
ON ANALYTIC FUNCTIONS WITH POSITIVE
REAL PART IN AN ANNULUS

BY YUSAKU KOMATU

1. Introduction.

In a previous paper [5], considering a class of analytic functions regular
and of positive real part in the unit circle, we have given an extension of
Rogosinski's theorem [cf. 8] and further established several related mean
distortion theorems. The purpose of the present paper is to show that
corresponding results can be derived for an analogous class of analytic
functions defined in an annulus. The previous results will then be regarded
as limiting cases where the interior boundary component of the annulus
degenerates to a single point.

Let 9ΐ = {Φ(z)} be the class of analytic functions which are single-valued,
regular and of positive real part in the annulus ( 0 < ) # < | 2 | < 1 and nor-
malized by the conditions

= 1 along \ z \ = q

and

Γ
J-<

The last normalization is supposed only for the unique determination of an
inessential purely imaginary additive constant. These normalization condi-
tions imply, in particular, that the constant term in the Laurent expansion

oΦ(z ) e ϋϊ is equal to unity. In fact, this quantity is given by

--1- Γ Φ(qeίθ) dθ = ~~- Γ (31 Φ(qeίθ) + i
£π j -π Zπ J _ O T

But, since the first condition depends not only on the mean value, it asserts,
together with the second condition, more strong restriction.

2. Representation formula.

In case of the unit circle as a basic domain our method has depended on
the Herglotz representation for the class considered. Correspondingly, we
now derive an integral representation of Villat-Stieltjes type valid for any
function of the class 3i. Though it is really a consequence of a more general
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representation formula given in a previous paper [3], it will play main
role for the present purpose so that we formulate it here fully for the sake
of completeness. Similar formulas are found also in various papers; for
instance, cf. [1], [7], [6] etc.

According to circumstances we shall use notations in Weierstrassian theory
of elliptic functions. Throughout the present paper, we suppose that they
always concern those with primitive periods

2α>ι = 2π and 2ωs = — 2ΐ Ig q,

unless the contrary is explicitly stated.

THEOREM 1. Any Φ(z)^9t is representable by means of an integral of
Villat-Stieltjes type in the form

2 f«
= ~- Γ (c(»

1 J-π\

where p(ψ) is a real-valued increasing function defined for — π < <p ̂  π and
with the total variation equal to unity, i.e.

dρ(<p)^Q ( — π<φ^π) and I dp(φ)=l.
J -<re

Proof. We introduce a real-valued function defined by

p(r, ψ) = ~- Γ 5R0(™ίβ) dθ (- π < φ ̂  π, q < r < 1).
An J-,π

In view of assumption $Φ(reίθ)>0, it is an increasing function of ψ for any
fixed r with q < r < 1. Its total variation is equal to

rtr,7θ = 3l--
2π^

where c0 denotes the constant term of the Laurent expansion of Φ(z); Φ(z)
being single-valued in the annulus, the middle member of the last relation
is independent of r. Remembering the boundary behavior of Φ(z) along \z\=q,
it can be analytically prolonged across \z\ = q. In view of its normaliza-
tions, we thus get

Hence, p(r, φ) is, qua function of φ, uniformly bounded for q < r < 1 and its
total variation with respect to φ is always equal to unity; cf. the final
remark in §1. Now, applying Villat's formula (cf. [9] or [2]) to Φ(z) with
respect to a sub-annulus q < \ z \ < r, we get
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r

= . [ C(i Ig z + <ρ, f ) dp(r, ψ) -
* J -<re \ * / Jΐ

c being a real constant. Here the parameter q/r associated to zeta-functions
means that their quasi-periods are 2π and — 2i Ig (q/r). Based on the pro-
perties of p(r, φ) mentioned above, Kelly's selection theorem shows that
there exists a monotone increasing sequence {rfc} with r fc-»l (&->oo) for
which the limit function

ρ(φ) = lim p(rk, φ)
k

is defined throughout —π<φ^π. Evidently, ,o(^) is increasing and its total
variation is equal to unity. Now, on account of Lebesgue's convergence
theorem, since the derivative (d/θψ) C(i Ig z -f φ , q/r) = — £> (i Ig z + φ, q/r) is
continuous in φ as well as in r, we obtain the limit relation

