A NOTE ON THE CROSS-NORM OF THE DIRECT PRODUCT OF OPERATOR ALGEBRA

By MASAMICHI TAKESAKI

In [2], T. Turumaru introduced the idea of the direct product of operator algebras in the following sense. Let M_1 and M_2 be C*-algebras and $M_1 \odot M_2$ their algebraic direct product. Then we define a cross-norm α on $M_1 \odot M_2$ as follows:

$$\alpha\Big(\sum_{i=1}^{n} x_i \otimes y_i\Big) = \sup\left\{\frac{<\left(\sum_{j=1}^{m} a_j^* \otimes b_j^*\right)\left(\sum_{i=1}^{n} x_i^* \otimes y_i^*\right)\left(\sum_{i=1}^{n} x_i \otimes y_i\right)\left(\sum_{j=1}^{m} a_j \otimes b_j\right), \varphi \otimes \psi >}{<\left(\sum_{j=1}^{m} a_j^* \otimes b_j^*\right)\left(\sum_{j=1}^{m} a_j \otimes b_j\right), \varphi \otimes \psi >}\right\}^{1/2}$$

for any element $\sum_{i=1}^{n} x_i \otimes y_i \in M_1 \odot M_2$, where $\sum_{j=1}^{m} a_j \otimes b_j$ runs over the all non-zero elements of $M_1 \odot M_2$ and φ , ψ the all non-zero positive linear functionals on M_1 and M_2 respectively. $M_1 \odot M_2$ becomes an incomplete C^* -algebra under this cross-norm α . We call the completion of $M_1 \odot M_2$ the C^* -direct product of M_1 and M_2 and denote by $M_1 \widehat{\otimes}_{\alpha} M_2$.

The purpose of this note is to study the relation between the α -norm defined above and λ -norm or γ -norm in the sense of R. Schatten [1].

Let M be a C^* -algebra with a unit and \mathfrak{S} the state space of M, then \mathfrak{S} is the $\sigma(M^*, M)$ -convex closure of the space of all pure states on M. So we call the $\sigma(M^*, M)$ -closure of the space of all pure states on M the pure state space of M.

PROPOSITION 1. Let M_1 and M_2 be C*-algebras with units, M their C*direct product and Ω_1 , Ω_2 , and Ω the pure state spaces of M_1 , M_2 and Mrespectively. Then we have

$$\mathcal{Q} = \mathcal{Q}_1 \times \mathcal{Q}_2$$

if and only if either M_1 or M_2 is commutative, where $\Omega_1 \times \Omega_2$ means the cartesian product of Ω_1 and Ω_2 .

Proof. Sufficiency. If M_1 is commutative, then $M_1 \otimes 1$ is contained in the center Z of M. Let τ be a pure state on M, then we have $\langle ax, \tau \rangle = \langle a, \tau \rangle \langle x, \tau \rangle$ for all $a \in Z$ and $x \in M$. If we define a linear functional σ on M_1 such as

Received September 18, 1958.

$$\langle x, \sigma \rangle = \langle x \otimes 1, \tau \rangle$$
 for $x \in M_1$,

then σ is a pure state on M_1 by the multiplicativity of τ on Z. Next we define a linear functional ρ on M_2 such as

$$<\!y,\,
ho\!>\,=\,<\!\!1\!\otimes\!y,\,
ho\!>\,$$
 for $y\!\in\!M_2,$

then ρ is a state on M_2 and $\tau = \sigma \otimes \rho$. Suppose there exist two states ρ' , ρ'' on M_2 such as $\rho = (1/2)(\rho' + \rho'')$. Put $\tau' = \sigma \otimes \rho'$ and $\tau = \sigma \otimes \rho''$, then $\tau = (1/2)(\tau' + \tau'')$. Since τ is a pure state on M, we get $\tau = \tau' = \tau''$. We have

$$<\!\!y,\,
ho\!\!>\,=\,<\!\!1\!\otimes\!y,\, au\!\!>\,=\,<\!\!1\!\otimes\!y,\, au'\!\!>\,=\,<\!\!y,\,
ho'\!\!>\,=\,<\!\!y,\,
ho''\!\!>\,,$$

i.e. ρ is a pure state on M_2 .

On the other hand, for any pure states σ on M_1 and ρ on M_2 , $\tau = \sigma \otimes \rho$ is clearly a pure state on M.

Combinning these arguments, the dense part of $\Omega_1 \times \Omega_2$ coincides with the dense part of Ω . Moreover, the mapping $(f, g) \rightarrow f \otimes g$ from $M_1^* \times M_2^*$ into M^* is weakly continuous, where the space $M_1^* \times M_2^*$ has the cartesian product topology of $\sigma(M_1^*, M_1)$ and $\sigma(M_2^*, M_2)$ -topologies. Hence we get $\Omega = \Omega_1 \times \Omega_2$.

