ON CONFORMAL MAPPING OF A HYPERELLIPTIC RIEMANN SURFACE ONTO ITSELF

By Ryōhei Tsuji

1. Let W be a bordered Riemann surface, i.e. a compact subregion of a Riemann surface, the relative boundary of which consists of a finite number of closed analytic curves, and © be the group of all conformal mappings of W onto itself. For given integers $g(\geqq 0)$ and $k(\geqq 1)$ we put

$$
N(g, k)=\max (\text { ord. (F) })
$$

where ord. © means the order of \mathbb{B} and the maximum is taken with respect to all W having the genus g and k boundary components.

Next, on a closed Riemann surface W of genus g, we take k points p_{1}, \cdots, p_{k} and consider the group (5' of all conformal mappings of the region $W-\left\{p_{1}, \cdots, p_{k}\right\}$ onto itself. For given integers g and k, we put

$$
N^{\prime}(g, k)=\max \left(\text { ord. © } \mathcal{B}^{\prime}\right),
$$

the maximum being taken with respect to all W of genus g and all sets of k points $p_{1}, \cdots, p_{k} \in W$.

The values of $N(0, k)$ and $N^{\prime}(1, k)$ have been completely determined by Heins [1] and Oikawa [4], respectively. An estimation of $N(g, k)$ with $2 g+k-1 \geqq 2, g \geqq 0$ and $k \geqq 1$ has been given by Oikawa [4] as a supplement of Hurwitz's [3]. Oikawa [5] has further proved that

$$
N(g, k)=N^{\prime}(g, k)
$$

for any $g \geqq 0$ and $k \geqq 0$ with $2 g+k-1 \geqq 2$.
In the present paper, we introduce the quantities of similar nature

$$
N_{h}(g, k) \text { and } N_{h^{\prime}}(g, k)
$$

where the suffix h means that Riemann surfaces are restricted to hyperelliptic ones.

By carefully tracing the Oikawa's proof of $N(g, k)=N^{\prime}(g, k)$, we can conclude $N_{h}(g, k)=N_{h}{ }^{\prime}(g, k)$. Therefore, it is sufficient to investigate $N_{h^{\prime}}(g, k)$. For later discussion, we use the symbol $N_{h}(g, k)$ instead of $N_{h}{ }^{\prime}(g, k)$. It is to be noted that a surface with $g=2$ is always hyperelliptic and hence

$$
N_{h}(2, k)=N(2, k) .
$$

In the following lines, we shall give a general estimation for $N_{h}(g, k)$ and then show that its exact value can be obtained in case of $g=2$.

[^0]2. Let W be a hyperelliptic Riemann surface of genus $g(\geqq 2)$ which is defined by the algebraic equation
\[

$$
\begin{equation*}
y^{2}=\prod_{\nu=1}^{20+2}\left(x-d_{\nu}\right), \quad d_{\nu} \neq d_{\mu}(\nu \neq \mu) \tag{1}
\end{equation*}
$$

\]

The normalized differentials of the first kind are

$$
d u_{\nu}=\frac{x^{\nu-1}}{y} d x \quad(\nu=1, \cdots, g) .
$$

Let © be a group of all transformations of W onto itself.
Lemma 1. A transformation which appears by a projection of $\mathfrak{I} \in \mathbb{S}$ to x-plane is an elliptic linear transformation unless it is the identity map.

Proof. Let u_{ν} be the value of the integral of $d u_{\nu}$ at point $p=(x, y) \in W$, and $u_{\nu}{ }^{\prime}$ the value of u_{ν} at the point $\mathfrak{I}(p)$. Evidently $d u_{\nu}{ }^{\prime}$ can be expressed as a linear combination of $d u_{\mu}(\mu=1, \cdots, g)$:

$$
d u_{\nu}^{\prime}=\sum a_{\nu \mu} d u_{\mu} \quad(\nu=1, \cdots, g) .
$$

We consider functions on W defined by

$$
\frac{d u_{\nu}}{d u_{1}}=\frac{x^{\nu-1} / y d x}{1 / y d x}=x^{\nu-1}(\nu=2, \cdots, g), \quad \frac{d u_{2}^{\prime}}{d u_{1}^{\prime}}=x^{\prime}
$$

where x^{\prime} is the value of x at the point $\mathfrak{T}(p)$:

$$
x^{\prime}=\frac{d u_{2}^{\prime}}{d u_{1}^{\prime}}=\frac{a_{21} d u_{1}+a_{22} d u_{2}+\cdots+a_{2 g} d u_{g}}{a_{11} d u_{1}+a_{12} d u_{2}+\cdots+a_{2 g} d u_{g}}=\frac{a_{21}+a_{22} x+\cdots+a_{2 g} x^{g-1}}{a_{11}+a_{12} x+\cdots+a_{1 g} x^{g-1}} .
$$

The function x is the projection of p to x-plane. Therefore, from this equation we see that the \mathfrak{T}-images of two points with the same x-value have also the same x-value. The projection of $\mathscr{T}(p)$ to x-plane is thus a univalent function $T(x)$ on x-plane. Hence, $(2 g+2)$ branch-points are merely interchanged among them by \mathfrak{T}.

