A NOTE ON THE ENTROPY
OF A CONTINUOUS DISTRIBUTION

By HiroHISA HATORI

1. The uniqueness of the expression H= —>'p, log p. for the entropy of
a discrete distribution has been discussed by Shannon [4] and Khintchin [2].
Goldman [1] has given an explanation of the entropy

H= ([ fn o w0 log Fla, -, w)doy--de,

of a continuous distribution on the basis of the discrete case. On the other
hand Reich [38] has derived directly the expression for the information
rate of a continuous distribution from some postulates. In this short paper
we shall try to give another explanation of the entropy of a continuous
distribution which is rather similar to the one in the discrete case.

2. Let f(xi, -+, ®,) denote the probability density function of the joint
distribution of random variables X, ---, X,. And we set

PosTULATE 1. The entropy H(X,, -+, X,) of (Xi, ---, X,) is determined
by f alone.

Owing to this postulate we shall denote H(X,, ---, X,) as H(f).

Secondly, let gs(xi, ---, 2,) denote the probability density function of the
uniform distribution on a subset S with finite positive measure of the =n-
dimensional Euclidean space E,.

PosTULATE II. If f 4s the probability density function of an n-dimen-
stonal distribution where f=gs(a.e.) and car.(f)C S, then H(f)< H(gs).

Let ¢(xy, -+, xx) be the probability density function of the radom variable
A=(Xy, -+, Xp) and ¢z, ..., 2, (%1, -+, @) be the conditional probability den-
sity funection of the random variable B= (Xi,1, -+, X,) under the condition
Xi=2 -+, Xp=u:. We set

PosTULATE III. H(AB)=H(A)+ H,(B),
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H(f)=H($)+ SL H(Yo,, ..., a)p(@1, - - -, @k) dwye + - Al
3

Lastly we make the following assumption:

PosTuLATE IV. If f takes the finitely many values ci, ---, ¢s and
Mu:S---SA dwl...dxn fO'r V:]-,"',S,
where A, = {(%1, -+, 2.); f(@1, -++, ) =c¢.}, then H(f) is the function of the
variables ¢y, ---, ¢ and py, -+, M only, and does not depend on the dimen-

ston number n, where >i_1c.u, =1,

This postulate shows that the entropy is invariant by relabelling the
states or the transform preserving the probability measure. In the following,
we shall use this postulate in the case s=2 only, i. e. where f is the pro-
bability density function of a uniform distribution. However the independence
of the dimension number » will play an important role in the sequel.

3. THEOREM. Under the postulates 1, 11, III, IV, we have

n

(1) H(f):“zj‘”'j f(xly"'y xn)logf(wly"'y xn)dxl"'dxn
En
where A 1s a positive constant.

Proof. In the first place we consider the case f=gs where gs is the
probability density function of the uniform distribution on the measurable
subset S of E,. Since

—1
gs(xl, e, xn): {p:<J...5SdW1-..dxn> on Sy

0 otherwise,

we find by Postulate IV that H(gs) is a function of p only and does not depend
on the shape and the position of S and the dimension number 7 of the space
in which S is lying. Let L(p) denote this function H(gs) of ». From Postu-
late II we get easily that

(2) L(p)< L(p) for p>p'.
To investigate the character of L(p), we consider the probability density
function gp(xy, -+, 2,) of the uniform distribution on the r-dimensional direct

set D=0, 1/p1%x---x[0,1/p]. Since
p" on D,

z PR r) = .
go(@: @) {O otherwise,

we have H(gp) = L(p"). On the other hand, it is easily verified, by Postulate
III, that
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H(ABC---)=H(A)+ HB)+ HC)+---,

where A, B, C, --- are mutually independent random variables. Therefore,
noting that every marginal distribution of the uniform distribution on D is
the uniform distribution on the interval [0, 1/p], we have

H(gp) = H(go,1p1) + H(gro,1/07) + +++
= rH(gro,1/p1) = rL(p).

Consequently, we have

(3) L(p") =rL(p) for r=1,2,.--.
Since L(1)=rL(1) in the case p=1, we get
(4) L1)=0.

Similarly we have

1 on D/
0 otherwise,

9pr(%1, %) = {

where gp-(®;, x;) is the probability density function of the uniform distribu-
tion on the two-dimensional direct set D’=[0, p] X [0, 1/p] and both of its
marginal distributions are the uniform distributions on [0, p] and [0, 1/p],
respectively. Therefore, we have H(gp/) = H(go,p1) + H(g10,1/07) or L(1) = L(p)
+ L(1/p). Since L(p™*)= — L(p) by this relation and (4), we have, by
using (3),

(5) L(p™)=L({(p~")")=rL(p™") = — rL(p),
where 7 is a positive integer. The relations (4) and (56) show that (8) is suffi-
cient also for r=0, —1, —2, ---. For an arbitrary number p >0, a fixed

number ¢ >1 and an arbitrary positive integer r», we can find an integer s
such that ¢ < p" < ¢**. Then we have

sL(g) = rL(p) > (s + 1)L(g).
Since L(q)< L(1)=0, we have

L) _ s 71
L(q) < +

Similarly, by the property of logarithmic function, we get

(6) L A0

log » s 1
7 S s L
(7) . lc)gq<,r+r.

IA

From (6) and (7), we have

L) _logp|

;——————_

I L(q) logq‘ e

Since 7 can be chosen arbitrarily large, we get L(p)/log p = L(q)/log q, which
means that

(8) L(p)=—4logp
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where 4= — L(g)/log ¢ is a constant. By (2), we have 1>0.

Now we shall consider the more general case, where f is the probability
density function of an n-dimensoinal distribution. Taking the random vari-
ables X, ---, X,,1 whose joint distribution is the uniform distribution on
the subset

EE {(xh “t Yy xn+1); 0 é Lnit éf(xlv Tty xn)}
of E,,1,'we find for its probability density function that

1 on E,

5@y s Tni)) = {0 otherwise,

because

S... j dwl...dxn“ :j S‘ f(xl, cee, x")dxl...dxn:L
B B,

Then we have

(9) H(X,, -+, Xn.1)=H(gs) = L1)=0.
Since the conditional probability distribution of X,,; under the condition
Xi=w, -, X, =2, is the uniform distribution on the interval [0, f(x, -,

*,)], we get by (8) that
HX];...,Xn(Xn»rl)—S 5EnL<f(x1, L m) )f(xl, , Tp)dxy - -dx,

=2 | S mlog S, e, @ duda,
Eﬂ

By Postulate III, i. e.
H(X,, -+, Xau) =H(X,, -+, Xp) + Hy,, ..., x,(Xni1)

and (9), the relation
(10) H(XI’ Sty Xn)= _HX1,~--,X"(X7L+1)

is obtained and this means that
H(f) = —2 g‘ ces 5 f(wl, CER wn) logf(wh cee, xn)dxl. . .dxn
J B,

which was to be proved, since the probability density function of the random
variables (Xi, -+, X,) is clearly f(xy, « -+, ®,).

In conclusion, the author expresses his sincerest thanks to Prof. K.
Kunisawa who has suggested this investigation and given valuable advice.
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