ON CONFORMAL MAPPING OF A HYPERELLIPTIC RIEMANN SURFACE ONTO ITSELF

By Ryöhei Tsuji

1. Let W be a bordered Riemann surface, i.e. a compact subregion of a Riemann surface, the relative boundary of which consists of a finite number of closed analytic curves, and \mathfrak{S} be the group of all conformal mappings of W onto itself. For given integers $g (\geq 0)$ and $k (\geq 1)$ we put

$$N(g, k) = \max (\text{ord. } \mathfrak{G}).$$

where ord. & means the order of & and the maximum is taken with respect to all W having the genus g and k boundary components.

Next, on a closed Riemann surface W of genus g, we take k points p_1, \dots, p_k and consider the group \mathfrak{G}' of all conformal mappings of the region $W - \{p_1, \dots, p_k\}$ onto itself. For given integers g and k, we put

$$N'(g, k) = \max (\text{ord. } \mathfrak{G}'),$$

the maximum being taken with respect to all W of genus g and all sets of k points $p_1, \dots, p_k \in W$.

The values of N(0, k) and N'(1, k) have been completely determined by Heins [1] and Oikawa [4], respectively. An estimation of N(g, k) with $2g+k-1 \ge 2, g \ge 0$ and $k \ge 1$ has been given by Oikawa [4] as a supplement of Hurwitz's [3]. Oikawa [5] has further proved that

$$N(g, k) = N'(g, k)$$

for any $g \ge 0$ and $k \ge 0$ with $2g + k - 1 \ge 2$.

In the present paper, we introduce the quantities of similar nature

$$N_h(g, k)$$
 and $N_h'(g, k)$

where the suffix h means that Riemann surfaces are restricted to hyperelliptic ones.

By carefully tracing the Oikawa's proof of N(g, k) = N'(g, k), we can conclude $N_h(g, k) = N_h'(g, k)$. Therefore, it is sufficient to investigate $N_h'(g, k)$. For later discussion, we use the symbol $N_h(g, k)$ instead of $N_h'(g, k)$. It is to be noted that a surface with g = 2 is always hyperelliptic and hence

$$N_{h}(2, k) = N(2, k).$$

In the following lines, we shall give a general estimation for $N_h(g, k)$ and then show that its exact value can be obtained in case of g=2.

Received September 1, 1958.

2. Let W be a hyperelliptic Riemann surface of genus $g (\geq 2)$ which is defined by the algebraic equation

(1)
$$y^2 = \prod_{\nu=1}^{2g+2} (x-d_{\nu}), \quad d_{\nu} \neq d_{\mu} \ (\nu \neq \mu).$$

The normalized differentials of the first kind are

$$du_{\nu}=\frac{x^{\nu-1}}{y}dx \qquad (\nu=1,\,\cdots,\,g).$$

Let \mathfrak{G} be a group of all transformations of W onto itself.

LEMMA 1. A transformation which appears by a projection of $\mathfrak{T} \in \mathfrak{G}$ to x-plane is an elliptic linear transformation unless it is the identity map.

Proof. Let u_{ν} be the value of the integral of du_{ν} at point $p = (x, y) \in W$, and u_{ν}' the value of u_{ν} at the point $\mathfrak{T}(p)$. Evidently du_{ν}' can be expressed as a linear combination of du_{μ} ($\mu = 1, \dots, g$):

$$du_{\nu}' = \sum a_{\nu\mu} du_{\mu} \qquad (\nu = 1, \cdots, g).$$

We consider functions on W defined by

$$\frac{du_{\nu}}{du_{1}} = \frac{x^{\nu-1}/y \, dx}{1/y \, dx} = x^{\nu-1} \ (\nu = 2, \cdots, g), \qquad \frac{du_{2}'}{du_{1}'} = x'$$

where x' is the value of x at the point $\mathfrak{T}(p)$:

$$x' = \frac{du_{2'}}{du_{1'}} = \frac{a_{21}du_1 + a_{22}du_2 + \dots + a_{2g}du_g}{a_{11}du_1 + a_{12}du_2 + \dots + a_{2g}du_g} = \frac{a_{21} + a_{22}x + \dots + a_{2g}x^{g-1}}{a_{11} + a_{12}x + \dots + a_{1g}x^{g-1}}.$$

The function x is the projection of p to x-plane. Therefore, from this equation we see that the \mathfrak{T} -images of two points with the same x-value have also the same x-value. The projection of $\mathfrak{T}(p)$ to x-plane is thus a univalent function T(x) on x-plane. Hence, (2g+2) branch-points are merely interchanged among them by \mathfrak{T} .

