ON GENERALIZATION OF FROSTMAN’S LEMMA
AND ITS APPLICATIONS

By YAsuo NozAkKI

1. Introduction.

The generalized Riemann-Liouvill’s integral has been given by M. Riesz.
By the use of a lemma which is a consequence of Riemann-Liouville’s in-
tegral, Frostman [1] has proved his fundamental theorem on the energy
integral. In 1938, M. Riesz [4] has given the relations between the Riemann-
Liouville’s integrals and potentials.

In the present paper, we shall give a generalization of Frostman’s lemma
in a higher dimensional space and some analogous lemmas in two dimensional
space. Also we shall give some examples which show us how to apply them.
The author is much indebted to Professor Y. Komatu who gives him many
useful advices.

2. On generalized Riemann-Liouville’s integrals.

Let rpq = rqp be the distance between P and Q in the m-dimensional
euclidean space £,, (m=1), and a, 3 be positive numbers. Then we define
the integral by M. Riesz:

(A) 1@ = o |, FQrirda,
where !
o &
(B) Colc) =m0 2m<_22
r ( 2 )

and dQ denotes the volume element. Here f(Q) is continuous and satisfies
the condition that the above integral (A) should converge absolutely.

For example, in order that (A) converges near the point P=Q, it is
necessary that a >0 while the convergence near the point at infinity depends
on the behavior of f(Q). If f(Q) is a continuous function which behaves
like e™*" at infinity, I%(Q) exists when « >0 and it represents a continuous
function of . If, however, f(Q) is a continous function which behaves like
1/7* (¢ > 0) at infinity, I%f(Q) exists when 0 <« <« and it represents a conti-
nuous function of « in the interval 0 <a <«.

Concerning Riesz’s operator I¢, the fundamental results are mentioned
as follows:
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THEOREM. If f be a continuous function such that I°f exists absolutely
in the interval 0 < a <k, then
(C) I{IPf(P)}=I**Bf(P) for a >0, >0, and a+B< m,
(D) AI**2f(P)= —I*f(P),
(E) lim I'f®)y=I10P)=f(P),

where A indicates the Laplace’s operator.

3. Generalization of Frostman’s lemma.
LEMMA I (Frostman [1]). Let 0<k<3, 0<I<3 and k+1>38, then

(1) S % . -dM = Hy(k, l),rlc+l 3

l
o, Trm T

83—k 3—-1 kE+1-3
r(*35) (%) (M)
D
r(5)r(z
Here, we shall give a generalization of this lemma, which is the main
result of this paper.

where

@Y] Hyk, )= 78

LemMmA II.  If k and 1 are positive numbers and satisfy the conditions
m>k, m>1 and m<k+1<2m, then

an [ vt M= Hh, D,

IE
PM MQ TP

)

k l 2m—k—1
(5 ) () (%)

In fact, if we take the function f(Q) with the above mentioned proper-
ties, we can apply Riesz’s formulas which imply

1
o g - m m
141 £(P)} Cm(a)cm(ﬁ)jgm{j Qs dQ}rMP M
_;7____1_ﬁ___ B — Mmped —m
= cm(a>cm(ﬁ>j nm{g o, B HE dM} FQde.
In order that the integrals here converge and the inversion of the order of
integration is legitimate, it is sufficient to suppose that f(Q)=O/r¥) as
r—o and, k> a+B and m >a + B (k=m, for example). But on the other
hand, there holds

1
Yiom
Q

where

to! 3

ar) H,(k, 1) =

(1)
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(2) [+ f(P)= 1 §f<Q>rggg@—mdQ.