Since, by Hurwitz [2], $\mathfrak{I}(p)$ is a periodic mapping, the projection $T(x)$ is also periodic unless it is the identity map. Hence, $T(x)$ is a linear transformation. Otherwise, a univalent function $T(x)$ cannot map x-plane one to one. In fact, there were $x_{1} \neq x_{2}$ such that $T\left(x_{1}\right)=T\left(x_{2}\right)$. From the periodicity of $T(x)$, there were a number n such that T^{n} is the identity E. Hence we would have $T^{n}\left(x_{1}\right)=T^{n}\left(x_{2}\right)=x_{1}$, which contradicts $T^{n}=E$. A linear transformation having a period is an elliptic linear transformation. Thus, Lemma 1 has been proved.

Our problem thus reduces to the investigation of a map $\mathfrak{I}(p)$ having an x-projection of an elliptic transformation or the identity map. If $T(x)$ is the identity map, $\mathfrak{T}(p)$ is evidently the involutory map which interchanges two sheets unless it is the identity map. Since an elliptic linear transformation $T(x)$ has two fixed points, $\mathfrak{Z}(p)$ has at most four fixed points unless $T(x)$ is the identity map. This was proved by Hurwitz [3] in another way.

Lemma 2. A finite group G of linear transformations of x-plane which has an invariant point-set $\left(d_{1}, \cdots, d_{2 g+2}\right)$ can be extended to a finite transformation group ${ }^{(3)}$ of W defined by (1) in such a way that the x-projection of \mathbb{E} is G. By a suitable extension, the order of \mathbb{C} can be made twice that of G.

Proof. Let T belong to G, and the order of T be n. Without loss of generality, we can assume that the fixed points of T lie at $x=0$ and $x=\infty$. Then T is of the form

$$
\begin{equation*}
T(x)=e^{2 \pi \imath / n} x \tag{2}
\end{equation*}
$$

We divide two cases: (i) one of d_{ν} is zero, (ii) all d_{ν} are not zero.
(i) In this case, (1) has the form:

$$
\begin{equation*}
y^{2}=\prod_{\nu=1}^{s}\left(x-d_{\nu}\right) \tag{3}
\end{equation*}
$$

where $s=2 g+2$ if $x=\infty$ does not coincides with any d, and $s=2 g+1$ if $x=\infty$ coincides with a d_{ν}. The invariance of the set ($d_{1}, \cdots, d_{2 g+2}$) under T implies that s is a multiple of n. Substituting (2) into (3), we get two possibilities, i.e.

$$
\begin{equation*}
\mathfrak{I}_{1}\binom{x \rightarrow e^{2 \pi 2 / n} x}{y \rightarrow y} \quad \text { and } \quad \mathfrak{I}_{2}\binom{x \rightarrow e^{2 \pi \tau / n} x}{x \rightarrow-y} . \tag{4}
\end{equation*}
$$

Of course, these are admissible birational transformations. So, we have three possibilities of extension. The first consists of \mathscr{I}_{1} alone, the second of \mathfrak{I}_{2} alone, and the third of \mathfrak{I}_{1} and \mathfrak{I}_{2}. If \mathfrak{I}_{1} and \mathfrak{I}_{2} occur simultaneously, the extension \mathfrak{I} of T admits the interchange of two sheets.
(ii) In this case, (1) has the form:

$$
\begin{equation*}
y^{2}=x \prod_{\nu=1}^{s}\left(x-d_{\nu}\right) \tag{5}
\end{equation*}
$$

where $s=2 g+1$ if $x=\infty$ does not coincide with any d_{ν} and $s=2 g$ if $x=\infty$ coincides with a d_{ν}. As before, we can conclude that s is a multiple of n. Substituting (2) into (5), we get two possibilities, i.e.

$$
\begin{equation*}
\mathfrak{I}_{3}\binom{x \rightarrow e^{2 \pi z / n} x}{y \rightarrow e^{\pi 2 / n} y} \quad \text { and } \quad \mathfrak{I}_{4}\binom{x \rightarrow e^{2 \pi 2 / n} x}{y \rightarrow-e^{\pi 2 / n} y} . \tag{6}
\end{equation*}
$$

If n is an even number, a cyclic group generated by \mathfrak{I}_{3} coincides with that of \mathfrak{T}_{4}. But this is not true if n is an odd number. $\left(\mathfrak{I}_{3}\right)^{n}$ is then an involutory mapping which interchanges two sheets. And the group generated by \mathscr{T}_{4} does not contain it.