ί
π / ^ \

ζ ( ί l g z + ψ,—} dp(rk, φ)
-* \ rk J

- lim f ("cf < Ig 2 + ̂ , -̂) o(rfc, ψ)F~* - Γ p(rk, φ) j-di Ig z
Λ ^ ^ L L V n / J9=-^ J-^r o1^ v
Γ

= C(i Ig «
L

Λ7Γ

= 1 C(i I
J-7C

valid for any z in q < | z | < 1. On the other hand, τ^(q/r) is continuous in
r. Consequently, we obtain

= 2 Γ ("c(i Ig 2 + f ) - %l-i Ig 2?
i J -π\ 7r

It remains only to determine the value of the real constant c. For this
purpose, we observe the integral of Φ(z)/z along | z \ = q which, after divided
by 2πί, becomes

1 = ^ Γ Φ(qe*) dθ
2π J-OT

= -— f * dθi2. Γ (c(i Ig g - 0 + p) - 3±(i Igq- θ)\ dp(ψ) + ic}
£TC f J — π [ . t ' J — > π \ f t / J

= Γ dp(ψ) -. Γ (ζ(i lgq-θ + φ)- -^-(i Ig q - ff)) dθ + ic
J-π πl J-π V 7Γ /
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= J

π

Comparing the imaginary parts of both members, we get

0 = - ̂  Γ ψ dp(φ) + c i. e. c - 2^ f * ψ dp(φ).
n J-π π J-π

Substituting this value of <?, we finally get the desired representation for

The theorem just proved shows that any function of 3ΐ admits a repre-
sentation of the type given there. It can be shown, moreover, that the
representation is characteristic for the class 9ΐ. In fact, the converse of
theorem 1 holds also good.

THEOREM 2. Let p(φ) be a real-valued increasing function defined for
— π<φ ^π and with the total variation equal to unity. Then the function
defined by

Φ(z) = 2. Γ ( C(i lg * + ψ) - -% lg * + φ)} dp(φ)
* J —π \ n /

belongs to the class 9ϊ.

Proof. The integrand ζ(i lg z + φ) — (ηi/π) (i lg z + ^) remains invariant
under the substitution lg z | lg z + 2πi and hence Φ(z) is single-valued in
q < I z I < 1. It is evident that Φ(z) is regular in the annulus. We now
observe the function defined by

__, N m & t -, ι , ^ Wl , - ι , Λ o o f*/ - Ί , \ ώ^i τJEΓ(«; ^) = 9ϊ .-( ζ(ι lg ^ + ψ) — -^(i lg « 4- φ)] =2!sζ&lgz-{-<p) ' lg z

It is regular and harmonic in z for q < | z \ < 1. It can be expressed in two
alternative ways:1}

°; ψ) = + _9 ~~(I_ \ , 2 + 2Σ q

 Λ __ 2{
r cosK#-0

The first expression shows that #(z; ^) has the boundary value vanishing
everywhere along | z \ = 1 except at a single point z = eίφ where it behaves
like as the Poisson kernel (1 — |z | 2 )/ | 1 — 21 2 which is positive for \z\<l.

1) A similar argument has been made in [4]; cf. Lemma 4. 1. In this occasion,
we wish to correct a misprint involved in [4], In p. 114, 1. 7 from bottom, P(reiθ', φ)
should be replaced by 2P(reίQ; φ).
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The second expression shows that H(z\ φ) has the constant boundary value
equal to unity along \z\ = q. Consequently, by the assumption imposed on

)j we conclude that

- Γ H(z; φ) dp(<f) > 0 (q<\z\<l)
J-<77

and 3lΦ(z) = l along \z\=q. On the other hand, we further get, as shown
in the proof of theorem 1,

1 Γ
2π

Γ Φ(qei»)dθ=Γ
J — π J — <

whence follows, in particular,

Γ
J-<

Thus, the function Φ(z) satisfies surely all the conditions imposed on the
class 9ΐ.

