ON CONFORMAL MAPPING OF A HYPERELLIPTIC
RIEMANN SURFACE ONTO ITSELF

By RyoHEI TsuJi

1.- Let W be a bordered Riemann surface, i.e. a compact subregion of
a Riemann surface, the relative boundary of which consists of a finite
number of closed analytic curves, and & be the group of all conformal
mappings of W onto itself. For given integers ¢ (=0) and k (=1) we put

N(g, k) = max (ord. ).

where ord. 8 means the order of & and the maximum is taken with respect
to all W having the genus ¢ and k& boundary components.

Next, on a closed Riemann surface W of genus ¢, we take k points
D1, *++, Dx and consider the group & of all conformal mappings of the region
W —{py, -, r} onto itself. For given integers g and k, we put

N'(g, k) = max (ord. &),

the maximum being taken with respect to all W of genus g and all sets of

k points py, -+, D EW.

The values of N(0, k) and N’(1, k) have been completely determined by
Heins [1] and Oikawa [4], respectively. An estimation of N(g, k) with
204+k—1=2, g=0 and k=1 has been given by Oikawa [4] as a supple-
ment of Hurwitz’s [8]. Oikawa [5] has further proved that

N(g, k)=N'(g, k)
for any ¢ =0 and £=0 with 29+ k—1=2.

In the present paper, we introduce the quantities of similar nature
N.(g, k) and N,/(g, k)

where the suffix # means that Riemann surfaces are restricted to hyper-

elliptic ones.

By carefully tracing the Oikawa’s proof of N(g, k)= N'(g, k), we can
conclude N,(g, k) = N+/(g, k). Therefore, it is sufficient to investigate N,/(g, k).
For later discussion, we use the symbol N.(g, k) instead of N,/(g, k). It is
to be noted that a surface with g =2 is always hyperelliptic and hence

N2, k) = N2, k).

In the following lines, we shall give a general estimation for N.(g, k)
and then show that its exact value can be obtained in case of g=2.
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2. Let W be a hyperelliptic Riemann surface of genus g (=2) which is
defined by the algebraic equation

29+2

(1) y2=]:1_](w—du), do 5 dy (¥ ).

The normalized differentials of the first kind are

d _ ¥ 1 _
uv—uy dx =1, .-, 9.

Let & be a group of all transformations of W onto itself.

LEMMA 1. A transformation which appears by a projection of T€® to
x-plane 1s an elliptic linear tramsformation unless it is the identity map.

Proof. Let u, be the value of the integral of du, at point p = (x, y) € W,
and w,” the value of u, at the point ¥(p). Evidently du.’ can be expressed
as a linear combination of du, (u=1, ---, g):

du, =3l a.udu, =1, -, 9).
We consider functions on W defined by

du, _ x"Y/ydx

=g/

_ duy’
= — g1 = 2 cee A a
du, ~ jgdz °  WTBn9 g

where 2/ is the value of x at the point Z(p):

_ Quy _ andug+ andis+ -+ Gzgdthy _ Gon+ Q@+ - -+ o !

N duy’ T andu; + apdug -+ A2 dUy L S ATy A SRR S S0

xl

The function z is the projection of » to z-plane. Therefore, from this equa-
tion we see that the T-images of two points with the same z-value have
also the same z-value. The projection of T(p) to x-plane is thus a univalent
function T(x) on x-plane. Hence, (2¢g +2) branch-points are merely inter-
changed among them by 2.

Since, by Hurwitz [2], (p) is a periodic mapping, the projection T(x) is
also periodic unless it is the identity map. Hence, T(x) is a linear trans-
formation. Otherwise, a univalent function T(x) cannot map z-plane one to
one. In fact, there were z;= x; such that T'(x;)=T(2:). From the periodi-
city of T(x), there were a number n such that 7" is the identity £. Hence
we would have T™(x;)=T"(x;)=2;, which contradicts 7"=FE. A linear
transformation having a period is an elliptic linear transformation. Thus,
Lemma 1 has been proved.

