C(φj). On the
hand, the trigonometric polynomial defined by

has at most 2(n + wi) irreducible zero-points, uv and d being the constants
determined above. The above system of 2(n + m) linear equations assures

T(ψί) = 0, ^-T(φj) = 0 (j = 1, - - -, n + m).

Hence, every ^ is an at least double zero of T(φ). Thus, since d^O, we
have T(φ)^0 throughout —π<<f>^π, that is, Π is a supporting hyperplane of
(£ containing P. Now, we have to prove the uniqueness of the representation
of {Yv} e D in the form stated in the theorem. Suppose that a point {Yv} is
expressed in that form by (λ, φ, p) and (μ, ψ, q), respectively. Namely, let
the equality
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holds identically with respect to z. Comparing the poles of both sides of the
equation together with their residues, we readily conclude that

W, ψ, P) ΞΞ OK, ψ, q).

We finally determine the representation of any interior point P = {cv} e ®.
In case P = 0, i.e. cv — 0 (Φ(z) = 1), we have p = 0 which corresponds to the
vacuous sum. In case P^O, the ray OP issuing from 0 intersects the
boundary O of β at a single point, Q e D say. According to the representa-
tion of boundary point, let Q — {ϊv} be expressed by

2 E, _ z υ -P,

Consequently, putting

~ϋςf=τ

we see that P is expressed by

The uniqueness of the representation of the interior point P in this form
follows from that of the boundary point Q already established. Thus the
proof of theorem 1 has been completed.

In theorem 1, we have observed the n + m-dimensional coefficient-point
of the form

P1W[Φ] - {<?„; v = - m, - , -1, 1, - - , n}.

We could, however, consider more generally the point of the form

£pjv[Φ] = {cv\ v — Vi, v2, , Vι}

where JV={ι^}Lι is any assigned increasing sequence of integers, negative
or positive. Let JC = JGv denote the variability-region consisting of such
5fr[$] for Φ(z) e 9tα. Theorem 1 can be generalized by means of readily
comprehensible modifications. Here we mention, as an example, a result for
the most particular case; cf. [4],

COROLLARY. The Laurent coefficient of Φ(z) e $tq are estimated by

For any assigned a the equation

holds if and only if Φ(z) is of the form
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Proof. Though this is a particular case of theorem 1, it can be proved
directly and very briefly. In fact, by means of the representation stated in
lemma 2, we get

(n*ΰ).

In order to show the last part of corollary, we have only to notice that an
extremal Φ(z) is characterized by dpΦ(φ) = Q except for values of φ such that

nφ = a (mod 2τr), i.e. φ = (a + 2jπ)/n (j — 1, 2, , | n |).

For later purpose, it will become necessary to consider a class closely
related to 9ϊg. Namely, let 3V = {?T(z)} be the class of analytic functions Ψ(z)
such that ¥(q/z) e 3V A result on 3V analogous to theorem 1 can be readily
obtained. For the purpose, let Laurent expansion of a function Ψ(z) e 9V be

Ψ(z) = 1 + Σ' c/3" to < I z l < 1).

Corresponding to the point C(φ) of Φ*(ze~lφ) e ̂ , we observe the coefficient-
point of the function Ψ*(ze~%9) e SI/:

-lί')] - ί- ---qV

2- e-iv*; - m ̂  v ̂  n, v * OJ,
L 1 — Q v J

φ being a real parameter. Let & denote the locus of Cf(φ) when φ varies
from — π to π:

THEOREM 2. Let Kr = KflίLm denote the variability-region consisting of
all possible coefficient-points P = Pϋ^E^Π = {cv'; —m^v^n, v ^F 0} when Ψ(z)
extends over the class 3V Let $' = R'*Lm denote the smallest closed convex
hull which contains (£'. Then, we have

377 e>/x\. — ot .

Any point P = {cv'} e ff' can be expressed in the form
OΛV P'

cv

f = --VΣΛA-^ ' (-m£»£n,»*0);1 - qz» .7=1

The representation of coefficients in this form is unique. The boundary
O/ = O/ϋm of $' is characterized by Σ?=3^/ —1 ana every point of D' is at-
tained only by a function of the form

&
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where {A/}, {<f/} and pf correspond uniquely to any assigned point of D'.

