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1. Introduction.

The generalized Riemann-LiouvilPs integral has been given by M. Riesz.
By the use of a lemma which is a consequence of Riemann-Liouville's in-
tegral, Frostman [1] has proved his fundamental theorem on the energy
integral. In 1938, M. Riesz [4] has given the relations between the Riemann-
Liouville's integrals and potentials.

In the present paper, we shall give a generalization of Frostman's lemma
in a higher dimensional space and some analogous lemmas in two dimensional
space. Also we shall give some examples which show us how to apply them.
The author is much indebted to Professor Y. Komatu who gives him many
useful advices.

2. On generalized Riemann-Liouville's integrals.

Let TPQ = TQP be the distance between P and Q in the m-dimensional
euclidean space Ωm (m ̂  1), and a, & be positive numbers. Then we define
the integral by M. Riesz:

(A) /β/(P) = Γ\ λ /(QWdQ,
Cm(θL) J Qm

where

2«r(a]
^ \ 2

( B )
m-a

2

and dQ, denotes the volume element. Here /(Q) is continuous and satisfies
the condition that the above integral (A) should converge absolutely.

For example, in order that (A) converges near the point P — Q, it is
necessary that a > 0 while the convergence near the point at infinity depends
on the behavior of /(Q). If /(Q) is a continuous function which behaves
like e~cr at infinity, Iα/(Q) exists when a > 0 and it represents a continuous
function of a. If, however, /(Q) is a continous function which behaves like
1/r" (K > 0) at infinity, /tf/(Q) exists when 0 < a < K and it represents a conti-
nuous function of a in the interval 0 < a < K.

Concerning Riesz's operator /α, the fundamental results are mentioned
as follows:
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THEOREM. If f be a continuous function such that Iaf exists absolutely
in the interval 0 < a < /c, then

( C ) I«{Pf(P)} = I" + P/(P) for a > 0, β > 0, and a + 0 < m,

( D )

( E )
α->o

where Δ indicates the Laplace's operator.

3. Generalization of Frostman's lemma.

LEMMA I (Frostman [1]). Let 0<&<3, 0 < Z < 3 and & + Z>3, then

(D f J ?--
J Ω APM Λ M

(10 ^ V 2

Here, we shall give a generalization of this lemma, which is the main
result of this paper.

LEMMA II. If k and I are positive numbers and satisfy the conditions
m > k, m>l and m < k + 1 < 2m, then

(Π) f -*~ -/-dM = Hm(k, l)^^ ,
J Ω wι 'PM 'MQ ΓPQ

ίm-k\ ( m-l
™ \ 2 ]

(IF) fl ^ft, Z) - τrT-->-

In fact, if we take the function /(Q) with the above mentioned proper-
ties, we can apply Riesz's formulas which imply

(D

In order that the integrals here converge and the inversion of the order of
integration is legitimate, it is sufficient to suppose that /(Q) = 0(l/rκ) as
r->oo and, κ>a + β and m>a + β (ic — m, for example). But on the other
hand, there holds
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(2) /« + β/(P)= * f
^m\^ ~Γ P) J L1m

As the continuous function /(Q) is arbitrary and

I«{

so that we get

(3)
f r^J"m

If we determine two positive numbers k and £ by

m — a = k and m — β — l,

then they satisfy

0 < & < m, 0< £ < m and m<k + l< 2m,

and (3) become

f -^- ?-dM. = Hm(k, 0-,-A ,̂
JΩ W rPM ΓMQ "PQ

where

ίm -jc\ f m —JΛ ( k + ί - m

IT /ι n - ^""2 / ^ 2 > V 2 ~Hn(k, I) = 7Γ2 -------- ---- ----- -

Γ l -,\ T \ r
Γ Γ Γ2j'\2j'{ 2

4. Consequences of lemma II.

In (II) and (IF) of the Lemma II, if put m = 3, then we obtain the
Frostman's lemma I. Next, we shall show that it is possible to give a direct
proof of the formula

Γ 1 1 τr3

(III) 4- —ϊ- dM = -π- -,
J Ω3

 rPM rMQ rPQ

which is a special case of (I).