Our problem thus reduces to the investigation of a map Z(p) having an
x-projection of an elliptic transformation or the identity map. If T(z) is the
identity map, ¥(p) is evidently the involutory map which interchanges two
sheets unless it is the identity map. Since an elliptic linear transformation
T(x) has two fixed points, T(p) has at most four fixed points unless T(x) is
the identity map. This was proved by Hurwitz [3] in another way.
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LEMMA 2. A finite group G of linear transformations of x-plane which
has an tnvariant point-set (di, ---, dyy.2) can be extended to a finite trans-
Jormation group & of W defined by (1) in such a way that the x-projection
of @ is G. By a suitable extension, the order of & can be made twice that
of G.

Proof. Let T belong to G, and the order of T be n. Without loss of
generality, we can assume that the fixed points of T lie at x =0 and x = co.
Then T is of the form
( 2) T(x) —_ eZﬂ'L/nx.

We divide two cases: (i) one of d, is zero, (ii) all d, are not zero.
(i) In this case, (1) has the form:

(3) p=11@-d)

where s=2¢g + 2 if =00 does not coincides with any d, and s=2¢g+1 if
2 =oco coincides with a d.. The invariance of the set (ds, --+, ds;,2) under T
implies that s is a multiple of n. Substituting (2) into (3), we get two possi-
bilities, i.e.
(4) iﬂ(a;—) e““"x) and T, (x i w)
Yy r—>—Y

Of course, these are admissible birational transformations. So, we have
three possibilities of extension. The first consists of T; alone, the second of
T, alone, and the third of ¥, and T,. If T, and T, occur simultaneously,
the extension ¥ of T admits the interchange of two sheets.

(ii) In this case, (1) has the form:

(5) =l (0—d)

where s=2g +1 if £ = oo does not coincide with any d, and s=2¢g if x=o0
coincides with a d,. As before, we can conclude that s is a multiple of n.
Substituting (2) into (5), we get two possibilities, i.e.

— ean/n @ € — ez»:rz/n T
(6) zs(” and T, .
y_* eﬂz/ny y — — e'nl/n y

If » is an even number, a cyclic group generated by T; coincides with that
of ¥,. But this is not true if n is an odd number. (Z;)" is then an involu-
tory mapping which interchanges two sheets. And the group generated by
¥, does not contain it.

From these considerations, we see that 7 can be extended to ¥ in such
a way that the order of ¥ is twice that of T, and that the extension which
does not admit the interchange of sheets does not occur if £ =0 is a branch-
point and further % is an even number.

The extension of G to & can be performed by extending all TG in
such a way that they may admit the interchange of sheets. The number of
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fundamental regions of W by ® is evidently twice that of =z-plane by G.
Thus Lemma 2 has been proved.

3. THEOREM 1. Nu(g, k)=8(g+1) for ¢x2,8,5,9.
N2, k), N.(3, k) <48, N5, k), N»09, k) <120.

The equality sign in these estimation is attained tf and only if

k= 2(g+1)m+{0 or 4} for g2 8,5,9, 14;
k=24m 4+ {0, 6, 16 or 22} for g=2;
k=12m + {0 or 8} for ¢g=3;

k =60m + {0, 12, 40 or 52} Sfor g=25;

k=60m + {0, 20, 24 or 44} for g=9;

k=120m + {0, 4, 24, 30, 40, 54, 60, 64, 70 or 94} for g=14.

Proof. Since a closed Riemann surface of genus g <2 admits only a
finite number of conformal mappings onto itself, x-projection of & is also a
finite group. Let G be a finite group of z-plane and N be its order. Fixed
points of T G are divided to % congruent sets. Let n,(¢=1,.--, h) be the
number of congruent points which belong to the i-th set. The order of T
which have fixed points belong to the ¢-th set is N/n,. In order that set of
(29 + 2) branch-points are invariant nnder G the relation

D) 2g+2=mN+f‘,1aml

must be satisfied, where m is the number of branch-points in a fundamental
region of G and a, the number of branch-points lying on a fixed point cor-
responding to the 4-th set. a, is eqaul to 0 or 1. By Lemma 2, if there are
some numbers m, a, satisfying (1), G can be extended to some & of W with
the order 2N or N.