Proof. For any function ¥(z)^$tq' with the Laurent coefficients {c/},
the integral representations corresponding to those of $tq in lemmas 1 and
2 become

Ψ(z) = ['
J -*

C f _
v —

- q

where τ(φ) = τψ(φ) is a real-valued function associated to ¥(z) satisfying the
conditions

and Γ dτ(φ) = l.
J -π

Making use of these representations, we can prove the present theorem quite
similarly as theorem 1.

4. The limit case 9Ϊ0

The classical theorem due to Caratheodory may be regarded as a limit
case of theorem 1 as g-»0. In fact, let

be a function from 9Ϊ0 with the coefficient-point

p = P?[0] = {c v;l^v

For the class 9ΐ0, the linear function

1 — z

which maps the unit circle onto the right half-plane plays a distinguished
role. Let the coefficient-point of Φ0*(ze~τφ) be defined by

C(φ) = {2e~ίvφ; l^v^n},

φ being a real parameter, and the curve (£ defined by

Then Caratheodory's theorem may be re-stated as below. Here we shall give
an alternative proof based on analogues for ίR0 of lemmas 1 and 2.

THEOREM 3. Let K=K? denote the variablility-region consisting of all
possible coefficient-points P = P?[Φ] = {cv} when Φ(z) extends over the class
9?o Let $ = &ι denote the smallest closed convex hull which contains (L
Then, we have
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Any point P = {cv} e ft ccw 6β expressed in the form

representation of coefficients in this form is unique. The boundary

O = D? of & is characterized by 2^=1^ = 1 ana every point of O is at-
tained by the rational function of the form

where {/^}, {ψ3} and p correspond uniquely to any assigned point of O.

Proof. Lemma 1 for 3tq is to be replaced for 9?0 by a classical repre-
sentation due to Herglotz. Accordingly, we have only to make use of the

linear function Φ0*(z) instead of the kernel Φ*(z) in case of $tq.

5. The class $tq.

We now proceed to consider the extended class &q. The previous classes

3tq and ̂  are involved in $tq as subclasses. However, it will be seen that

these subclasses play distinguished roles in the following discussions.

THEOREM 4. Let K=K-m denote the variability-region consisting of all

possible coefficient-points P = P_m[0] = {cv; —m^v^n, ι^0} when Φ(z) ex-
tends over the class $tq. Let ff - β" OT denote the point set consisting of all

the points P ^Λic/i are of the form P = P + Pr wίίfc P e ft aτιcί Pr e ̂ ;.

point P — {cy} e ft ca^ δe expressed in the form

"^ (- m ̂  ̂  w, ̂  0);

V>00' = 1, •••, 1)'; O^p'^w + m), ΣV^l, - π < γV< - •< ̂ ^ π.
3= ί

The representation of coefficients in this form is unique. The boundary

0 = 0-™ of ft is characterized by Σ?-ι^ = Σ15-ι^/==l a^ evert/ poinί o/ O
is attained only by a function of the form

Φ(z) = f>λjΦ*(ze-l*J) + Σλ,'Ψ*(ze-**f) - 1,
3=1 J=l

where {λ3}, {λ/}, {<ρ3}, {ψ/}, P and pf correspond uniquely to any assigned
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point of D.

Proof. Since the sets ft and ft7 are both closed and convex, the set ft is

also closed and convex. The set ft coincides with the smallest closed convex

hull which contains the set (£ = {C} is defined by

(£ = {C = C(φ) + CV); C(φ) e 6, G'(φ') e β7}.