In fact, if we put P(0, 0, 0), Q(0, 0, α), M(#, y, z) and x = r cos φ sin 0,
y = r sin φ sin 0, « = r cos 0 then the left-hand member of (III) becomes

dr.
α —r

Γ 1 1 ,M Γ00^ Γ2^ __ r2jsin θ_ dφdMr _ 2τ^ Γ00 1
J Ω3 >!M l̂iQ J o J o J o r2(r2 + α2"- 2ar cos ̂ j " α J o r 1Og

Putting r = at in the last integral, we get

Γ 1 1 ΛTWΓ π f P 1 i α + 7* j , Γ00! i r-a j^2 -̂ 3 ^M = ----- log dr + log dr
J a 3

r P M rMQ α L J o r a-r }a r s r + α

=

Putting ί = e~v in (1), then
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ί i 1 1 Γ°° yp~y °° Γ°
•i ,i log }dt = /V/2' = Σo 1 — ί c Jo 1 — e ^ «=ojo= o

( Z )
V ' oo 1 _2

~̂ o(2̂ -l)
2
 ~ 8 '

From (1) and (2), we have

J Qs

 rPM rMQ d ?*PQJ Ω s

5. In (II), we put m — 2 and obtain the lemma:

LEMMA III. If 0<k<2, 0<l<2 and 2<k +1<4, then

Ω2

 ΓPM 'MQ 'PQ

where

— — — --
2

Now, in two dimensional case, we shall give lemmas supplementary to (IV).
We describe about P a circle Σ with a sufficiently large radius R.

LEMMA IV. Let k and I be positive numbers such that k + l = 2, then

( V ) [ --J- ) dM = A(k, I) log -/— + B(k, I) + 0(log Λ),
J Σ rPM rMQ rpQ

where A(k, I), B(k, I) are symmetric functions of k and I.

To prove this lemma, it is sufficient to consider the case when TPQ is less
than δ/2, δ being any fixed positive constant. We describe about P the con-
centric circles <TI and <τ2 with radii 2a and 2d as such TPQ — a<d/2 respec-
tively. We put

i l l / Γ Γ Γ \ 1 1
p1- ^-dM=( + + Vp--^-

Σ ΓPM 'MQ \JΣ-σ 2 Jσ 2 - σ ι J o j / ΓPM ΓMΓMQ

When M belongs to Σ — <r2, then rpM ̂  23, rMQ ̂  3. Hence /i is of the form:

(2) /! = 0(logΛ).

When M belongs to <τ2 — <?ι, we have

—
 2

 ~ and rpM > 2a,

where θ is the angle between the radius-vectors rpQ and rpM. In this case,
we have easily
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2 ^ M ^ 9 *rpM *•*

Hence, putting rPπ = r and as we can suppose d sufficiently small,

^<Π^* 7r/2>(4) Jo -I**- (r/2,

< 2* + lπ log- = 2* + 1 π log -----.

Now about /3, we divide the circle <TI in two parts by the bisector of the
segment PQ. We denote by σS the part of #1 which contains P and by tf/'
the other part. Then we put

U P \ 1 1
+ V 2—* —*—dM.I 1 / Λ»J — K ΛΛK

σl" «/ °\"' PM M<^

If M belongs to σ^, then rπq ̂  α/2 so that

(6) f -A-> -j-dM< x-i-ΓT-^ =^^lπ.
Jσj ' rPM ^MQ (tt/2) Jo Jo ^ /^

When M belongs to <TI", then rpπ ̂  α/2. We describe about Q the circle τ
with radius 3α, which is contained in σ2. Introducing the polar coordinates
with pole at Q we get

f -fΛv
,„. J0l"

 rPM rMQ

From (6) and (7), there follows

(8) J3<

Choosing suitable constants A(k, I) and B(k, I), from (2), (4) and (8) we
obtain

/= A(k, I) log — + B(k, I) + 0(log R).