We now consider the invariant point set (pi, -+, pe)={p:}. In order
that G may be extend to some &, in other words, G may be z-projection of
some &, & must satisfy certain conditions. We distinguish two cases:

(i) Let & admit an involutory map which interchange two sheets.
Then the p; which do not lie on branch-points are pairly distributed on W,
i.e. two points having the same z-projection are either belong to {p;} simul-
taneously or not. Then %k must satisfy the relation

k=m'N+>n,2—a,)d; for m >0,
k=2m'N+>" 12— a,)0; for m=0,

where m’ or 2m’ is the number of points p; in a two sheeted fundamental
region of @, and (2 — a;)0; the number of points p; lying on one fixed point
corresponding fo the ¢-th set. 0; is either 0 or 1. If there is a set of
numbers g, k, a,, m’ and 0, satisfying (7) and (8), G can be extended to &
with the order 2N. We call this extension a double extension.

(ii) Let & do not admit the involutory map which interchanges two

(8)
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sheets. By previous consideration, this case occurs only when there is no
branch-point lying on a fixed point of an elliptic transformation of an even
order. A fundamental region of & is two-sheeted one of G. Except the
fixed points, two distinet points having the same x-value are not congruent
with respect to &. Hence the order of & is N. Then k must satisfy
relation

(9) k=m'N+3na,

where m’ has the same meaning as in (1), and «, is the number of p; lying
on a fixed point. a, is equal to 0, 1 or 2. Though some numbers g, k, m, a,
m' and a; are suitably chosen within the conditions (7) and (9), we must not
conclude that G can be extended to &. As shown by the following example,
a, is restricted in some cases. Let G be a cyclic group generated by
T(x)=e v¥*x. Then n;=1 and n;=1. Let the branch-points coincide with
p;=e" " (y=0,1,---,5) and g=2. Then a;=0a:=0 and m=1. If a;1=1,
only a; =0, 2 are admissible numbers. In general, two fixed points corres-
poding to a transformation cause a relation between two «,.

But it is important that the ranges of «a, are certainly determined,
whenever G is given and the positions of branch-points are fixed by (7).
And for admissible numbers «;, there exists one & which has G as its -
projection. We call this extension a single extension.

It is well known that a finite group of linear transformations is one of
the following five groups. We list the groups together with their numbers

N and n.
N ny No N3

(E) Elliptic eyclic group of order «: " 1 1

(D) Dihedral group of order 2n: 2n n n 2
(T) Tetrahedral group: 12 6 4 4
(0) Octahedral group: 24 12 8 6
(I) Icosahedral group: 60 30 20 12

We now study the possibilities of values of the number g for each group,
and if necessary we determine the values of the number %k, using the fact
that g, n;, a,, and m will have been already determined.

(E) Elliptic eyclic group of order n. (7) becomes
(10) 29 +2=nm+ a; + as.

From 29+2=6, m=1. We get n=(29+2—a; —a;)/m=<29+2. Equallity
occurs only when a;=a;=0 and m=1. Then, ord. 8<2N =4(g+1).

(D) Dihedral group of order 2n. (7) becomes
11) 29 4 2 =2nm 4+ na, + nas + 2a;.

From2g+4+2=6,m+a;+a:=1. Hence n=(29 +2—2a)/2m + a; + a5) = 29 + 2.
Equallity occurs only when a;+a;=1 and az=m =0. From a;+ a;=0, only
double extensions occur. Then ord. & =2N =4n =8(g +1). (8) becomes
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k=429 + 2)m’ + (29 +2)0; + 2(2g + 2)d> +2 x 265 = 2(g + 1)m,’ +{0 or 4},
where m,’ is an arbitrary non-negative integer.