From these considerations, we see that T can be extended to \mathfrak{I} in such a way that the order of \mathfrak{T} is twice that of T, and that the extension which does not admit the interchange of sheets does not occur if $x=0$ is a branchpoint and further n is an even number.

The extension of G to $\mathbb{S O}^{(5)}$ can be performed by extending all $T \in G$ in such a way that they may admit the interchange of sheets. The number of
fundamental regions of W by $\mathbb{C B}$ is evidently twice that of x-plane by $\mathbb{C b}$. Thus Lemma 2 has been proved.
3. Theorem 1. $N_{h}(\mathrm{~g}, k) \leqq 8(g+1)$ for $g \neq 2,3,5,9$.

$$
N_{h}(2, k), \quad N_{h}(3, k) \leqq 48, \quad N_{h}(5, k), \quad N_{h}(9, k) \leqq 120 .
$$

The equality sign in these estimation is attained if and only if

$$
\begin{array}{ll}
k=2(g+1) m+\{0 \text { or } 4\} & \text { for } g \neq 2,3,5,9,14 ; \\
k=24 m+\{0,6,16 \text { or } 22\} & \text { for } g=2 ; \\
k=12 m+\{0 \text { or } 8\} & \text { for } g=3 ; \\
k=60 m+\{0,12,40 \text { or } 52\} & \text { for } g=5 ; \\
k=60 m+\{0,20,24 \text { or } 44\} & \text { for } g=9 ; \\
k=120 m+\{0,4,24,30,40,54,60,64,70 \text { or } 94\} & \text { for } g=14 .
\end{array}
$$

Proof. Since a closed Riemann surface of genus $g \leqq 2$ admits only a finite number of conformal mappings onto itself, x-projection of \mathbb{C} is also a finite group. Let G be a finite group of x-plane and N be its order. Fixed points of $T \in G$ are divided to h congruent sets. Let $n_{\imath}(i=1, \cdots, h)$ be the number of congruent points which belong to the i-th set. The order of T which have fixed points belong to the i-th set is N / n_{i}. In order that set of $(2 g+2)$ branch-points are invariant nnder G the relation

$$
\begin{equation*}
2 g+2=m N+\sum_{\imath=1}^{n} a_{i} n_{\imath} \tag{7}
\end{equation*}
$$

must be satisfied, where m is the number of branch-points in a fundamental region of G and a_{2} the number of branch-points lying on a fixed point corresponding to the i-th set. a_{\imath} is eqaul to 0 or 1 . By Lemma 2, if there are some numbers m, a_{\imath} satisfying (1), G can be extended to some (SS of W with the order $2 N$ or N.

We now consider the invariant point set $\left(p_{1}, \cdots, p_{k}\right)=\left\{p_{i}\right\}$. In order that G may be extend to some \mathfrak{E}, in other words, G may be x-projection of some (\mathcal{F}, k must satisfy certain conditions. We distinguish two cases:
(i) Let \mathfrak{G} admit an involutory map which interchange two sheets. Then the p_{i} which do not lie on branch-points are pairly distributed on W, i.e. two points having the same x-projection are either belong to $\left\{p_{i}\right\}$ simultaneously or not. Then k must satisfy the relation

$$
\begin{array}{lll}
k=m^{\prime} N+\sum n_{i}\left(2-a_{2}\right) \delta_{i} & \text { for } & m>0, \\
k=2 m^{\prime} N+\sum n_{i}\left(2-a_{2}\right) \delta_{i} & \text { for } & m=0, \tag{8}
\end{array}
$$

where m^{\prime} or $2 m^{\prime}$ is the number of points p_{i} in a two sheeted fundamental region of G, and $\left(2-a_{i}\right) \delta_{i}$ the number of points p_{i} lying on one fixed point corresponding to the i-th set. δ_{i} is either 0 or 1 . If there is a set of numbers g, k, a_{i}, m^{\prime} and δ_{i} satisfying (7) and (8), G can be extended to © with the order $2 N$. We call this extension a double extension.
(ii) Let © do not admit the involutory map which interchanges two
sheets. By previous consideration, this case occurs only when there is no branch-point lying on a fixed point of an elliptic transformation of an even order. A fundamental region of \mathbb{E} is two-sheeted one of G. Except the fixed points, two distinct points having the same x-value are not congruent with respect to \mathfrak{E}. Hence the order of \mathbb{G} is N. Then k must satisfy relation