Necessity. If M_1 and M_2 are both non-commutative, then there exist pure states σ and ρ on M_1 and M_2 respectively such that the Hilbert spaces H_{σ} and H_{ρ} canonically constructed by σ and ρ respectively are at least twodimensional. Put $\tau = \sigma \otimes \rho$, then we have $H_{\tau} = H_{\sigma} \otimes H_{\rho}$, where H_{τ} is the Hilbert space canonically constructed by τ . For canonical representation π_{σ} , π_{ρ} and π_{τ} by σ , ρ and τ , put $\pi_{\sigma}(M_1) = M_{1\sigma}$, $\pi_{\rho}(M_2) = M_{2\rho}$ and $\pi_{\tau}(M) = M_{\tau}$ then we get $M_{\tau} = M_{1\sigma} \otimes_{\alpha} M_{2\rho}$. Now for an arbitrary vector $\zeta \in H_{\tau}$ with $||\zeta|| = 1$, we define a state ω_{ζ} on M_{τ} such as $\langle z, \omega_{\zeta} \rangle = (z\zeta, \zeta)$ for $z \in M_{\tau}$. Then ${}^{t}\pi_{\tau}(\omega_{\zeta})$ is a pure state on M. If ζ is not representable by the form $\xi \otimes \eta$ for any $\xi \in H_{\sigma}$ and $\eta \in H_{\rho}$, then ω_{ζ} is not multiplicative with respect to $M_{1\sigma}$ and $M_{2\rho}$. Hence we get ${}^{t}\pi_2(\omega_{\zeta}) \notin \Omega_1 \times \Omega_2$. And surely there exists such vector ζ of H_{τ} by the hypothesis on H_{σ} and H_{ρ} . We get $\Omega \oplus \Omega_1 \times \Omega_2$. This concludes the proof.

Applying this proposition we can prove the following proposition about the cross norm of C^* -direct product of C^* -algebras.

PROPOSITION 2. Let M_1 and M_2 be two C*-algebras with units respectively. Then the C*-norm α of their C*-direct product $M = M_1 \bigotimes_{\alpha} M_2$ coincides with λ -norm if and only if either M_1 or M_2 is commutative.

Proof. Sufficiency. We assume the commutativity of M_1 . Let \mathcal{Q}_1 be the pure state space of M_1 , then we have $M_1 = C(\mathcal{Q}_1)$ by the well-known representation theorem of commutative C^* -algebra. For an arbitrary element $\sum_{i=1}^n x_i \otimes y_i \in M_1 \odot M_2$ the M_2 -valued function $\sum_{i=1}^n x_i(t)y_i$ is continuous on \mathcal{Q}_1 , i.e. $\sum_{i=1}^n x_1(\cdot)y_i \in C_{M_2}(\mathcal{Q}_1)$, where $C_{M_2}(\mathcal{Q}_1)$ means the space of all M_2 -valued continuous functions with the uniform norm on \mathcal{Q}_1 . And we get

138

DIRECT PRODUCT OF OPERATOR ALGEBRA

$$egin{aligned} &\left\|\sum_{i=1}^n x_i(\cdot)y_i
ight\| &: t\in \mathcal{Q}_1
ight\} \ &= \sup\left\{\left\|<\sum_{i=1}^n x_i(t)y_i
ight\|, \psi >
ight|; \ t\in \mathcal{Q}_1, \ \psi \in M_2^*, \ \|\psi\| \leq 1
ight\} \ &= \sup\left\{\left\|\sum_{i=1}^n x_i(t) < y_i, \ \psi >
ight\|; \ t\in \mathcal{Q}_1, \ \psi \in M_2^*, \ \|\psi\| \leq 1
ight\} \ &= \sup\left\{\left\|\sum_{i=1}^n < y_i, \ \psi > x_i(\cdot)
ight\|; \ \psi \in M_2^*, \ \|\psi\| \leq 1
ight\} \ &= \sup\left\{\left\|\sum_{i=1}^n < x_i, \ \varphi > < y_i, \ \psi >
ight|; \ \psi \in M_1^*, \ \|\varphi\| \leq 1, \ \psi \in M_2^*, \ \|\psi\| \leq 1
ight\} \ &= lpha\left\{\left\|\sum_{i=1}^n < x_i, \ \varphi > < y_i, \ \psi >
ight|; \ \psi \in M_1^*, \ \|\varphi\| \leq 1, \ \psi \in M_2^*, \ \|\psi\| \leq 1
ight\} \ &= \lambda\left(\sum_{i=1}^n x_i \otimes y_i
ight). \end{aligned}$$