(T) Tetrahedral group. (7) becomes
29+ 2=12m+ a; +4a; + 4as = 2m;, (m; = 3).
ord. 8=<12x2<8(g+1) for g=3.
(0) Octahedral group. (7) becomes
2g + 2 =24m + 12a; 4 8a, + 6a; = 6m,; + {0 or 2}.
9=2,8,5,6,8,9,11,12, .-, ord. 83=2x24<8(g+1)
for g2, 3, 5.
When g=2, m=a;:=a,=0, az=1.
k=2m’ X 24 + 12 X 26, + 8 X 20, + 605 = 24m," + {0, 6, 16 or 22}.
When g=38, m=a;=a3s=0, a;=1. For double extensions,
k=2m' x 24412 X 20; + 8 X 05 + 6 X 203 =12m,’ + {0 or 8}.

(I) Icosahedral group. (7) becomes
29 + 2 =60m + 30a; + 20a, + 12as = 60m +- {0, 12, 20, 30, 32, 42, 50 62}.
9=5,9, 14, 15, 20, 24, 29, 30, ---. ord. E=<2x60<8(g +1)
for g5, 9, 14.

When g=5, m=a;,=a>,=0, az=1. For double extensions,

k=2 X 60m’+ 80 X 20; + 20 X 26, + 120; = 60m,’ + {0, 12, 40 or 52}.
When ¢=9, m=a;=a3=0, az=1. For double extensions,

ke =2x60m’ + 30 X 20, + 200, + 12 X 203 = 60m,’ + {0, 20, 24 or 44}.
When g=14, m=a,=a3=0, a;=1.

k=2X60m’+300; + 2 X 209, + 12 X 23,
=120m,’ + {0, 12, 15, 20, 27, 82, 35 or 47}.

All cases have been examined and the estimation N.(g, k) <8(g+1) has
been established for g % 2, 8, 5, 9, 14. Equalities occur only when & is a number
assigned in the theorem and the corresponding group is dihedral. For g =2, 3,
the maximum of N,(g, k) is 48 and the group is octahedral. For g=35, 9,
the maximum of N,(g, k) is 120 and the group is icosahedral. For g =14,
the maximum N,(g, k) =120 is attained both by a dihedral gronp and by the
icosahedral one. Summing up, Theorem 1 has been proved.

4. THEOREM 2. 8 < Nu(g, 2k,),
4= Ny(g, 2k; +1)<4(g+1).

Proof. The exact upper bound of Ny(g, 2k) is given by the estimation
in Theorem 1. By any choice of g and k, an elliptic cyclic group of order 2
which satisfies the branch condition a; =a;=1 can be extended to a & of
order 4. For the double extension, we get the equations
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29+2=2m+2 and k=2m'+06,+0,

which are always solved by ¢ and k. And ord. ® =2N =4.
For k=2k,, a dihedral extension of order 4 satisfying the condition
a;=a;=1 can be extended to a & of order 8. For the double extension,

29-+2=4m+4+2a; and k=4m’+ 20, + 20, + 2(2 — as)ds

which are always solved by g and k. So ord. & =2N =8.

If =2k, +1 the relations (8) and (9) imply that tetra-, ocata- and icosa-
hedral groups can never occur. In cases of elliptic cyclic and dihedral groups
having single extension, we get N,(g, k)<4(9 +1). Hence, only dihedral
groups having double extension must be examined. From (11), n(a;+ as) is
an even number, and from (8), & =2mn + n(2 — a,)0; + n(2 — ax)0; + 2(2 — as)ds.
As k is an odd number, n(a.0;+ a:0:) and n are odd numbers so that we
have a; =a;=1. Thus from (11), we get n =29 + 2 — 2a3)/2m + a, + a;) = (g
+1—a3)/(m+1)<g+1. Consequently, ord. 8=2N=4n=<4(g+1).

THEOREM 8. For fized g, N.(g, k) 1s a periodic function of k for k =124.
And P=120g(g + 1)(2g + 1) 1s surely a period.

Proof. In the case of an elliptic group, the relation (10) implies
Nm =29+ 2—a; — a;, and either 29 +2, 29+ 1 or 2g is a multiple of N. For
a dihedral group, the relation (10) implies (2m + a; + az)N =2(2g + 2 — 2as)
and either 4g or 4(g +1) is a multiple of N. Hence, P/2 is a multiple of N
in each case.