LEMMA V. Let k>0, l>0 and k + l<2, then the integral

\ -^- ψ-dU
J Σ ' PM ' MQ

is a continuous function of rpq.

In fact, using the same notations as before, we put

f 4 - -f-dίί = ({ + ( + f ) ̂  rrJs r PM ΓMQ \Jl!-σ2 Jσ 2 -σ 1 J O l /
r P M ΓM
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Evidently, Ji is continuous with respect to r?Q. For I2, since M belongs to
02 — 01, and rQM^rpM/2 holds, then introducing the polar coordinates with
pole at P, we get

Hence 72 vanishes with δ. Finally, we put

σ/ σ

By the same method as in the former lemma, we have

ί l 1 22 + 1 ~ kπ

fytk fytί ^ Q 7
σ/ ' PM ' MQ Δ — K

and

ί fUtk fyjr

σι" 'PM A MQ

Therefore it becomes

/ 02 + I - k 0& + ]

(3) /3<(V-F+ 2

Thus the integral 73 vanishes also with d. From (1), (2) and (3) the integral
is a continuous function of rPQ.

6. Applications.

Next we shall illustrate some examples of the above mentioned results
in this and following sections.

Let F be a closed region bounded by regular surfaces S and let Vτ and
Ve be the regions consisting of inner and outer points of V, respectively. A
function φ which is defined and continuous in V is called regular when it
satisfies the conditions:

1) it has the continuous first partial derivatives in F, and
2) it has the continuous second partial derivatives in Vτ.

If φ, ty are regular in V we have the Green's formula:

(1) , -
jv jv js cίn

where n indicates the outer normal to S and dV, dS denote the volume and
surface elements, respectively. For a regular surfaces of m-dimensional
space Ωm, we consider the potentials
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(2) U(P) = f MQ) ~Q , TF(P) = f *(Q) ̂ Q

where μ and v are the continuous functions on S.

REMARK. In Ω2 we replace U and W by the logarithmic potentials. For
the proof of the problem in Q%, the following proof remains valid by slight
modifications.

Now we can prove that the potentials U(P) and W(P) also satisfy (1):

(3) f UΔWdV+{ (VU,VW)dV=( U-^dS.
Jv Jv Js dn

Since U(P) and W(P) are harmonic in V, (3) becomes

(30 f (VU, VW)dV= f U,dS.
Jv Js

d,W

an

If the density function is merely continuous on S, the first derivatives
of the potential of a single layer is not necessarily bounded on S. There-
fore, we must prove the validity of (3). In this proof we shall use the
abbreviation:

Mί(a?<, yi9 zt) = M», M(α, y, z) = M0 = M,

and

rfi = (x - Xi)2 + (y- y^γ + (z - z t f , rl - (a, - xkγ + (^ - T/,)2 -f («t - zk)\

σ(ΰ) = σ(x, y, z), σ(ΐ) = 0(xit yly zt), dS(i) = dS(xif yit zl),

etc.

Proof, i) If MI and M2 are inner points of Ve, then I/no and l/r20 have
continuous partial derivative of any order. Hence U and W are regular in
V and the identity (3X) holds.

ii) Let M3 be a fixed inner point of Ve and MI be an arbitrary point
on S. Now consider

^~ Θ^- d 1 d 1 9—
r30 no r30 no r30~ ~ -

Here, since

----- —-30 dV(Q) etc.
ox ox
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are the first partial derivatives of potentials with continuous densities of
a single layer, and the last integral represents a potential of a double
layer with a continuous density, they are both continuous, and the equality
(30 holds.