Moreover, if we define a multiplication and a *-operation of $C_{M_2}(\mathcal{Q}_1)$ as follows:

$$(a \cdot b)(t) = a(t)b(t),$$
 $(a)^*(t) = a(t)^*$ for all $a, b \in C_{M_2}(\Omega_1)$

and $t \in \Omega_1$, then $C_{M_2}(\Omega_1)$ becomes a C*-algebra since we have

$$\begin{split} ||a^*a|| &= \sup \left\{ ||(a^*a)(t)||; \ t \in \mathcal{Q}_1 \right\} \\ &= \sup \left\{ ||a^*(t)a(t)||; \ t \in \mathcal{Q}_1 \right\} \\ &= \sup \left\{ ||a(t)||^2; \ t \in \mathcal{Q}_1 \right\} \\ &= \sup \left\{ ||a(t)||; \ t \in \mathcal{Q}_1 \right\}^2 \\ &= ||a||^2 \end{split}$$

for all $a \in C_{M_2}(\Omega_1)$.

Considering the natural correspondence of $\sum_{i=1}^{n} x_i \otimes y_i \in M_1 \widehat{\otimes}_{\lambda} M_2$ and $\sum_{i=1}^{n} x_i(\cdot) y_i \in C_{M_2}(\mathcal{Q}_1)$, $M_1 \widehat{\otimes}_{\lambda} M_2$ becomes a C*-algebra and the totality of linear functionals of the form $\varphi \otimes \psi$, where φ and ψ are positive linear functionals on M_1 and M_2 respectively, is total on $M_1 \widehat{\otimes}_{\lambda} M_2$. Hence we get

$$\begin{split} \lambda\Bigl(\sum_{i=1}^n x_i \otimes y_i\Bigr) &= \sup \left\{ \frac{<\left(\sum_{j=1}^m a_j^* \otimes b_j^*\right) \left(\sum_{i=1}^n x_i^* \otimes y_i^*\right) \left(\sum_{i=1}^n x_i \otimes y_i\right) \left(\sum_{j=1}^m a_j \otimes b_j\right), \ \psi \otimes \psi > \\ <\left(\sum_{j=1}^m a_j^* \otimes b_j^*\right) \left(\sum_{j=1}^m a_j \otimes b_j\right), \ \varphi \otimes \psi > \\ &= \alpha\Bigl(\sum_{i=1}^n x_i \otimes y_i\Bigr) \end{split} \right\}^{1/2}$$

for all $\sum_{i=1}^{n} x_i \otimes y_i \in M_1 \odot M_2$, where $\sum_{j=1}^{m} a_j \otimes b_j$ runs over the all non-zero elements of $M_1 \odot M_2$ and ψ , ψ the all non-zero positive linear functionals on M_1 and M_2 respectively. Therefore we get $\alpha = \lambda$.

Indeed, we have $M_1 \bigotimes_{\lambda} M_2 = C_{M_2}(\Omega_1)$ by the decomposition of identity.

Necessity. We assume $\alpha = \lambda$. Then we have

$$lpha(u) = \sup \{ | < u, f > |; f \in \sum_1 \otimes \sum_2 \}$$
 for all $u \in M$,

139

where \sum_{1} and \sum_{2} are unit spheres of M_{1}^{*} and M_{2}^{*} respectively, and $\sum_{1} \otimes \sum_{2}$ means the totality of $\varphi \otimes \psi$ ($\varphi \in \sum_{1}, \psi \in \sum_{2}$). Hence if \sum is the unit sphere of M^{*} , we get

 $\sum_{1} \otimes \sum_{2})^{\circ \circ} = \sum_{n}$

where $(\sum_{1} \otimes \sum_{2})^{\circ \circ}$ means the bipolar of $\sum_{1} \otimes \sum_{2} \sum_{1} \otimes \sum_{2}$ is $\sigma(M^*, M)$ compact so that all extreme points of \sum belong to $\sum_{1} \otimes \sum_{2}$ by Krein-Milman's Theorem. Hence we have $\mathcal{Q} \subset \sum_{1} \otimes \sum_{2}$, where \mathcal{Q} is the pure state space on M. So the pure state on M is multiplicative with respect to M_1 and M_2 . For a pure state τ on M, put

$$egin{aligned} & < x, \, \sigma > = < x \otimes 1, \, au > \qquad ext{for} \quad x \in M_1, \ & < y, \,
ho > = < 1 \otimes y, \,
ho > \qquad ext{for} \quad y \in M_2, \end{aligned}$$

then σ and ρ are pure states on M_1 and M_2 respectively and $\tau = \sigma \otimes \rho$. That is, we get

$$\Omega = \Omega_1 \times \Omega_2$$

where Ω_2 is the pure state space M_2 . Therefore either M_1 or M_2 is commutative by Proposition 1. This concludes the proof.

References

- [1] SCHATTEN, R., Theory of cross-spaces. Princeton, (1950).
- [2] TURUMARU, T., On the direct product of operator algebras I. Tôhoku Math. Journ. 4 (1954), 242-251.

DEPARTMENT OF MATHEMATICS, Tokyo Institute of Technology.