Since, by Hurwitz [2], $\mathfrak{T}(p)$ is a periodic mapping, the projection T(x) is also periodic unless it is the identity map. Hence, T(x) is a linear transformation. Otherwise, a univalent function T(x) cannot map x-plane one to one. In fact, there were $x_1 \neq x_2$ such that $T(x_1) = T(x_2)$. From the periodicity of T(x), there were a number n such that T^n is the identity E. Hence we would have $T^n(x_1) = T^n(x_2) = x_1$, which contradicts $T^n = E$. A linear transformation having a period is an elliptic linear transformation. Thus, Lemma 1 has been proved.

Our problem thus reduces to the investigation of a map $\mathfrak{T}(p)$ having an *x*-projection of an elliptic transformation or the identity map. If T(x) is the identity map, $\mathfrak{T}(p)$ is evidently the involutory map which interchanges two sheets unless it is the identity map. Since an elliptic linear transformation T(x) has two fixed points, $\mathfrak{T}(p)$ has at most four fixed points unless T(x) is the identity map. This was proved by Hurwitz [3] in another way.

LEMMA 2. A finite group G of linear transformations of x-plane which has an invariant point-set (d_1, \dots, d_{2g+2}) can be extended to a finite transformation group \mathfrak{G} of W defined by (1) in such a way that the x-projection of \mathfrak{G} is G. By a suitable extension, the order of \mathfrak{G} can be made twice that of G.

Proof. Let T belong to G, and the order of T be n. Without loss of generality, we can assume that the fixed points of T lie at x = 0 and $x = \infty$. Then T is of the form

$$(2) T(x) = e^{2\pi i/n} x.$$

We divide two cases: (i) one of d_{ν} is zero, (ii) all d_{ν} are not zero.

(i) In this case, (1) has the form:

(3)
$$y^2 = \prod_{\nu=1}^{s} (x - d_{\nu})$$

where s = 2g + 2 if $x = \infty$ does not coincides with any d_{ν} and s = 2g + 1 if $x = \infty$ coincides with a d_{ν} . The invariance of the set (d_1, \dots, d_{2g+2}) under T implies that s is a multiple of n. Substituting (2) into (3), we get two possibilities, i.e.

(4)
$$\mathfrak{T}_1\begin{pmatrix} x \to e^{2\pi i/n} x \\ y \to y \end{pmatrix}$$
 and $\mathfrak{T}_2\begin{pmatrix} x \to e^{2\pi i/n} x \\ x \to -y \end{pmatrix}$.

Of course, these are admissible birational transformations. So, we have three possibilities of extension. The first consists of \mathfrak{T}_1 alone, the second of \mathfrak{T}_2 alone, and the third of \mathfrak{T}_1 and \mathfrak{T}_2 . If \mathfrak{T}_1 and \mathfrak{T}_2 occur simultaneously, the extension \mathfrak{T} of T admits the interchange of two sheets.

(ii) In this case, (1) has the form:

(5)
$$y^2 = x \prod_{\nu=1}^{s} (x - d_{\nu})$$

where s = 2g + 1 if $x = \infty$ does not coincide with any d_{ν} and s = 2g if $x = \infty$ coincides with a d_{ν} . As before, we can conclude that s is a multiple of n. Substituting (2) into (5), we get two possibilities, i.e.

(6)
$$\mathfrak{T}_{3}\begin{pmatrix} x \to e^{2\pi i/n} x \\ y \to e^{\pi i/n} y \end{pmatrix}$$
 and $\mathfrak{T}_{4}\begin{pmatrix} x \to e^{2\pi i/n} x \\ y \to -e^{\pi i/n} y \end{pmatrix}$.

If *n* is an even number, a cyclic group generated by \mathfrak{T}_3 coincides with that of \mathfrak{T}_4 . But this is not true if *n* is an odd number. $(\mathfrak{T}_3)^n$ is then an involutory mapping which interchanges two sheets. And the group generated by \mathfrak{T}_4 does not contain it.

From these considerations, we see that T can be extended to \mathfrak{T} in such a way that the order of \mathfrak{T} is twice that of T, and that the extension which does not admit the interchange of sheets does not occur if x=0 is a branchpoint and further n is an even number.