$$
\begin{equation*}
k=m^{\prime} N+\sum n_{i} \alpha_{\imath} \tag{9}
\end{equation*}
$$

where m^{\prime} has the same meaning as in (1), and α_{2} is the number of p_{i} lying on a fixed point. α_{\imath} is equal to 0,1 or 2 . Though some numbers g, k, m, a, m^{\prime} and α_{i} are suitably chosen within the conditions (7) and (9), we must not conclude that G can be extended to \mathbb{C}. As shown by the following example, α_{\imath} is restricted in some cases. Let G be a cyclic group generated by $T(x)=e^{\tau \imath / 3} x$. Then $n_{1}=1$ and $n_{2}=1$. Let the branch-points coincide with $p_{i}=e^{\nu \pi i / 3}(\nu=0,1, \cdots, 5)$ and $g=2$. Then $a_{1}=a_{2}=0$ and $m=1$. If $\alpha_{1}=1$, only $\alpha_{2}=0,2$ are admissible numbers. In general, two fixed points correspoding to a transformation cause a relation between two α_{2}.

But it is important that the ranges of α_{2} are certainly determined, whenever G is given and the positions of branch-points are fixed by (7). And for admissible numbers α_{i}, there exists one \mathfrak{G} which has G as its x projection. We call this extension a single extension.

It is well known that a finite group of linear transformations is one of the following five groups. We list the groups together with their numbers N and n.

	N	n_{1}	n_{2}	n_{3}	
(E)	Elliptic cyclic group of order $n:$	n	1	1	
(D)	Dihedral group of order 2n:	$2 n$	n	n	2
(T)	Tetrahedral group:	12	6	4	4
(O)	Octahedral group:	24	12	8	6
(I)	Icosahedral group:	60	30	20	12

We now study the possibilities of values of the number g for each group, and if necessary we determine the values of the number k, using the fact that g, n_{i}, a_{\imath}, and m will have been already determined.
(E) Elliptic cyclic group of order n. (7) becomes

$$
\begin{equation*}
2 g+2=n m+a_{1}+a_{2} . \tag{10}
\end{equation*}
$$

From $2 g+2 \geqq 6, m \geqq 1$. We get $n=\left(2 g+2-a_{1}-a_{2}\right) / m \leqq 2 g+2$. Equallity occurs only when $a_{1}=a_{2}=0$ and $m=1$. Then, ord. $\mathfrak{G} \leqq 2 N=4(g+1)$.
(D) Dihedral group of order $2 n$. (7) becomes

$$
\begin{equation*}
2 g+2=2 n m+n a_{1}+n a_{2}+2 a_{3} . \tag{11}
\end{equation*}
$$

From $2 g+2 \geqq 6, m+a_{1}+a_{2} \geqq 1$. Hence $n=(2 g+2-2 a) /\left(2 m+a_{1}+a_{2}\right) \geqq 2 g+2$. Equallity occurs only when $a_{1}+a_{2}=1$ and $a_{3}=m=0$. From $a_{1}+a_{2}=0$, only double extensions occur. Then ord. $\mathfrak{G}=2 N=4 n=8(g+1)$. (8) becomes

$$
k=4(2 g+2) m^{\prime}+(2 g+2) \delta_{1}+2(2 g+2) \delta_{2}+2 \times 2 \delta_{3}=2(g+1) m_{1}^{\prime}+\{0 \text { or } 4\},
$$

where $m_{1}{ }^{\prime}$ is an arbitrary non-negative integer.
(T) Tetrahedral group. (7) becomes

$$
2 g+2=12 m+a_{1}+4 a_{1}+4 a_{3}=2 m_{1} \quad\left(m_{1} \geqq 3\right) .
$$

ord. $(\$ \leqq 12 \times 2<8(g+1)$ for $g \geqq 3$.
(O) Octahedral group. (7) becomes

$$
\begin{gathered}
2 g+2=24 m+12 a_{1}+8 a_{2}+6 a_{3}=6 m_{1}+\{0 \text { or } 2\} . \\
g=2,3,5,6,8,9,11,12, \cdots . \text { ord. }(\mathbb{S} \leqq 2 \times 24<8(g+1)
\end{gathered}
$$

for $g \neq 2,3,5$.
When $g=2, m=a_{1}=a_{2}=0, a_{3}=1$.