On the other hand, based on the definition of $tq, the set j£ is closed and

convex. Since, for any φ and φf', C = C(^) + G'(φf) is the coefficient-point of

Φ(z) = Φ*(ze-tφ)+¥*(ze-lφΊ—lG&q we have OeJBT, whence follows dcj£.
Therefore, we conclude that

Let Π denote the supporting hyperplane of ft through a given point {ΐv} e D.
Let the equation of Π be

Π: ft Σ7 uv(zv-rv) = o,

where the complex constants uv are supposed to satisfy the normalizations

Σ7 I uv I 2 = 1 and 3t Σ7 ujv ^ 0.
ι> = —m v = —m

Since the left-hand member of the equation of Π is non-positive at the

origin 0 e ft, we see that ft belongs to its non-positive region. For any
point P = {cv} e ft, there exist some points P = {cv} e ft and P7 = {cv'} e ft7

such that P = P + P7. Since {TΊ,} lies on Π, and P and P7 extend independently
over ft and ft7, respctively, we obtain

Now, put
n n n n

JVLaX Jv / i Ίt/vCv -— vt / i ILvivf JMaX Jt / ι 1λ/vCv

 == Jί / ι ΊlvTv .

Since ft and ft7 are both closed, we get
n Λ n n

ft T17 u TV =ft y17 Uvϊv -\- 9ϊ yy uvTvf° {ϊΛ ^ ft {TV'} ^ ft'

The equations

Π ro V17 u (9 Ύ \ — Π TT' ^ V r u (y — r '} — 0. t/l / i UH>\ΛV — I v) — ", J-± . t/L / i lλjv\άv — / v ) — V,

represent supporting hyperplanes of ft and ft7 through the points {Yv} and
{Γ/}, respectively. We see that ft and ft7 belongs to the non-positive regions
of the equations of Π and Π7, respectively. In particular, we have

n / O \ n / f)nv \
V/ oi ( ~ />-»*?> _r » < Π TO V7 *' i - fSL. *-«»?> _y..M<;0.^_J

v ~—m
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Consequently, in view of the representation given in lemma 4, any point
p = {cv} e K satisfies

= — m
Σ' u*(cv - f.) = 5R Σ' tt*(& - (fv + TV))

v = — m

Σ'
2>— (Γ / J-f f » = -™ V I — Q

This shows that any point P e K belongs to $, i.e.

Thus, it has been verified that K coincides with R.
Now, for any given point {ΐv} e 0, we consider the functions defined by

y = — m 1 — Q

uv being the coefficients of the equation of the supporting hyperplane Π at

{Tv} introduced above, and put

M(u) = Max 9tS(φ; u\ N(u) = Max 3tT(φ; u).
-π<ψ^π -π<φ^,π

Let further

ψj = ψjW (J = 1, , ί>; l^P^n + m),

ψ/ = Ψ/M (i = 1, •» P' > l^p'^n + m)

denote the values for which the maxima M(u) and N(u) are attained, respec-

tively; both integers p and pf not exceeding n + m may depend on {ΐv}. By
means of the formula given in lemma 4, we get

M(u) + N(u) = Max 9ΐ Σ' ^vCv + Max 3t Σ7 %.c/ = 31 Σ7 ^yf v
Pe^ v = — m P'Gβ' v = — »z v = — m

= Γ * Σ' M»Γ^-e-I»^,(v)+ Γ 9ί Σ' tt.f^Γβ-'ίτ .̂ )
J _ » v -- m \ — q'" J_, » -- <n 1 — g"

- (" %S(ψ; u)dpΦ(ψ)+ (' *StT(ψ; u)dτφ(φ),
J -π J — JT

i.e.

= 0,

where pφ(φ) and τΦ(φ) are functions associated to Φ(z) with {Γv} as its coeffi-
cient-point. The differences M(u) — $tS(<f>; u) and N(u) — ̂ iT(ψ\ u) become never
negative and vanish only at <p = <f3 (j = 1, ••, p) and φ — ψj' C? = l, •••, ^0,
respectively. On the other hand, p(φ) and τ(φ) are both increasing functions
with the total variation equal to unity. Hence the last equation holds if
and only if dρΦ(φ) = Q except at φ = ψj 0" = 1, •• , p) and dτΦ(φ) = 0 except at
ψ — ψ/ U — 1> » P') where pφ(ψ) and τφ(0 possess the jumps with the heights
λ3 and λ/, respectively, λ3 and λ}' being any constants with λ3 ̂  0, λ/ ^ 0,
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Σ£ ι Λ j = l and Σ£ ι Λ / = l. Consequently, the coordinates {fv} of a boundary
point of ff and its corresponding function Φ(z) are expressed by