Throughout the present paper we shall observe exclusively the class $.
However, the results which will be obtained for this class can be modified
suitably so as to be valid for other analogous classes. The most essential
point in our subsequent discussions is that any member of the class admits
an integral representation of the form

with certain kernel K(e~ίφz) which is in itself a member of the class for
every value of <ρ and corresponds to (2/i) (ζ(i Ig (e~iφz)) — (ηι/π)ί Ig (e~iφz)) in
case of 9ΐ. Cf. a similar remark stated at the end of §4 in [5].

3. Extremal mapping.

In case of the unit circle as a simply-connected basic domain, the linear
function (l + z ) / ( l — z) which maps | s |<l onto the right half-plane has
played mostly the role of an extremal function for distortion theorems
discussed in [5]. In our present case of the annulus q<\z\<l as a doubly-
connected basic domain, the function

Φ*(z)= |(c(*lgz)-^lg

will play the corresponding role. Accordingly, in order to prevent the inter-
ruption of our main discourse, its mapping behavior will be investigated
here preparatorily.

The function Φ*(z) possesses as its associated function p(<p) a particular one
which remains unchanged except at a single jump with the height 1 at
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^ = 0. Hence, by theorem 2, it belongs surely to the class 32. Further it
is regular throughout the closed annulus q^\z\^I except at a simple
pole at 2 = 1.

Now, as shown in the previous paper [4; cf. Lemma 4. 2], for any fixed
r with q<r<l the quantity Sζ(i\gr — θ), qua function of 6, is an even
periodic function with the period 2π which is strictly decreasing for
0^<f <Jττ. Consequently, the quantity defined by

π

possesses the same properties. On the other hand, for any^fixed r with
q<r<l, the quantity defined by

is evidently an odd function in θ. Hence, the function Φ*(z) is univalent in
q<\z\<l. Along the unit circumference it satisfies

WΦ*(eίQ) = 2SC(- 0) = 0 (0 < I θ I g TT).

Consequently, the image of q<\z\<l by the univalent mapping w — Φ*(z)
is the right half-plane cut along a vertical rectilinear slit which lies on
$ϊw = 1 and is bisected by the real axis. The point z = l corresponds to
w — oc.

The relation 9tΦ*(2) = l valid for \z\-q has been remarked in the proof
of theorem 2. But it can be shown alternatively in more direct way. In
fact, we have, by taking Legendre's relation into account,

-θ)- 2^ Ig q
π

We next consider the derivative of Φ*(z) with respect to Igz, i.e.

As z = reίθ describes the circumference \z\ =1 from l|to —1 and then from
— 1 to 1 both in the positive sense with respect to | z |< l , the point Φ*(z)
describes the imaginary axis from -f too to 0 and then from 0 to —ICG
monotonously. Hence, the point
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lies always on the negative real axis. On the other hand, as z = reίθ de-
scribes the circumference \z\=q in a definite sense, the point w — Φ*(z)
describes both banks of the slit lying on 3iw — 1 monotonously. Hence, the
point

ίzΦ*'(z)γ=qei" = l ~4τϊφ*(qeίo)
^ dσ

lies always on the real axis. Now, the function zΦ*'(z) is regular through-
out the closed annulus q <£ | z \ ̂  1 except at a single point z — I where it has
a double pole. Consequently, the function zΦ*'(z) is univalent in q < \ z \ < 1
and its image is the whole plane cut along an infinite half -line lying on the
negative real axis as well as a finite slit containing the origin and lying on
the real axis, these slits corresponding to | z =1 and \z\=q, respectively.

The univalency of zΦ*'(z) in q < z\<l can be verified alternatively. In
fact, we have only to remember that

eίθφ*'(eίQ) = 2(-p>(-θ)-3±-

is a real-valued even function in θ and, as θ moves from 0 to π, its value
moves monotonously from — oo to a finite value. It may be noted by the
way that this finite value representing the end-point of the infinite slit is
equal to

which is evidently negative; cf. [1].
On the other hand, two end-points of the finite slit are the images of

z = — q and z = q and have the affixes

V π J \ π J \ π ) \ π )

which are negative and positive, respectively. Two boundary elements
lying on the origin are the images of the points which correspond to the
end-points of the slit originating from \z =q by the mapping Φ*(z). Th^ίr
arguments are the roots of the equation Φ*'(qeίθ) = 0, i.e.