iii) In case where the point M3 coincides with M2 of S which is dif-
ferent from Mi, we investigate the relation (30- When M3->M2 from Ve,
(4) becomes

Λ 1 Λ 1 Λ 1 Λ 1 Λ 1 Λ 1
O 0) 0) 0) 0) 0)

no no . no 7*20 , no n
(5) JΛ 9x dx θy dy dz

2π -Lέ
In fact, the right-hand member of (4) becomes, when M3-^M2 from Ve,

lim (-
r03

" •*• COS v^*o2> ^-»o/ j CVΛN~2 αώ(ϋ;.
no Ao2

Multiplying yu and v and integrating, we get

dy dy

9_ι_ 8_ι
( 6 ) + —g°- --g

-ί2 J J

If the inversion of order of integration on the left side is possible, we have

0 ..... L 8_L

d-1

( 7 ) = (1) 5(1) ( 2 ) ^ ( 2 ) . F(0)

and there hold analoguous formulas with respect to y and z. If the inver-
sion of the order of integral of the right-hand member of (6) is legitimate,
then
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2π( μ(2)\{ v(l)-1 dS(l)}dS(2)
Js Us r12 J

-f Γf KD-1-rfS(l)ΊΓf μ(2) «°*%^> .-dS(2)]dS(G)
JSLJS ?Ίθ JLJS r02 J

( 8 ) = 2π { MO)£/iO)dS(0) - f U(Q) Γ [
Js Js LJs

= f U(0)
JS

- [
J

U(0)~±
J s dn0

where dWl/dn0 denotes the limiting value of dW/dn at M0 from V^. From

(7) and (8), there follows

9 > 8

Now it is sufficient, in order to invert the order of the integration in the

left-hand member of (6), to show the existence of the integral

(10) f |M2)|(( |K1)|Γ[ !^° ί :~^\dV(0)\dS(l)}dS(2).
Js Us L J F d% \ dx , J J

We have evidently

9-"- 9- -1

f i
J r l

By the use of (III), i.e.

Ω3 ' ίO '20 ^12

if we take a positive constant A such that A^Max|v(l) | , (10) becomes

1-0 - 2 0
r rr

I v(l) I Γ
is U F ,

* dS(ΐ).

cZ 7(0)
/10. : J
(LΔ)

Js r12 Js r12

The last term is bounded with respect to M2 in J23, and the same is true for
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similar terms. Therefore (10) converges uniformly.

Next, in order to invert the order of the integration in the right-hand
member of (6), it is sufficient to show that the inequality

f -i- i
JS no

<
'12

holds, where C is a positive constant. Since S is a regular surface, we can
choose a constant a and λ such that

I cos (r20, No) I < αr£0 (0 < λ < 1)

hold. Now let cr be the part of S which lies in the sphere with center M0

and radius d. We put

(14) Γ *
S no ™20 \JS~σ

The first integral on the right-hand member is bounded at M0. Let σ' be
the projection of a onto the tangential plane at M0 and r(Q and rf

w denote the
projection of no and r2o, respectively. Since S is regular, it is possible to
take a positive constant 3 such that between any vector r e σ and its pro-
jection τf e o' we have r < 2r' and in particular dS(Q) < 4dS/(0) where dS'(Q)
denotes the projection of dS(0). Then

r
J σ 1̂0 1̂0 ^20 J σ' //r 10 " '̂ 20*"

and hence

J^ no

1 |cos(r2o, AΓ0)| ^/

r 12

where C7 is a constant. Therefore the inequality (13) holds, and con-
sequently

\ μ ( 2 ) \ ϊ [
S US

exists.