For given ¢ and & we consider a distribution of branch-points such that
the order of the extension & is exactly N,(g, k). This distribution is not
always unique. From (7), (8) and (9), there exist a,, 6;, m, m/, «, and %, such
that the relations

20+2=mN+>lam, and k=m'N+>n:B;

are satisfied. Here any =, which is a multiple of N is gathered in the
term of m’N. So, >Im.,B; is a constant independent of N. m’ does not
always run over all non-positive integers, and the variation range depends
on the position of branch-points. From the definition of N.(g, k) there is no
such distribution which can be extended to a group & of order greater than
N.(g9, k). Let P=2sN. We have

k+P=m'N+>In:p; +2sN = (m’ + 25)N + > n, B:.

Here, m’+ 2s is an admissible number in any case, so that this distribution
can be extended to &. Hence, N.(g, k) < N,(g, k+ P).
In order to show that the equality in the last inequallity must hold,
suppose the contrary. Then, there exists another distribution experessed by
29 +2=mN+X1a@7, and k+P='N+> npb.

And this distribution can be extended to a group & of order greater than
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Nu(g, k). Let P=25N. We have k=N@n'—25) + S 7w, If m —2%=0,
this number is admissible for this distribution. From the previous conside-
ration we get max > 7n.a; =124, and this is attained by the icosahedral group
with a;=a; =a3;=0. Hence our hypothesis implies % —23=0, and it is ad-
missible. We then have N.(g, k) = ord. @ > Nx(g, k), which is absurd.

As is seen from the above discussions, it is sufficient to take P equal to
L.C.M. of {2(g9 +1), 2(2g + 1), 8g, 120, 48}.

5. Let us examine the case g=2. Since ¢,(2, k)=g(2, k) in this case,
our interest is profound. Other cases g =3 can also be treated by a similar
method so that we do not enter in detail.

THEOREM 4. N(2, k) has the following value:

48 for k=24m + {0, 6, 16 or 22},
24 for k=24m+ {4, 8, 10, 12, 14 or 18},
16 for k=24m 4+ {2 or 20},
12 for k=12m+ {3 or 7},
10 for k=60m+{1,5, 11, 13, 17, 21, 23, 25, 33, 35, 37, 41, 45,
47, 53 or 57},
8 for k=60m+ {9, 29 or 49},
6 for k=60m -+ 59,

where m 18 an arbitrary non-positive integer.

Proof. As already seen, the octahedral group occurs only when k=24m
+ {0, 6, 16 or 22}, because single extension does not occur for a;=1. For
these numbers, we have N(2, k) =48, which is equal to the maximal value
of N(2, k). The tetrahedral group occurs only when a;,=1, m =a;=as=0.
As before, there occur only double extensions, and ord. 8=12x 2. By (8),

k=12 X 2m’ + 60, + 2 X 405 + 2 X 405 =8m,” + {0 or 6}.

For dihedral groups, we have from (11) n = (6 —2a;)/@2m + a; + az). We list
all the cases of double extensions.

a;+as a3 m n N ord.® k
D, 1 0 0 6 12 24 24m’ + 126, + 60, + 46; = 6m,’ + {0 or 4}
D, 1 1 0 4 8 16 16m’ + 80, + 49, + 205 = 2m,’
D; 2 0 0 3 6 12 12m’ + 30, 4 30, -+ 405 = 12m,’

+{0, 3, 4, 6, 7 or 10}

D, 0 0 1 3 6 12 6m’ + 60, + 60; + 405 = 6m,’ 4 {0 or 4}
D; 1 0 1 2 4 8 4m’ + 46, + 20, + 405 = 2m,’
Ds 0 1 1 2 4 8 4m’ + 46, + 405 + 205 = 2m,’
D7 2 1 0 2 4 8 8m’ + 231 + 232 -+ 233 = 2m1’
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The possibility of the single extension occurs only for D, and Ds. In the
case of a single extension of D4, each branch-point does not lie on any fixed
point. Hence we take the extension of two generators corresponding to a,
and a3 in the type of ; of (4). From the position of the branch-points the
extension of one remained generator must be of the type £; of (4). Then,

k=6m’+ 8a; + 3a: + 2a3

where ay;, as=0, 1 or 2 and a:=0 or 2. There may be other possibilities
of k other than these. But we need not examine them. From this relation
k may be an arbitrary integer for k=2. From this example only, we can
immediately conclude N(2, k) =6 for k1. We need not examine the single
extension of Dg, because ord. ® is only 4.