The extension of G to can be performed by extending all $T \in G$ in such a way that they may admit the interchange of sheets. The number of

fundamental regions of W by \mathfrak{S} is evidently twice that of x-plane by \mathfrak{S} . Thus Lemma 2 has been proved.

3. THEOREM 1. $N_h(g, k) \leq 8(g+1)$ for $g \neq 2, 3, 5, 9$. $N_h(2, k), N_h(3, k) \leq 48, N_h(5, k), N_h(9, k) \leq 120.$

The equality sign in these estimation is attained if and only if

$k = 2(g+1)m + \{0 \ or \ 4\}$	for	$g \neq 2$, 3, 5, 9, 14;
$k = 24m + \{0, 6, 16 \ or \ 22\}$	for	g = 2;
$k = 12m + \{0 \ or \ 8\}$	for	g = 3;
$k = 60m + \{0, 12, 40 \ or \ 52\}$	for	g = 5;
$k = 60m + \{0, 20, 24 \text{ or } 44\}$	for	g = 9;
$k = 120m + \{0, 4, 24, 30, 40, 54, 60, 64, 70 \text{ or } 94\}$	for	g = 14.

Proof. Since a closed Riemann surface of genus $g \leq 2$ admits only a finite number of conformal mappings onto itself, x-projection of \mathfrak{G} is also a finite group. Let G be a finite group of x-plane and N be its order. Fixed points of $T \in G$ are divided to h congruent sets. Let n_i $(i=1, \dots, h)$ be the number of congruent points which belong to the *i*-th set. The order of T which have fixed points belong to the *i*-th set is N/n_i . In order that set of (2g+2) branch-points are invariant under G the relation

$$(7) 2g+2=mN+\sum_{i=1}^{h}a_in_i$$

must be satisfied, where m is the number of branch-points in a fundamental region of G and a_i the number of branch-points lying on a fixed point corresponding to the *i*-th set. a_i is eqaul to 0 or 1. By Lemma 2, if there are some numbers m, a_i satisfying (1), G can be extended to some \mathfrak{G} of W with the order 2N or N.

We now consider the invariant point set $(p_1, \dots, p_k) = \{p_i\}$. In order that G may be extend to some \mathfrak{G} , in other words, G may be x-projection of some \mathfrak{G} , k must satisfy certain conditions. We distinguish two cases:

(i) Let \mathfrak{G} admit an involutory map which interchange two sheets. Then the p_i which do not lie on branch-points are pairly distributed on W, i.e. two points having the same x-projection are either belong to $\{p_i\}$ simultaneously or not. Then k must satisfy the relation

(8)
$$k = m'N + \sum n_i(2-a_i)\delta_i \quad \text{for} \quad m > 0,$$
$$k = 2m'N + \sum n_i(2-a_i)\delta_i \quad \text{for} \quad m = 0,$$

where m' or 2m' is the number of points p_i in a two sheeted fundamental region of G, and $(2-a_i)\delta_i$ the number of points p_i lying on one fixed point corresponding to the *i*-th set. δ_i is either 0 or 1. If there is a set of numbers g, k, a_i , m' and δ_i satisfying (7) and (8), G can be extended to \mathfrak{S} with the order 2N. We call this extension a double extension.

(ii) Let S do not admit the involutory map which interchanges two

sheets. By previous consideration, this case occurs only when there is no branch-point lying on a fixed point of an elliptic transformation of an even order. A fundamental region of \mathfrak{G} is two-sheeted one of G. Except the fixed points, two distinct points having the same x-value are not congruent with respect to \mathfrak{G} . Hence the order of \mathfrak{G} is N. Then k must satisfy relation

$$(9) k = m'N + \sum n_i \alpha_i$$

where m' has the same meaning as in (1), and α_i is the number of p_i lying on a fixed point. α_i is equal to 0, 1 or 2. Though some numbers g, k, m, a, m' and α_i are suitably chosen within the conditions (7) and (9), we must not conclude that G can be extended to \mathfrak{G} . As shown by the following example, α_i is restricted in some cases. Let G be a cyclic group generated by $T(x) = e^{\tau \sqrt{3}x}$. Then $n_1 = 1$ and $n_2 = 1$. Let the branch-points coincide with $p_i = e^{\nu \pi \sqrt{3}}$ ($\nu = 0, 1, \dots, 5$) and g = 2. Then $a_1 = a_2 = 0$ and m = 1. If $\alpha_1 = 1$, only $\alpha_2 = 0$, 2 are admissible numbers. In general, two fixed points correspoding to a transformation cause a relation between two α_i .