Cula+B) o
As the continuous function f(Q) is arbitrary and

I{I°f(P)} = I*+* f(P),
so that we get

(3) [, rhnrsimant = GO pro

Cula +B)
If we determine two positive numbers k£ and [ by
m—a=%k and m—p=I,
then they satisfy
O0<k<m, 0<l<m and m<k+1<2m,

and (3) become

1
j‘ = ;-dM H,(k, l),,./c+l ms

%
Tpm

m—k\(m—=1\ k+l—m
L)) ()
k /1 2m — lc——l
r < >F \ 2) < 2 )

4. Consequences of lemma II.

In (II) and (II') of the Lemma II, if put m =38, then we obtain the
Frostman’s lemma I. Next, we shall show that it is possible to give a direct
proof of the formula

3
(I s 11 = 7

Qg T Tha TrQ

where

which is a special case of (I).
In fact, if we put P(0, 0, 0), Q(0, 0, a), M(x, y, 2) and x=1rcos¢sind,
y=rsin¢sind, z=rcosf then the left-hand member of (III) becomes

1 1 =2 r2gin 6 dedfdr 27 (=1 a+r|
—o—dM = B I : dr.
Sgs Tom Tho So So 50 r*(r? + a® — 2ar cos 6) a 50 r Iog{a—ﬂ r
Putting r =at in the last integral, we get
1 T (*1 a+r =1 r—a ;]
— dM=— ~| |- d
(1) Sn Tin "'MQ aUﬂlog a—r T+Lrlog 7‘+adri
8 1
= .
X 1442 08 d

Putting ¢t =e? in (1), then
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(2) 01—t ¢ 1—e® 7 i
=51
=h@en—12 8
From (1) and (2), we have
3 3
| e moaM=" ="
o; oM Tme a TPQ

5. In (II), we put m =2 and obtain the lemma:
LEmMMA III. If 0<k<2, 0<I<2 and 2<k+1<4, then

11
(Iv) j r b dM = Hyk, l)rw —

o, v Tmq
2 )r(*2)r( )
(5
\ r r 9
Now, in two dimensional case, we shall give lemmas supplementary to (IV).
We describe about P a circle 3 with a sufficiently large radius R.

where
r<_2
Hyk, )=rn-——

LEmMMA IV. Let k and [ be positive numbers such that k+1=2, then

(V) [, st o, @M= AC Dlog L+ Bk, 1)+ Oflog R)
=Trn Tme

where A(k, 1), Bk, 1) are symmetric functions of k and 1.

To prove this lemma, it is sufficient to consider the case when 7pq is less
than 0/2, 0 being any fixed positive constant. We deseribe about P the con-
centric circles o; and g, with radii 2¢ and 20 as such rrq=a <6/2 respeec-
tively. We put

(1) I=S-1 _1 dM:(j +S +S> 1l oM=141L+1,
2—62 62_6l

= TPy Thie Tix ”'MQ
When M belongs to = — o, then rpm <20, rmq=0. Hence I is of the form:
(2) I, =0O(log R).
When M belongs to ¢, —a;, we have
o= "oy +a*—2aremcos§ and 7em>2a,

where 6 is the angle between the radius-vectors reqe and rem. In this case,
we have easily
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1 rMQ §
(3) 2 < rew " 2°

Hence, putting rem =17 and as we can suppose ¢ sufficiently small,

12<r"j“ 1 rdrdt =217 (Iog 1 +10g28>
0 Jea re- * (/z)k 2a

1 1
k+ 1 . 9Ok+1 _ _
<2 nloga =2%+1x]og eq ”

(4)

Now about I;, we divide the circle o; in two parts by the bisector of the
segment PQ. We denote by o,/ the part of o, which contains P and by a,”
the other part. Then we put

1 1
(5) Ia:(Sol'—*-Sc ),"PMIc rll‘\:deM
If M belongs to oy/, then rmq=a/2 so that
1 1 1 27 (2 pdrdl 22"+1
(6) L,rm* e M (a/2>'°5 f ok Tk

When M belongs to o'/, then rem=a/2. We describe about Q the circle =
with radius 8a, which is contained in o;. Introducing the polar coordinates
with pole at Q we get

j L k dM < f——lrf———f 1 am

N oy Toa* Th (@/2?7% ) The
B [rir 0
ar+ " o T 2—k°
From (6) and (7), there follows
22k+1 62 k
(8) I3<( e Ta_ k)

Choosing suitable constants A(k, ) and B(k, l), from (2), (4) and (8) we
obtain

I=A(k, 1) log % + B(k, 1)+ O(log R).
PQ

LEMMA V. Let £>0,1>0 and k+1<2, then the integral

jﬁlf L am

Tim Thq

18 a continuous function of rrq.