$$
k=2 m^{\prime} \times 24+12 \times 2 \delta_{1}+8 \times 2 \delta_{2}+6 \delta_{3}=24 m_{1}^{\prime}+\{0,6,16 \text { or } 22\} .
$$

When $g=3, m=a_{1}=a_{3}=0, a_{2}=1$. For double extensions, $k=2 m^{\prime} \times 24+12 \times 2 \delta_{1}+8 \times \delta_{2}+6 \times 2 \delta_{3}=12 m_{1}{ }^{\prime}+\{0$ or 8$\}$.
(I) Icosahedral group. (7) becomes
$2 g+2=60 m+30 a_{1}+20 a_{2}+12 a_{3}=60 m+\{0,12,20,30,32,42,5062\}$.
$g=5,9,14,15,20,24,29,30, \cdots$. ord. $\mathfrak{G} \leqq 2 \times 60<8(g+1)$
for $g \neq 5,9,14$.
When $g=5, m=a_{1}=a_{2}=0, a_{3}=1$. For double extensions,

$$
k=2 \times 60 m^{\prime}+30 \times 2 \delta_{1}+20 \times 2 \delta_{2}+12 \delta_{3}=60 m_{1}^{\prime}+\{0,12,40 \text { or } 52\} .
$$

When $g=9, m=a_{1}=a_{3}=0, a_{2}=1$. For double extensions,

$$
k=2 \times 60 m^{\prime}+30 \times 2 \hat{\delta}_{1}+20 \delta_{2}+12 \times 2 \delta_{3}=60 m_{1}^{\prime}+\{0,20,24 \text { or } 44\} .
$$

When $g=14, m=a_{2}=a_{3}=0, a_{1}=1$.

$$
\begin{aligned}
k & =2 \times 60 m^{\prime}+30 \delta_{1}+2 \times 20 \delta_{2}+12 \times 2 \delta_{3} \\
& =120 m_{1}^{\prime}+\{0,12,15,20,27,32,35 \text { or } 47\} .
\end{aligned}
$$

All cases have been examined and the estimation $N_{h}(g, k) \leqq 8(g+1)$ has been established for $g \neq 2,3,5,9,14$. Equalities occur only when k is a number assigned in the theorem and the corresponding group is dihedral. For $g=2,3$, the maximum of $N_{h}(g, k)$ is 48 and the group is octahedral. For $g=5,9$, the maximum of $N_{h}(g, k)$ is 120 and the group is icosahedral. For $g=14$, the maximum $N_{h}(g, k)=120$ is attained both by a dihedral gronp and by the icosahedral one. Summing up, Theorem 1 has been proved.
4. Theorem 2. $8 \leqq N_{h}\left(g, 2 k_{1}\right)$,

$$
4 \leqq N_{h}\left(g, 2 k_{1}+1\right) \leqq 4(g+1)
$$

Proof. The exact upper bound of $N_{h}(g, 2 k)$ is given by the estimation in Theorem 1. By any choice of g and k, an elliptic cyclic group of order 2 which satisfies the branch condition $a_{1}=a_{2}=1$ can be extended to a \mathbb{S} of order 4. For the double extension, we get the equations

$$
2 g+2=2 m+2 \quad \text { and } \quad k=2 m^{\prime}+\delta_{1}+\delta_{2}
$$

which are always solved by g and k. And ord. $\mathbb{E}=2 N=4$.
For $k=2 k_{1}$, a dihedral extension of order 4 satisfying the condition $a_{1}=a_{2}=1$ can be extended to a \mathbb{B} of order 8 . For the double extension,

$$
2 g+2=4 m+4+2 a_{3} \quad \text { and } \quad k=4 m^{\prime}+2 \delta_{1}+2 \delta_{2}+2\left(2-a_{3}\right) \delta_{3}
$$

which are always solved by g and k. So ord. $(\mathscr{B}=2 N=8$.
If $k=2 k_{1}+1$ the relations (8) and (9) imply that tetra-, ocata- and icosahedral groups can never occur. In cases of elliptic cyclic and dihedral groups having single extension, we get $N_{h}(g, k) \leqq 4(g+1)$. Hence, only dihedral groups having double extension must be examined. From (11), $n\left(a_{1}+a_{2}\right)$ is an even number, and from (8), $k=2 m n+n\left(2-a_{1}\right) \delta_{1}+n\left(2-a_{2}\right) \delta_{2}+2\left(2-a_{3}\right) \delta_{3}$. As k is an odd number, $n\left(a_{1} \delta_{1}+a_{2} \delta_{2}\right)$ and n are odd numbers so that we have $a_{1}=a_{2}=1$. Thus from (11), we get $n=\left(2 g+2-2 a_{3}\right) /\left(2 m+a_{1}+a_{2}\right)=(g$ $\left.+1-a_{3}\right) /(m+1) \leqq g+1$. Consequently, ord. $(\mathscr{G}=2 N=4 n \leqq 4(g+1)$.