But it is important that the ranges of α_i are certainly determined, whenever G is given and the positions of branch-points are fixed by (7). And for admissible numbers α_i , there exists one \mathfrak{S} which has G as its xprojection. We call this extension a single extension.

It is well known that a finite group of linear transformations is one of the following five groups. We list the groups together with their numbers N and n.

	N	n_1	n_2	n_3	
(E) Elliptic cyclic group of order n :	n	1	1		
(D) Dihedral group of order $2n$:	2n	n	n	2	
(T) Tetrahedral group:	12	6	4	4	
(O) Octahedral group:	24	12	8	6	
(I) Icosahedral group:	60	30	20	12	

We now study the possibilities of values of the number g for each group, and if necessary we determine the values of the number k, using the fact that g, n_i , a_i , and m will have been already determined.

(E) Elliptic cyclic group of order n. (7) becomes

$$(10) 2g+2 = nm + a_1 + a_2$$

From $2g+2 \ge 6$, $m \ge 1$. We get $n = (2g+2-a_1-a_2)/m \le 2g+2$. Equallity occurs only when $a_1 = a_2 = 0$ and m = 1. Then, ord. $\mathfrak{G} \le 2N = 4(g+1)$.

(D) Dihedral group of order 2n. (7) becomes

(11)
$$2g+2=2nm+na_1+na_2+2a_3.$$

From $2g+2 \ge 6$, $m+a_1+a_2 \ge 1$. Hence $n = (2g+2-2a)/(2m+a_1+a_2) \ge 2g+2$. Equallity occurs only when $a_1+a_2=1$ and $a_3=m=0$. From $a_1+a_2=0$, only double extensions occur. Then ord. $\mathfrak{G}=2N=4n=8(g+1)$. (8) becomes RYÕHEI TSUJI

 $k = 4(2g+2)m' + (2g+2)\delta_1 + 2(2g+2)\delta_2 + 2 \times 2\delta_3 = 2(g+1)m_1' + \{0 \text{ or } 4\},$ where m_1' is an arbitrary non-negative integer.

(T) Tetrahedral group. (7) becomes

 $2g+2=12m+a_1+4a_1+4a_3=2m_1$ $(m_1 \ge 3).$ ord. $\mathfrak{G} \le 12 \times 2 < 8(g+1)$ for $g \ge 3$.

(0) Octahedral group. (7) becomes

 $2g + 2 = 24m + 12a_1 + 8a_2 + 6a_3 = 6m_1 + \{0 \text{ or } 2\}.$

 $g = 2, 3, 5, 6, 8, 9, 11, 12, \cdots$ ord. $\mathfrak{G} \leq 2 \times 24 < 8(g+1)$

for $g \neq 2, 3, 5$.

 $= 120m_1' + \{0, 12, 15, 20, 27, 32, 35 \text{ or } 47\}.$

All cases have been examined and the estimation $N_h(g, k) \leq 8(g+1)$ has been established for $g \neq 2, 3, 5, 9, 14$. Equalities occur only when k is a number assigned in the theorem and the corresponding group is dihedral. For g = 2, 3, the maximum of $N_h(g, k)$ is 48 and the group is octahedral. For g = 5, 9, the maximum of $N_h(g, k)$ is 120 and the group is icosahedral. For g = 14, the maximum $N_h(g, k) = 120$ is attained both by a dihedral group and by the icosahedral one. Summing up, Theorem 1 has been proved.

4. THEOREM 2.
$$8 \leq N_h(g, 2k_1),$$

 $4 \leq N_h(g, 2k_1+1) \leq 4(g+1).$

Proof. The exact upper bound of $N_k(g, 2k)$ is given by the estimation in Theorem 1. By any choice of g and k, an elliptic cyclic group of order 2 which satisfies the branch condition $a_1 = a_2 = 1$ can be extended to a \bigotimes of order 4. For the double extension, we get the equations

$$2g + 2 = 2m + 2$$
 and $k = 2m' + \delta_1 + \delta_2$

which are always solved by g and k. And ord. $\mathfrak{G} = 2N = 4$.