In fact, using the same notations as before, we put

1 1
1 ~ oAM= ) L dM=L+L+ 1.
(1) j TEx "'MQ (52—02+§2-61+S Th TMQ .
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Evidently, I is continuous with respect to req. For I,, since M belongs to
0y — ay, and rqem = rrv/2 holds, then introducing the polar coordinates with

pole at P, we get

1 1 28
I g AM < 2141
(2) < Gy M7
28~k
< ,,_,32‘(k+l)
2—(k+1)

Hence I, vanishes with 6. Finally, we put

11
L= : >77 —dM.
=+ ) 7o

By the same method as in the former lemma, we have
1 1 22+ 1-kp 2~k +D
f rhy e ™M 5 g O
and
1 1 2803 o
jdl””{c’M ”'imdM< o © .
Therefore it becomes
22+l-k 2k+1,32—l ks
(3) .@<<2;k~+ . >n¢mwlx

Thus the integral I3 vanishes also with 6. From (1), (2) and (3) the integral
is a continuous function of 7pq.

a = 7pQ.

6. Applications.
Next we shall illustrate some examples of the above mentioned results
in this and following sections.

Let V be a closed region bounded by regular surfaces S and let V, and
V. be the regions consisting of inner and outer points of V, respectively. A
function ¢ which is defined and continuous in V is called regular when it
satisfies the conditions:

1) it has the continuous first partial derivatives in V, and

2) it has the continuous second partial derivatives in V..
If ¢, Y are regular in ¥V we have the Green’s formula:

(1) [ vavav+| wo.vav=| oGP as,

where » indicates the outer normal to S and dV, dS denote the volume and
surface elements, respectively. For a regular surfaces of m-dimensional
space £2,, we consider the potentials
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i
PQ

(2) ve) = | w22, we={ @ 2
s 7 s TPQ
where 4 and v are the continuous functions on S.

REMARK. In £, we replace U and W by the logarithmie potentials. For
the proof of the problem in £2,, the following proof remains valid by slight
modifications.

Now we can prove that the potentials U(P) and W(P) also satisfy (1):

(3) |, vawav+ | vu, vwav=| v4¥as.
JY v s dn

Since UP) and W(P) are harmonic in V, (3) becomes

(3) f (VU,VW)dV-—-S UV 4s.
14 S d’l’l/

If the density function is merely continuous on S, the first derivatives
of the potential of a single layer is not necessarily bounded on S. There-
fore, we must prove the validity of (3). In this proof we shall use the
abbreviation:

Mi(zs, ¥s, 2.) =M, M(z, y, 2) =M, =M,
and
o=@ — 2+ Y —y)* + @ —2), 5= — )+ (Y — ye)* + (2. — 2),
G(O) = U(W, Y, z)3 J('L) = a(xi, Yoy zi); dS(i) = ds(xw yi: Zz)y

ete.

Proof. i) If M; and M, are inner points of V,, then 1/7i and 1/7s have
continuous partial derivative of any order. Hence U and W are regular in
V and the identity (3’) holds.

ii) Let M; be a fixed inner point of V., and M; be an arbitrary point
on S. Now consider
1 o 1 1 5 1 5 1 ) 1

S( T Ty 4 o Ta T T )dV(O)
14

ow o by oy T 6z oz
() .
_ j 1 rf&dsw):—j 1 eos (ros, No) g
s T1o dn s T ,,'83
Here, since
ol 51

o T30
T I te.
L T 70 V() ete
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are the first partial derivatives of potentials with continuous densities of
a single layer, and the last integral represents a potential of a double
layer with a continuous density, they are both continuous, and the equality
(8") holds.

iii) In case where the point M; coincides with M, of S which is dif-
ferent from M;, we investigate the relation (8’). When M;—M, from V.,
(4) becomes

Py Py Vv v P O
0 0 -
(5) jy( o 0w T oy oy | 0z oz )dm)
_ 2r _ S 1 cos (e, No) 560
712 s T10 o )