Theorem 3. For fixed $g, N_{n}(g, k)$ is a periodic function of k for $k \geqq 124$. And $P=120 g(g+1)(2 g+1)$ is surely a period.

Proof. In the case of an elliptic group, the relation (10) implies $N m=2 g+2-a_{1}-a_{2}$, and either $2 g+2,2 g+1$ or $2 g$ is a multiple of N. For a dihedral group, the relation (10) implies $\left(2 m+a_{1}+a_{2}\right) N=2\left(2 g+2-2 a_{3}\right)$ and either $4 g$ or $4(g+1)$ is a multiple of N. Hence, $P / 2$ is a multiple of N in each case.

For given g and k we consider a distribution of branch-points such that the order of the extension $\left(\mathbb{G}\right.$ is exactly $N_{h}(g, k)$. This distribution is not always unique. From (7), (8) and (9), there exist $a_{\imath}, \delta_{i}, m, m^{\prime}, \alpha_{\imath}$ and n_{\imath} such that the relations

$$
2 g+2=m N+\sum a_{i} n_{\imath} \quad \text { and } \quad k=m^{\prime} N+\sum n_{i} \beta_{i}
$$

are satisfied. Here any n_{\imath} which is a multiple of N is gathered in the term of $m^{\prime} N$. So, $\sum n_{\imath} \beta_{i}$ is a constant independent of $N . m^{\prime}$ does not always run over all non-positive integers, and the variation range depends on the position of branch-points. From the definition of $N_{h}(g, k)$ there is no such distribution which can be extended to a group $\mathbb{E S}^{\prime}$ of order greater than $N_{h}(g, k)$. Let $P=2 s N$. We have

$$
k+P=m^{\prime} N+\sum n_{i} \beta_{i}+2 s N=\left(m^{\prime}+2 s\right) N+\sum n_{\imath} \beta_{i} .
$$

Here, $m^{\prime}+2 s$ is an admissible number in any case, so that this distribution can be extended to \mathbb{C}. Hence, $N_{h}(g, k) \leqq N_{h}(g, k+P)$.

In order to show that the equality in the last inequallity must hold, suppose the contrary. Then, there exists another distribution experessed by

$$
2 g+2=\bar{m} \bar{N}+\sum \bar{a}_{i} \bar{n}_{\imath} \quad \text { and } \quad k+P=\bar{m}^{\prime} \bar{N}+\sum \bar{n}_{\imath} \beta_{i}
$$

And this distribution can be extended to a group $\overline{\text { B }}$ of order greater than
$N_{h}(g, k)$. Let $P=2 \bar{s} \bar{N}$. We have $k=\bar{N}\left(\bar{m}^{\prime}-2 \bar{s}\right)+\sum \bar{n}_{i} \bar{\alpha}_{i}$. If $\bar{m}^{\prime}-2 \bar{s} \geqq 0$, this number is admissible for this distribution. From the previous consideration we get $\max \sum \bar{n}_{i} \bar{\alpha}_{i}=124$, and this is attained by the icosahedral group with $a_{1}=a_{2}=a_{3}=0$. Hence our hypothesis implies $\bar{m}-2 s \geqq 0$, and it is admissible. We then have $N_{h}(g, k) \geqq \operatorname{ord}$. (5) $>N_{h}(g, k)$, which is absurd.

As is seen from the above discussions, it is sufficient to take P equal to L.C.M. of $\{2(g+1), 2(2 g+1), 8 g, 120,48\}$.
5. Let us examine the case $g=2$. Since $g_{h}(2, k)=g(2, k)$ in this case, our interest is profound. Other cases $g \geqq 3$ can also be treated by a similar method so that we do not enter in detail.

Theorem 4. $N(2, k)$ has the following value:

$$
\begin{aligned}
& 48 \text { for } k=24 m+\{0,6,16 \text { or } 22\}, \\
& 24 \text { for } k=24 m+\{4,8,10,12,14 \text { or } 18\}, \\
& 16 \text { for } k=24 m+\{2 \text { or } 20\}, \\
& 12 \text { for } k=12 m+\{3 \text { or } 7\}, \\
& 10 \text { for } k=60 m+\{1,5,11,13,17,21,23,25,33,35,37,41,45, \\
& 47,53 \text { or } 57\}, \\
& 8 \text { for } k=60 m+\{9,29 \text { or } 49\}, \\
& 6 \text { for } k=60 m+59,
\end{aligned}
$$