For $k=2k_1$, a dihedral extension of order 4 satisfying the condition $a_1 = a_2 = 1$ can be extended to a \bigotimes of order 8. For the double extension,

$$2g + 2 = 4m + 4 + 2a_3$$
 and $k = 4m' + 2\delta_1 + 2\delta_2 + 2(2 - a_3)\delta_3$

which are always solved by g and k. So ord. $\mathfrak{G} = 2N = 8$.

If $k = 2k_1 + 1$ the relations (8) and (9) imply that tetra-, ocata- and icosahedral groups can never occur. In cases of elliptic cyclic and dihedral groups having single extension, we get $N_h(g, k) \leq 4(g+1)$. Hence, only dihedral groups having double extension must be examined. From (11), $n(a_1 + a_2)$ is an even number, and from (8), $k = 2mn + n(2 - a_1)\delta_1 + n(2 - a_2)\delta_2 + 2(2 - a_3)\delta_3$. As k is an odd number, $n(a_1\delta_1 + a_2\delta_2)$ and n are odd numbers so that we have $a_1 = a_2 = 1$. Thus from (11), we get $n = (2g + 2 - 2a_3)/(2m + a_1 + a_2) = (g + 1 - a_3)/(m + 1) \leq g + 1$. Consequently, ord. $\mathfrak{S} = 2N = 4n \leq 4(g + 1)$.

THEOREM 3. For fixed g, $N_n(g, k)$ is a periodic function of k for $k \ge 124$. And P = 120g(g+1)(2g+1) is surely a period.

Proof. In the case of an elliptic group, the relation (10) implies $Nm = 2g + 2 - a_1 - a_2$, and either 2g + 2, 2g + 1 or 2g is a multiple of N. For a dihedral group, the relation (10) implies $(2m + a_1 + a_2)N = 2(2g + 2 - 2a_3)$ and either 4g or 4(g+1) is a multiple of N. Hence, P/2 is a multiple of N in each case.

For given g and k we consider a distribution of branch-points such that the order of the extension \mathfrak{G} is exactly $N_h(g, k)$. This distribution is not always unique. From (7), (8) and (9), there exist a_i , δ_i , m, m', α_i and n_i such that the relations

$$2g+2=mN+\sum a_in_i$$
 and $k=m'N+\sum n_i\beta_i$

are satisfied. Here any n_i which is a multiple of N is gathered in the term of m'N. So, $\sum n_i\beta_i$ is a constant independent of N. m' does not always run over all non-positive integers, and the variation range depends on the position of branch-points. From the definition of $N_h(g, k)$ there is no such distribution which can be extended to a group \mathfrak{G}' of order greater than $N_h(g, k)$. Let P=2sN. We have

$$k+P=m'N+\sum n_i\beta_i+2sN=(m'+2s)N+\sum n_i\beta_i.$$

Here, m'+2s is an admissible number in any case, so that this distribution can be extended to \mathfrak{G} . Hence, $N_{k}(g, k) \leq N_{k}(g, k+P)$.

In order to show that the equality in the last inequality must hold, suppose the contrary. Then, there exists another distribution experessed by

$$2g+2=\overline{m}N+\sum \overline{a}_i\overline{n}_i$$
 and $k+P=\overline{m}'N+\sum \overline{n}_i\beta_i$.

And this distribution can be extended to a group (8) of order greater than

RYÖHEI TSUJI

 $N_h(g, k)$. Let $P = 2\overline{s}\overline{N}$. We have $k = \overline{N}(\overline{m}' - 2\overline{s}) + \sum \overline{n}_i \overline{\alpha}_i$. If $\overline{m}' - 2\overline{s} \ge 0$, this number is admissible for this distribution. From the previous consideration we get max $\sum \overline{n}_i \overline{\alpha}_i = 124$, and this is attained by the icosahedral group with $a_1 = a_2 = a_3 = 0$. Hence our hypothesis implies $\overline{m} - 2s \ge 0$, and it is admissible. We then have $N_h(g, k) \ge \text{ord.} \otimes > N_h(g, k)$, which is absurd.

As is seen from the above discussions, it is sufficient to take P equal to L.C.M. of $\{2(g+1), 2(2g+1), 8g, 120, 48\}$.

5. Let us examine the case g=2. Since $g_h(2, k) = g(2, k)$ in this case, our interest is profound. Other cases $g \ge 3$ can also be treated by a similar method so that we do not enter in detail.

THEOREM 4. N(2, k) has the following value:

where m is an arbitrary non-positive integer.