and

3=1

respectively, where

Λ / ^ 0 O' = l, ••-, p'; 1 £ p' ̂  % + m), ΣΛ/ = 1> -

Conversely, as shown in theorem 1, for any (λ, φ, p) satisfying the require-
ments just above, we can determine a boundary point P of $ with the
coordinates

Let the equation of a supporting hyperplane of ff through the point P
= {M be

Π: SR f]' ^vfe - Λ,) = 0; Σr I ^v I 2 = 1, ^ Σr ^vΓv ̂  0,

where the values {uv} depend on φ} (j = l, •••, p). We then observe the tri-
gonometric polynomial defined by

and put
) = Max $tT(Φ; u).

Let the maximum N(u) be attained for

ψj' = <f/(u) (3 = 1, - , p'; l^p'^n + m).

As shown in theorem 2, for these values φ/ 0" = 1, •••, Pr) and any {/ί/} with
Λ/^0, Σί-iV — l' we can determine a boundary point P' of $' with the
coordinates

1 — ^
Further, the equation

Πx: 31 Σ7 (
v = — m

represents the supporting hyperplane of $' through the point P' which is
parallel to II. Consequently, we obtain a point

P = P + P e ft
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with the coordidates {ϊv} = {ΐv -f Γ/} of the form stated in the theorem. It
remains to prove that the point P is a boundary point of k. For this pur-
pose, we observe the hyperplane Π through the point P which is parallel to
Π and IP, i.e.

A n A

Now, in view of lemma 4, for any point Ql = {cv}<^& we have
n Λ n

ft y" UV(G T ) = ft y n (c (T + f o)
v——m ι> = —m

Γπ τ» / O \ Γπ n / 2^υ \

i
ff Γπ

(?ftS(φ; u) — M(u)) dp(φ) + I (ft T(φ; u) — N(u)} dτ(φ) ^ 0.

Thus, Π is a supporting hyperplane of $ and hence P lies on the boundary
of K. The uniqueness of the representation of a boundary point {Tv} and of
the distinguished representation of an interior point can be verified quite
similarly as in the proof of theorem 1. Thus, the proof of the present
theorem has been completed.

A remark similar to that mentioned subsequently to theorem 1 is valid
here also. In particular, we* can state the following corollary corresponding
to the most simple case.

COROLLARY. The Laurent coefficients of Φ(z) e ft^ are estimated by

For any assigned a, the equation

l-qn

holds if and only if Φ(z) is of the form

Proof. Based on the representation stated in lemma 4, we get

In order to show the last part of the corollary, we have only to notice that
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an extremal Φ(z) is characterized by dp(φ) = 0 and dτ(ψ) = 0 except for values
of ψ such that

nφ = a (mod 2π) i.e. φ = (α: + 2jπ)/n
and

nψ~a — π (mod 2ττ) i.e. ^ = (or + (2,7 — l)π)/n

(j = l,2, •••, |n I),
respectively.

Throughout the present paper we have considered the annulus q < 1 2 1< 1
as the basic domain. However, we could take instead the annulus V Q < 1 z 1
< 1/V ^ as a basic domain. Then, the functions

F(z) = Φ(J~qz) and G(z) = ¥(<J~qz)

would take place of Φ(z) and Ψ(z), respectively. The relation Ψ(z) — Φ(q/z)
implies that they are connected by G(z) = F(l/z). In particular, the Laurent
expansion of the distinguished functions corresponding Φ*(z) and Ψ*(z) then
become

F*(z> Ξ= Φ*(V7^) - 1 + ίr --^ί* ( V? < i * ι < 7v = _oo 1 — (̂  V V

and

r ~~V

Comparison of these expansions with those of Φ*(z) and ??"*(«) shows formally
a rather symmetry character.
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