where m is an arbitrary non-positive integer.
Proof. As already seen, the octahedral group occurs only when $k=24 m$ $+\{0,6,16$ or 22$\}$, because single extension does not occur for $a_{3}=1$. For these numbers, we have $N(2, k)=48$, which is equal to the maximal value of $N(2, k)$. The tetrahedral group occurs only when $a_{1}=1, m=a_{2}=a_{3}=0$. As before, there occur only double extensions, and ord. $\mathfrak{B}=12 \times 2$. By (8),

$$
k=12 \times 2 m^{\prime}+6 \delta_{1}+2 \times 4 \delta_{2}+2 \times 4 \delta_{3}=8 m_{1}^{\prime}+\{0 \text { or } 6\} .
$$

For dihedral groups, we have from (11) $n=\left(6-2 a_{3}\right) /\left(2 m+a_{1}+a_{2}\right)$. We list all the cases of double extensions.

$a_{1}+a_{2}$					a_{3}	m	n	N
ord. (3)	k							
D_{1}	1	0	0	6	12	24	$24 m^{\prime}+12 \delta_{1}+6 \delta_{2}+4 \delta_{3}=6 m_{1}{ }^{\prime}+\{0$ or 4$\}$	
D_{2}	1	1	0	4	8	16	$16 m^{\prime}+8 \delta_{1}+4 \delta_{2}+2 \delta_{3}=2 m_{1}{ }^{\prime}$	
D_{3}	2	0	0	3	6	12	$12 m^{\prime}+3 \delta_{1}+3 \delta_{2}+4 \delta_{3}=12 m_{1}{ }^{\prime}$	
							$+\{0,3,4,6,7$ or 10$\}$	
D_{4}	0	0	1	3	6	12	$6 m^{\prime}+6 \delta_{1}+6 \delta_{2}+4 \delta_{3}=6 m_{1}{ }^{\prime}+\{0$ or 4$\}$	
D_{5}	1	0	1	2	4	8	$4 m^{\prime}+4 \delta_{1}+2 \delta_{2}+4 \delta_{3}=2 m_{1}{ }^{\prime}$	
D_{6}	0	1	1	2	4	8	$4 m^{\prime}+4 \delta_{1}+4 \delta_{2}+2 \delta_{3}=2 m_{1}{ }^{\prime}$	
D_{7}	2	1	0	2	4	8	$8 m^{\prime}+2 \delta_{1}+2 \delta_{2}+2 \delta_{3}=2 m_{1}{ }^{\prime}$	

The possibility of the single extension occurs only for D_{4} and D_{6}. In the case of a single extension of D_{4}, each branch-point does not lie on any fixed point. Hence we take the extension of two generators corresponding to a_{1} and a_{3} in the type of \mathscr{I}_{1} of (4). From the position of the branch-points the extension of one remained generator must be of the type \mathscr{I}_{2} of (4). Then,

$$
k=6 m^{\prime}+3 \alpha_{1}+3 \alpha_{2}+2 \alpha_{3}
$$

where $\alpha_{1}, \alpha_{3}=0$, 1 or 2 and $\alpha_{2}=0$ or 2 . There may be other possibilities of k other than these. But we need not examine them. From this relation k may be an arbitrary integer for $k \geqq 2$. From this example only, we can immediately conclude $N(2, k) \geqq 6$ for $k \neq 1$. We need not examine the single extension of D_{6}, because ord. \mathbb{E} is only 4.

We next treat the elliptic cyclic groups. From (10), we have $n=(6$ $\left.-a_{1}-a_{2}\right) / m$. Since a single extension produces $\mathscr{G B}^{\text {S }}$ of order $\leqq 6$, we need only double extensions of order 6,5 or 4 . Concerning these possibilities we list for the cases of elliptic cyclic groups.

	$a_{1}+a_{2}$	m	$n=N$	ord. (G)	k
E_{1}	0	1	6	12	$6 m^{\prime}+2 \delta_{1}+2 \delta_{2}=2 m_{1}{ }^{\prime}$
E_{2}	1	1	5	10	$5 m^{\prime}+\delta_{1}+2 \delta_{2}=5 m_{1}{ }^{\prime}+(0,1,2$ or 3$)$
E_{3}	2	1	4	8	$4 m^{\prime}+\delta_{1}+\delta_{2}=4 m_{1}{ }^{\prime}+(0,1$ or 2$)$