Proof. As already seen, the octahedral group occurs only when $k = 24m + \{0, 6, 16 \text{ or } 22\}$, because single extension does not occur for $a_3 = 1$. For these numbers, we have N(2, k) = 48, which is equal to the maximal value of N(2, k). The tetrahedral group occurs only when $a_1 = 1$, $m = a_2 = a_3 = 0$. As before, there occur only double extensions, and ord. $\mathfrak{G} = 12 \times 2$. By (8),

$$k = 12 \times 2m' + 6\delta_1 + 2 \times 4\delta_2 + 2 \times 4\delta_3 = 8m_1' + \{0 \text{ or } 6\}.$$

For dihedral groups, we have from (11) $n = (6 - 2a_3)/(2m + a_1 + a_2)$. We list all the cases of double extensions.

	$a_1 + a_2$	a_3	m	n	N	ord. 🕲	k
\mathbf{D}_{1}	1	0	0	6	12	24	$24m' + 12\delta_1 + 6\delta_2 + 4\delta_3 = 6m_1' + \{0 \text{ or } 4\}$
\mathbf{D}_2	1	1	0	4	8	16	$16m'+8\delta_1+4\delta_2+2\delta_3=2m_1'$
D_3	2	0	0	3	6	12	$12m'+3\delta_1+3\delta_2+4\delta_3=12m_1'$
							$+ \{0, 3, 4, 6, 7 \text{ or } 10\}$
D_4	0	0	1	3	6	12	$6m' + 6\delta_1 + 6\delta_2 + 4\delta_3 = 6m_1' + \{0 \text{ or } 4\}$
D_5	1	0	1	2	4	8	$4m'+4\delta_1+2\delta_2+4\delta_3=2m_1'$
\mathbf{D}_{6}	0	1	1	2	4	8	$4m'+4\delta_1+4\delta_2+2\delta_3=2m_1'$
D_7	2	1	0	2	4	8	$8m'+2\delta_1+2\delta_2+2\delta_3=2m_1'$

The possibility of the single extension occurs only for D_4 and D_6 . In the case of a single extension of D_4 , each branch-point does not lie on any fixed point. Hence we take the extension of two generators corresponding to a_1 and a_3 in the type of \mathfrak{T}_1 of (4). From the position of the branch-points the extension of one remained generator must be of the type \mathfrak{T}_2 of (4). Then,

$$k = 6m' + 3\alpha_1 + 3\alpha_2 + 2\alpha_3$$

where α_1 , $\alpha_3 = 0$, 1 or 2 and $\alpha_2 = 0$ or 2. There may be other possibilities of k other than these. But we need not examine them. From this relation k may be an arbitrary integer for $k \ge 2$. From this example only, we can immediately conclude $N(2, k) \ge 6$ for $k \ne 1$. We need not examine the single extension of D_6 , because ord. \mathfrak{G} is only 4.

We next treat the elliptic cyclic groups. From (10), we have $n = (6 - a_1 - a_2)/m$. Since a single extension produces \bigotimes of order ≤ 6 , we need only double extensions of order 6, 5 or 4. Concerning these possibilities we list for the cases of elliptic cyclic groups.

	$a_1 + a_2$	m	n = N	ord. 🔇	k
$\mathbf{E}_{\mathbf{i}}$	0	1	6	12	$6m'+2\delta_1+2\delta_2=2m_1'$
\mathbf{E}_2	1	1	5	10	$5m' + \delta_1 + 2\delta_2 = 5m_1' + (0, 1, 2 \text{ or } 3)$
E_3	2	1	4	8	$4m' + \delta_1 + \delta_2 = 4m_1' + (0, 1 \text{ or } 2)$

Each k is thus contained somewhere. And the groups which are extended to a \mathfrak{G} of order >6 are all examined. Hence, for fixed k, in order to determine the number N(2, k), we should take all possibilities of k, and should take the maximal order of \mathfrak{G} . We further note that 120 is a period of N(2, k). The following table give the number of N(2, k) $(k = 0, 1, 2, \dots, 119)$ together with the corresponding groups.