In fact, the right-hand member of (4) becomes, when M;— M, from V.,

1 cos (7os, —NQ)--dS(O)> - j 1 “3,9,5,(.%211!0.),,(13(0) - ( —op L ¥>
02 \

lim
s T1o 712

M3—>Mz< Ss T10 To3

2
T2 s T10 7oz

_ 2 _ S 1 MCES,(_@&‘@-dS(O)‘

Multiplying u# and v and integrating, we get
1,1 51

R e
ol ol
(6) oo e >dV(0)]dS(1)}dS(2)
- S ) {Lva)[% _ Li: Wf dS(O):]dS(l)}dS(z).
If the inversion of order of integration on the left side is possible, we have
1 1
L”@){L”(DUV% ’ T dV(O)JdS(l)}dS(Z)
1 1
) =[{[[ 0~ Fmasw][{. /4<2>-6 ro-ase)|Javo
1,5 v,

and there hold analoguous formulas with respect to ¥ and z. If the inver-
sion of the order of integral of the right-hand member of (6) is legitimate,

then
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2ﬂL @) {L o(1)- %desa)}dS(z)

] 0 L] s #2039 asples

02

(8) — 27 L w(O)U(0)dS(0) — L U0) US (@) S9§%‘%‘i'—%l dS(z)] 4S(0)

= [ v feru0 — | e W aselaso

_ aw,
= L U©O) g, 80,

where dW,/dn, denotes the limiting value of dW/dn at M, from V,. From
(7) and (8), there follows

oU oW  oU oW  oU oW aw,
oU oW | oU oW  oU oW - * dS(0).
(9) S,,< oc oz T oy oy T 0z oz >dV(O) LU(O) dng 5O

Now it is sufficient, in order to invert the order of the integration in the
left-hand member of (6), to show the existence of the integral

1 1

\0' ""a;"f\ -
T | T2 !
10) [ [ o[ —re = reavo)asm)ase.
We have evidently
1 1
j Eh.f}f&o, dV(o)gS 1 1 dv0)
an vl 0x ox T Jvr T Ty
1 1
<\ -5 —5-dV(0).
Sjgaﬂn Tgod ©

By the use of (III), i.e.
3
S LI avgy= 7,
Q3

3 3
T T2 712

if we take a positive constant A such that A = Max|v(1)|, (10) becomes

1 51
v T Tw | L
LI (l)IUVi bu Py 1dV(0) sta)

12)

s T2

gAj * dS(l):Arr”g L as.
Js Ti2

The last term is bounded with respect to M, in £2;, and the same is true for
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similar terms. Therefore (10) converges uniformly.
Next, in order to invert the order of the integration in the right-hand
member of (6), it is sufficient to show that the inequality

(18) X 1 leos (ra, No)| 4 S(0) < — :g_x

s Two Tgo r
holds, where C is a positive constant. Since S is a regular surface, we can
choose a constant ¢ and 4 such that

[ cos (130, No) | < ardy 0<i<1)

hold. Now let ¢ be the part of S which lies in the sphere with center M,
and radius . We put

” ) 1 |ecos g%o, MdS(O)=((

s T1o 20 JS-0o

i 5 5> 1 LCQS,,(T%OJOHdS(O).

2
710 T3

The first integral on the right-hand member is bounded at M,. Let ¢’ be
the projection of o onto the tangential plane at M, and 7/, and 7}, denote the
projection of 7y, and 7y, respectively. Since S is regular, it is possible to
take a positive constant 6 such that between any vector » € ¢ and its pro-
jection 7" ¢’ we have r <2r and in particular dS(0) < 4dS’(0) where dS’(0)
denotes the projection of dS(0). Then

1 | cos (72, No)| 1 1 4 ,
j - Leon T M)l gg0) < jr ~ a2 dSO) <S ds'(0)

Tl el 2=
s T1o0 20 10 o T T
and hence

1 , N C
5 1 Jcos (%250 AdS(O) < e

s T 20

where C’ is a constant. Therefore the inequality (13) holds, and con-
sequently

[ @] el { o tees e Nl aso [asm]ase)

T10

exists.