7. Iterated nuclei of integral equations.

We consider an integral equation in space Ωm which is of the form

(1) XO) - C f K(l, 0)Xl)dS(l) +/(0),
J-s

where
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1 cos (r10, AΓo)
(2) *<l.°) = -&

We investigate the properties of the iterated nuclei of the equation

(1). We put

(3) #i(l, 0) - K(l, 0), Kn(l, 0) - f K.d, 2)Kn _ ,(29 0)dS(2) (n > 2).
J £

Since S is regular, we have

(4) 1 cos (no, No)\< αr*, 0 < Λ < 1 ,

a being a positive constant. Then we have

1 _cos (rio, N«) __ l_ λ < a
2τc ^*ιo 2τc

Therefore we can write

(5) #(1,0) =J|̂ )-,

where d(l, 0) is a continuous function of M0 and ML

In order to investigate K2(l, 0), we describe a sphere about Mi with a

fixed radius δ, and denote by τ the part of £ in the sphere. τι indicates the

part of S within the sphere about Mt with radius 2r10 (rw<d/2). Besides

we denote by τf, the projection of τ onto the tangential (hyper-)plane at

MI. We put

(6) K2(l, 0) = + XΊ(1, 2)^(2, Q)dS(2) = Iλ + I2.
\J«-τ Jτ/

Let MI, M 2 eri and M2^S — τ, then /i is a continuous function of M0 and
ML By similar reasoning as in §6,

I / I = f 1 j cos(r12, JV2) 1 I cos (r2o, JVΌ) '
Jτ 2π I r--1 2^"Γ ~"f20"

< — [ -7-— λ / 1

 λdS'(2)
^tTC J rς * 12 20

By the lemma II, we obtain

7Γ J Ωm - 1

. 2λ .
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Therefore, by suitably choosing C2(l, 0), we have

( 8 ) Kt(l, 0) - C2(l, 0) m Λ-2Λ-.
MO

The repetition of the above process implies

( 9 ) Knd, 0) = Cn(l, 0) rm^Λ .
MO

Hence if we choose a positive integer n such that

m - 1 — nλ < 0 i.e. w >

then lfn(l, 0) is a continuous function of r10. Hence we can write the equa-
tion (1) in the form:

(10) MO) - C f Knd, OXl)dS(l) Hh Σ»(0),
JS

and

(11) Σ»(0) - /(O) + C f Kd, OXl)dS(l) + + C - 1 ( Kn _ ,(1, 0)χi)dS(l),
J-s Js

where JfiLW(l, 0) is a continuous function of rί0.

8. Integral equation of the Abel's type.

In space Ωm, we consider the integral equation

(1) f ^dQ = φ(P)
JΩ m ^PQ

where φ(P) is a continuous given function.
To solve (1), we multiply (1) by l/rgM (0 < μ < m) and integrate, then

ί if ^dQ\ l-dP={ W-l
jΩ«lJθ« ^PQ J ^M JOm^ ^ ^P

By inverting the order of the integration, it becomes

(2) ί ([ -j
J Q m U Q m rPQ

By the lemma II, we have

(3) Hm(λ,

Applying the Kiesz's operator (A), there follows

Cm(2m-λ-μ)Hm(λ, μ)Pm-λ-f/(M) = JΩ <f(P)^dP.
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Then

j^ j2Cm-υ-λ-μ + :

(4)

- fJΩ

By the property (D) of Riesz's operatior, it becomes

/ m - λ \ ( m - μ
i —^ /2 J \ 2

— πm 22m ~ λ " μ _______ - __ __ - __ - ___ _____ •— 2(m " D ~ λ ~

(5)
= f

JΩ«

Now since I°f=f, if we put 2m — 2 — λ — μ-+Q, i.e. μ-+2m — 2 — λ, we then
obtain from (5)

where

Hence

( 6 ) /(M) = -̂ f
iί(m, λ) J Ω

In order that the integral in (6) exists, the function φ must behaves con-
veniently at the origin and at infinity. But, for example, it is sufficient for

this purpose to suppose that ^ = o(rα), a>0 at the origin and ψ = r~κ,
κ>m — λ at infinity. The expression (6) then gives the solution of the
equation (1).
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