k	N(2, k)	The type of ও	k	N(2, k)		k	N(2, k)		k	N(2, k)		k	N(2, 1	k)
0	48	0	14	24	т	28	24	D_1	42	24	D_1	56	24	т
1	10	\mathbf{E}_{2}	15	12	D_3	29	8	${\rm E}_{3}$	43	12	\mathbf{D}_3	57	10	\mathbf{E}_{2}
2	16	\mathbf{D}_2	16	48	0	30	48	0	44	16	\mathbf{D}_2	58	24	\mathbf{D}_{1}
3	12	\mathbf{D}_{3}	17	10	\mathbf{E}_{2}	31	12	\mathbf{D}_{3}	45	10	\mathbf{E}_{2}	59	6	D_4'
4	24	D_1	18	24	$D_{\mathfrak{l}}$	32	24	\mathbf{T}	46	48	0	60	24	D_1
5	10	${f E}_2$	19	12	\mathbf{D}_{3}	33	10	\mathbf{E}_{2}	47	10	\mathbf{E}_{2}	61	10	\mathbf{E}_{2}
6	48	0	20	16	\mathbf{D}_2	34	24	\mathbf{D}_1	48	48	0	62	24	т
7	12	\mathbf{D}_{3}	21	10	\mathbf{E}_{2}	35	10	\mathbf{E}_{2}	49	8	\mathbf{E}_{3}	63	12	D_3
8	24	Т	22	48	0	36	24	D_1	50	16	D_2	64	48	0
9	8	\mathbf{E}_{3}	23	10	\mathbf{E}_{2}	37	10	${f E}_2$	51	12	D_3	65	10	\mathbf{E}_{2}
10	24	\mathbf{D}_{1}	24	48	0	38	24	т	52	24	\mathbf{D}_1	66	24	D_1
11	10	\mathbf{E}_{2}	25	10	\mathbf{E}_{2}	39	12	\mathbf{D}_{3}	53	10	\mathbf{E}_{2}	67	12	D_3
12	24	D_1	26	16	\mathbf{D}_2	40	48	0	54	48	0	68	16	D_2
13	10	\mathbf{E}_{2}	27	12	D 3	41	10	\mathbf{E}_{2}	55	12	D_3	69	8	\mathbf{E}_{3}

RYÖHEI TSUJI

k	N(2, k)	The type of &	k	N(2, k)		k	N(2, k)		k	N(2, k))	k	N(2, k	c)
70	48	0	80	24	т	90	24	D_1	100	24	D_1	110	24	\mathbf{T}
71	10	\mathbf{E}_{2}	81	10	${f E}_2$	91	12	D_3	101	10	\mathbf{E}_{2}	111	12	\mathbf{D}_{3}
72	48	0	82	24	D_1	92	16	D_2	102	48	0	112	48	0
73	10	${ m E}_2$	83	10	\mathbf{E}_{2}	93	10	\mathbf{E}_{2}	103	12	D_3	113	10	\mathbf{E}_{2}
74	16	D_2	84	24	D_1	94	48	0	104	24	т	114	24	\mathbf{D}_{1}
75	12	D_3	85	10	\mathbf{E}_{2}	95	10	\mathbf{E}_{2}	105	10	\mathbf{E}_{2}	115	12	\mathbf{D}_{3}
76	24	Di	86	24	т	96	48	0	106	24	D_1	116	16	\mathbf{D}_2
77	10	\mathbf{E}_{2}	87	12	D_3	97	10	\mathbf{E}_{2}	107	10	\mathbf{E}_{2}	117	10	\mathbf{E}_{2}
78	48	0	88	48	0	98	16	D_2	108	24	D ₁	118	48	0
79	12	D ₃	89	8	Ез	99	12	D ₃	109	8	E ₃	119	6	D_4'
	O Octahedral T Tetrahedral					Dihed Singl	lral e extensi			iptic cy	clic			

In conclusion, the author expresses his sincerest thanks to Dr. M. Ozawa who has suggested this investigation and given valuable advices.

References

- [1] HEINS, M., On the number of 1-1 directly conformal maps which a multiply connected region of finite connectivity p(>2) admits onto itself. Bull. Amer. Math. Soc. 52 (1946), 454-457.
- [2] HURWITZ, A., Über diejenigen algebraischen Gebilde, welche eindeutige Transformationen in sich zulassen. Math. Werke. Band I, 241-259.
- [3] HURWITZ, A., Über algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann. 41 (1893), 403-442.
- [4] OIKAWA, K., Note on conformal mappings of a Riemann surface onto itself. Kōdai, Math. Sem. Rep. 8 (1956), 23-30.
- [5] OIKAWA, K., A supplement to "Note on conformal mappings of a Riemann surface onto itself". Kodai Math. Sem. Rep. 8 (1956), 115-116.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.