We next treat the elliptic cyclic groups. From (10), we have n=(6
—a;—ay)/m. Since a single extension produces @& of order <6, we need
only double extensions of order 6, 5 or 4. Concerning these possibilities we
list for the cases of elliptic cyclic groups.

a;+az m m=N ord.® k
E, 0 1 6 12 6m’ + 20, + 20, = 2m,’
E, 1 5 10 5m’ + 0, + 20, = 5m,’ + (0, 1, 2 or 8)
E; 2 4 8 Am' + 6, + 0 =4m,’ +(0, 1 or 2)

Each k is thus contained somewhere. And the groups which are ex-
tended to a ® of order >6 are all examined. Hence, for fixed %, in order
to determine the number N(2, k), we should take all possibilities of k, and
should take the maximal order of &. We further note that 120 is a period
of N2, k). The following table give the number of N(2, k) (k=0,1, 2, ---, 119)
together with the corresponding groups.

1
1

kE N@ k) %};)g k N@k 'k N, k) k N@ k) % E N@k
[0 |

0 48 O |14 24 T '28 20 D, 42 240 D, 5 24 T
1 10 E;i 15 12 D, 29 8 Eg} 4 12 D, |57 10 E,
2 16 Dy 16 48 O 3 48 O '44 16 D,|58 24 D,
8 12 Dy 17 10 E,j31 12 D3} 45 10 E, f 59 6 D/
4 24 Dy 18 24 D32 24 T 46 48 O 60 24 D,
5 10 By, 19 12 D, 3 10 E, 4 10 E, 61 10 K,
6 48 O 20 16 D, 3¢ 24 D, 48 48 O 62 24 T
7 12 Dy 21 10 E, 35 10 E, 49 8 E, 6 12 D,
8 24 T 22 48 O 3 24 D, 50 16 D, 64 48 O
9 8 E;,. 28 10 E, 37 10 E, 5 12 D, 6 10 E,
10 24 Dy24 48 O 38 24 T 52 24 D, 6 24 D,
11 10 E, 2 10 E, 39 12 D, 5 10 E, 6 12 D,
12 24 D, 26 16 D; 40 48 O 54 48 O .68 16 D,

fuy
w

10 E, 27 12 D 41 10 E; 5 12 Dy 69 8 E,
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70
71
72
73
74
75
76
7
78
79
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The ' |
N2, k) E}ép@es "k N@2k) k N@k) [ k. N@k) k N k)

48 O |8 24 T |9 24 D,|[10 24 D,| 110 24 T
10 E.| 81 10 E;| 91 12 D, | 101 10 E,| 111 12 D;
48 0 82 24 D, | 92 16 D, | 102 48 (o) 112 48 O
10 E;| 83 10 E;| 93 10 E. | 108 12 D; | 113 10 E.
16 D, | 84 24 D, | 94 48 0 104 24 T 114 24 D,
12 D;| 85 10 E; | 95 10 E; | 105 10 E, | 115 12 D,
24 D, | 86 24 T 96 43 O 106 24 D, | 116 16 D,
10 E; | 87 12 D, | 97 10 B, | 107 10 E, | 117 10 E,
48 0} 88 48 O 98 16 D | 108 24 D, | 118 48 (0]
12 D;| 89 8 E; | 99 12 D; | 109 8 E; | 119 6 D/

O... Octahedral D... Dihedral E... Elliptic eyclic

T... Tetrahedral D, ... Single extension of D,

In conclusion, the author expresses his sincerest thanks to Dr. M. Ozawa
who has suggested this investigation and given valuable advices.
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