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1. The uniqueness of the expression H— — Σίλ, log p» for the entropy of
a discrete distribution has been discussed by Shannon [4] and Khintchin [2].
Goldman [1] has given an explanation of the entropy

= — I •

of a continuous distribution on the basis of the discrete case. On the other
hand Reich [3] has derived directly the expression for the information
rate of a continuous distribution from some postulates. In this short paper
we shall try to give another explanation of the entropy of a continuous
distribution which is rather similar to the one in the discrete case.

2. Let /(#ι, •••, xn) denote the probability density function of the joint
distribution of random variables -XΊ, •••, Xn. And we set

POSTULATE I. The entropy H(Xlf , Xn) of (Xlt , Xn) is determined
by f alone.

Owing to this postulate we shall denote H(Xίf •••, Xn) as H(f).

Secondly, let gs(xι, •••, Xn) denote the probability density function of the
uniform distribution on a subset S with finite positive measure of the n-
dimensional Euclidean space En.

POSTULATE II. If f is the probability density function of an n-dimen-
sional distribution where /^flte(α.e.) and car. (f) c S, then H(f)<H(gs).

Let φ(xι, •• ,Xk) be the probability density function of the radom variable
A = (Xι, •••, Xk) and Ψxί,...,χk(Xk+ι, •••, xn) be the conditional probability den-
sity function of the random variable B = (Xk+1, ••-, Xn) under the condition
Xi = xι, , Xk - Xk. We set

POSTULATE III. H(AB) = H(A) + HA(B),

Received October 30, 1958.

172



ENTOROPY OF CONTINUOUS DISTRIBUTION 173

i. e.

H(f) = H(φ)+\ ••• { H(ψXl,...)Xk)φ(xlf •••, xk)dxr dXn.
J J^

Lastly we make the following assumption:

POSTULATE IV. I f f takes the finitely many values cίt •••, cs and

μv = \ ... I dxί dxn for v = l, , s,
J JA»

where Av = {(Xi, , xn)°, f(xι, , #«) = £*}, £/&eft #(/) ^s £/&e function of the
variables ci, •••, cs and μ^ •••, μs only, and does not depend on the dimen-
sion number n, where Sί-ic,,//., = 1.

This postulate shows that the entropy is invariant by relabelling the
states or the transform preserving the probability measure. In the following,
we shall use this postulate in the case s = 2 only, i. e. where / is the pro-
bability density function of a uniform distribution. However the independence
of the dimension number n will play an important role in the sequel.

3. THEOREM. Under the postulates I, II, III, IV, we have

Γ Γ

where λ is a positive constant.

Proof. In the first place we consider the case f=gs where gs is the
probability density function of the uniform distribution on the measurable
subset S of En. Since

on S,

we find by Postulate IV that H(gs) is a function of p only and does not depend
on the shape and the position of S and the dimension number n of the space
in which S is lying. Let L(p) denote this function H(gs) of p. From Postu-
late II we get easily that

(2) L(p)<L(p') for p>p'.

To investigate the character of L(p), we consider the probability density
function gD(xι, •••,#!•) of the uniform distribution on the r-dimensional direct
set D = [0, 1/p] X - X [0, 1/p]. Since

jf °^A .0 otherwise,

we have H(gD) = L(pr). On the other hand, it is easily verified, by Postulate
III, that
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where A, B, C, ••• are mutually independent random variables. Therefore,
noting that every marginal distribution of the uniform distribution on D is
the uniform distribution on the interval [0, 1/p], we have

H(gD) = £Γ(flf co.i/P]) + #(0[o,iΛ>]) H

Consequently, we have

(3) L(pr) = τL(p) for r = 1, 2,

Since L(l) — rL(l) in the case p = 1, we get

(4)

Similarly we have

1 on D'
otherwise,-{.

where gD'(%ι, #2) is the probability density function of the uniform distribu-
tion on the two-dimensional direct set D' ~ [0, p~\ X [0, 1/p] and both of its
marginal distributions are the uniform distributions on [0, p] and [0,
respectively. Therefore, we have H(gD>) = H(gio,Pi) + H(gio,i/Pi) or L(l) =
+ L(l/#). Since L(p~1)=—L(p) by this relation and (4), we have, by
using (3),

( 5 ) L(jr') - LίdΓ1)") - rLQr1) - - rL(p),

where r is a positive integer. The relations (4) and (5) show that (3) is suffi-
cient also for r = 0, — 1, — 2, . For an arbitrary number p > 0, a fixed
number <? > 1 and an arbitrary positive integer r, we can find an integer s
such that qs^pr<qs+1. Then we have

Since L(#) < L(l) = 0, we have

< -- — .
r = L(q) r ' r

Similarly, by the property of logarithmic function, we get

(7) s ^ logp < s -f- 1
^ = log q r r'

From (6) and (7), we have

L(p) _ logp
L(q) log q

Since r can be chosen arbitrarily large, we get L(p)/log p = L(q)/log q, which
means that

(8) L(p)=-λlogp
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where λ=— L(q)/\og q is a constant. By (2), we have λ > 0.
Now we shall consider the more general case, where / is the probability

density function of an %-dimensoinal distribution. Taking the random vari-
ables Xι, ,Xn+ί whose joint distribution is the uniform distribution on
the subset

E Ξ {(α?lf , xn+ί)', 0 ̂  xn+ί ^,f(xι, , Xn)}

of .En+i,'we find for its probability density function that

on E,
0 otherwise,

because

,-,*n + 1)-{0

••• dXί dXn+i = I ••• -, a?n)cίa?ι dί»n = 1.

Then we have

( 9 ) H(Xl9 , -yn+ι) = flto*) - L(l) - 0.

Since the conditional probability distribution of Xn+ι under the condition
Xι = Xι, •••, Xn = Xn is the uniform distribution on the interval [0, f(xι, •••,
»n)], we get by (8) that

i f / 1 λ• I L( — ----------------- .- )/(α?ι, , xnJ^n V /(ίCl, * ' , Xn) /

= λ \ f ( x l f •••, a?»)log/(α?ι, •••, α
J j E n

By Postulate III, i. e.

H(Xι, , Xn+ι) = H(Xiy , -3ΓW) + Hχί)...iχn(Xn+ι)

and (9), the relation

(10) fΓCXi, ••-, -X n)=-ffχ l f..,zn(-X»+ι)

is obtained and this means that

H(f)= - Λ l f /(a?ι, ••-, αw)log/(a?ι, •••, xn)dxι dxn

which was to be proved, since the probability density function of the random
variables (Xί9 •••, Xn) is clearly /(a?ι, •••, xn).

In conclusion, the author expresses his sincerest thanks to Prof. K.
Kunisawa who has suggested this investigation and given valuable advice.
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