Each k is thus contained somewhere. And the groups which are extended to a ${ }^{(5)}$ of order >6 are all examined. Hence, for fixed k, in order to determine the number $N(2, k)$, we should take all possibilities of k, and should take the maximal order of \mathbb{B}. We further note that 120 is a period of $N(2, k)$. The following table give the number of $N(2, k)(k=0,1,2, \cdots, 119)$ together with the corresponding groups.

k	$N(2, k)$	The type of ${ }^{\circ}$	k	$N(2, k)$		k	$N(2$,		k	$N(2$,		k		
0	48	0	14	24	T	28	24	D_{1}	42	24	D_{1}	56	24	T
1	10	E_{2}	15	12	D_{3}	29	8	E_{3}	43	12	D_{3}	57	10	E_{2}
2	16	D_{2}	16	48	0	30	48	0	44	16	D_{2}	58	24	D
3	12	D_{3}	17	10	E_{2}	31	12	D_{3}	45	10	E_{2}	59	6	D_{4}
4	24	D_{1}	18	24	D_{1}	32	24	T	46	48	0	60	24	D
5	10	E_{2}	19	12	D_{3}	33	10	E_{2}	47	10	E_{2}	61	10	E
6	48	0	20	16	D_{2}	34	24	D_{1}	48	48	0	62	24	T
7	12	D_{3}	21	10	E_{2}	35	10	E_{2}	49	8	E_{3}	63	12	D_{3}
8	24	T	22	48	0	36	24	D_{1}	50	16	D_{2}	64	48	0
9	8	E_{3}	23	10	E_{2}	37	10	E_{2}	51	12	D_{3}	65	10	E_{2}
10	24	D_{1}	24	48	0	38	24	T	52	24	D_{1}	66	24	D_{1}
11	10	E_{2}	25	10	E_{2}	39	12	D_{3}	53	10	E_{2}	67	12	D_{3}
12	24	D_{1}	26	16	D_{2}	40	48	0	54	48	0	68	16	D_{2}
13	10	E_{2}	27	12	D_{3}	41	10	E_{2}	55	12	D_{3}	69	8	E_{3}

k	$N(2, k)$	The type of \mathscr{C}	k	$N(2, k)$		k	$N(2, k)$		k	$N(2, k)$		k	$N(2$,	
70	48	0	80	24	T	90	24	D_{1}	100	24	D_{1}	110	24	T
71	10	E_{2}	81	10	E_{2}	91	12	D_{3}	101	10	E_{2}	111	12	D_{3}
72	48	0	82	24	D_{1}	92	16	D_{2}	102	48	0	112	48	0
73	10	E_{2}	83	10	E_{2}	93	10	E_{2}	103	12	D_{3}	113	10	E_{2}
74	16	D_{2}	84	24	D_{1}	94	48	0	104	24	T	114	24	D_{1}
75	12	D_{3}	85	10	E_{2}	95	10	E_{2}	105	10	E_{2}	115	12	D_{3}
76	24	D_{1}	86	24	T	96	48	0	106	24	D_{1}	116	16	D_{2}
77	10	E_{2}	87	12	D_{3}	97	10	E_{2}	107	10	E_{2}	117	10	E_{2}
78	48	0	88	48	0	98	16	D_{2}	108	24	D_{1}	118	48	0
79	12	D_{3}	89	8	E_{3}	99	12	D_{3}	109	8	E_{3}	119	6	$\mathrm{D}_{4}{ }^{\prime}$

$$
\begin{array}{lcc}
\text { O } \ldots \text { Octahedral } & \text { D... Dihedral } & \text { E... Elliptic cyclic } \\
\text { T } \ldots \text { Tetrahedral } & \mathrm{D}_{4}^{\prime} \ldots \text { Single extension of } \mathrm{D}_{4}
\end{array}
$$

In conclusion, the author expresses his sincerest thanks to Dr. M. Ozawa who has suggested this investigation and given valuable advices.

References

[1] Heins, M., On the number of 1-1 directly conformal maps which a multiply connected region of finite connectivity $p(>2)$ admits onto itself. Bull. Amer. Math. Soc. 52 (1946), 454-457.
[2] Hurwitz, A., Über diejenigen algebraischen Gebilde, welche eindeutige Transformationen in sich zulassen. Math. Werke. Band I, 241-259.
[3] Hurwitz, A., Über algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann. 41 (1893), 403-442.
[4] Oikawa, K., Note on conformal mappings of a Riemann surface onto itself. Kōdai, Math. Sem. Rep. 8 (1956), 23-30.
[5] Oikawa, K., A supplement to "Note on conformal mappings of a Riemann surface onto itself ". Kōdai Math. Sem. Rep. 8 (1956), 115-116.

Department of Mathematics,
Tokyo Institute of Technology.

[^0]: Received September 1, 1958.