7. Iterated nuclei of integral equations.
We consider an integral equation in space £2,, which is of the form

(1) 1(0) = CLK(I, Ou(L)dS) +£(0),

where
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_ 1 cos(rw, No)
(2) ELO== 4 o

We investigate the properties of the iterated nuclei of the equation
1). We put

(3) K, 0=K10, K, 0>=LK‘(1’ DK, 42, 0dSQ) (=2

Since S is regular, we have
(4) lcos (110, No)| < ard, 0<2<1,
a being a positive constant. Then we have

_ 1_‘ J,,CQS,(”"W N"),',/rm— -2 ~ a
2 ! 10 27"

Therefore we can write

G, 0)
,r;rln)—l—)\ ’

(5) K1, 0)=

where Ci(1, 0) is a continuous function of M, and M,.

In order to investigate K,(1, 0), we describe a sphere about M, with a
fixed radius J, and denote by t the part of S in the sphere. 7, indicates the
part of S within the sphere about M; with radius 27y, (7,<6/2). Besides
we denote by t/, the projection of v onto the tangential (hyper-)plane at
M;. We put

(6) K1, 0)= (j

S—=

+ j )Kl(l, 2K,(2, 0)dS@) = I, + L.

Let My, M;e 17, and My, S —<, then I, is a continuous function of M, and
M;. By similar reasoning as in §6,

|| = 5 1 cos(ry, No) 1 Ag@(;goz M) s
20 '

< 27 | ra! 2r
4 1 1 ,
< g ) g 09

By the lemma II, we obtain

1 1

1 1 1
plmei-appmoi-a 8@ < , SQ

1 ’
[Iz|<;2*L, ey Tim—1=2 ';gn_x-xds(z)

(7)

1
= 7_[2* m-im—1—2,m—1-=2) P



124 YASUO NOZAKI
Therefore, by suitably choosing C.(1, 0), we have
(8) K1, 0)=Cu1, 0) 4o

10
The repetition of the above process implies

1
(9) K1, 0)=Ca(1, 0) o=
10
Hence if we choose a positive integer n such that
n—1

m—1—nd<0 ie. n> o,

then K,(1, 0) is a continuous function of 7,. Hence we can write the equa-
tion (1) in the form:

(10) u(0) = ¢ j KL, Op(l)dS() + 5240,
and

11 Z.0)=s50+C LK(L Ou®dS@) +---+C" 7t L K, (1, 0)u(1)dS(1),

where K,(1, 0) is a continuous function of 7y,.

8. Integral equation of the Abel’s type.

In space £,, we consider the integral equation
1 _
(1) o, i @@=

where ¢(P) is a continuous given function.
To solve (1), we multiply (1) by 1/7%y (0 <u<m) and integrate, then

L ) el L

9m Thq Thy
By inverting the order of the integration, it becomes
(2) ' 1oL ogp f(Q)dQ:S o@) 1 ap
2, 1J2n The Tm Qm Ty

By the lemma II, we have
1 _ 1
(3) Hal )|, fQ@pimmdQ= [ ¢®) 4 dP.

Applying the Riesz’s operator (A), there follows
Cul2m = 2= ) Holly I 2 -+f ) = | 9(B) 0 aP.
Qi ’rPM
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RS

™. 22m A—p__ > T D AAIZ("L D-A- IJ~+2f(M)

(4) ( (%)

Then

SRTERE)

By the property (D) of Riesz’s operatior, it becomes

— M. Qem - A F(mz—j)[( ZL;’“> Jem =D~ A-uf(M)
(5) F<'2’)F< 2’)
- s 4 Jor

Now since I°f=f, if we put 2m —2—A4—u—0, i.e. u—2m —2—1, we then
obtain from (5)

K(m, ,i)f(M)zja (P)A( e 2
where F( - )F<g y :m>
K(m, )= — n"‘-r< 124>F(2¥“2— ﬁ) ~.
2
Hence
(6) FOD= o o e®A( L di e,

In order that the integral in (6) exists, the function ¢ must behaves con-
veniently at the origin and at infinity. But, for example, it is sufficient for
this purpose to suppose that ¢=o0(r*), a>0 at the origin and ¢=r"*,
k>m —A4 at infinity. The expression (6) then gives the solution of the
equation (1).
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