Their

of which the left-hand member is even with respect to θ.

Finally, it will be convenient for later purpose to use series forms for
Φ*(z) and zΦ*f(z) which are given by

l g z ) - ^-i lgz]=l +2 Σ' —
π I v = - o o l —

and



FUNCTIONS WITH POSITIVE REAL PART IN AN ANNULUS 91

Here the prime means that the summation extends over all the integers
except zero.

4. A lemma.

In simply-connected case we have established a principal lemma for de-
termining the whole of extremal functions in mean distortion theorems
discussed there. It has been of considerably general nature and hence
mostly satisfactory for our problems considered. It seems, however, difficult
to extend the lemma directly to doubly-connected case. Accordingly, we
restrict ourselves in the present case to a weaker and somewhat trivial
form as formulated below. It is desirable to establish a proposition of more
general nature.

LEMMA 1. Let f(θ) be a complex-valued continuous function of a real
variable which has 2π/n as a period, n being a positive integer. Let
further w~f(θ) describe for 0^θ<2π/n a (closed) Jordan curve. Let p(ψ)
be a real-valued function defined for — π < <p ̂  π which is increasing and
has the total variation equal to P>0. Then, in order that the relation

Γ f(θ-<p}dp(<p) = Γ \f(θ-ψ)\dp(φ)
J — 7C J —-π

holds identically with respect to θ throughout — π<θ^π, it is necessary
and sufficient that p(φ) remains unchanged except possibly at n jump-points
which are distributed equidistantly in — π < <p ̂  π.

Proof. The sufficiency assertion is readily verified. 2) In fact, let ρ(φ)
remain unchanged except possibly at n equidistant jump-points φ0 + 2kπ/n
(Q<;k^n — ϊ) with the heights pk ^ 0, respectively. Since f(θ) is supposed
periodic with 2π/n as its period, we then have

I C™

I J _ <
f(θ-Ψ)dp(ψ)

= l/(0-fo)|P=Σ !/(#-'
* = 0

= =Γ \f(θ~φ)\dp(ψ).
J-<π

To prove the necessity of the condition, suppose that the relation holds
identically with respect to θ. Then, for any fixed θ, the quantity arg/(# — ςr)
must have the same value depending only on θ for every value of φ with
df>(φ)>0, provided f(θ — φ) does not vanish. Let φQ and <pί be any values

2) For the sufficiency proof, we need not assume any mapping character of
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of ψ with dp(φ)>0. By assumption, the quantity f(θ — φ) describes for
every φ a Jordan curve, as θ varies from 0 to 2π/n. Hence, in order that
the equation arg f(θ — ψ 0) = arg f(θ — ψι) can hold identically with respect to
θ, it is necessary that f i — φ0 = Q (mod2τr/w) as desired.

5. Main results.

We are now in position to enter in our main discourse which proceeds
for the most part similarly as in the simply-connected case previously
discussed. We observe namely a linear operator J7 which has 9Ϊ as its
domain of argument function and produces by applying to any Φ(z) e 9Ϊ an
analytic function J7[Φ(z)] single-valued in q< \z\ <1. It is supposed further
that the operator is homogeneous of degree zero, i.e., for any constant c,
the function J?[Φ(z)] coincides after substitution z\cz with j:[Φ(cz)~\.

We begin with a general mean distortion theorem. Though its proof
proceeds quite as in the simply-connected case, we reproduce it here fully
since this theorem is fundamental for subsequent discussions.

THEOREM 3. Let X denote a linear operator defined for $t and
applied to Φ(z) e 91 be an analytic function single-valued and meromorphic
in # < | 2 | < r ( < l ) and regular along \z\=q. Let X be commutable with
the integration with respect to p(ψ) in the representation for Φ(z) stated
in theorem 1. Let further F(X) be a bounded increasing convex (and hence
necessarily continuous) function defined for the range of \ £\. Then, for
any Φ(z) e 9ΐ, we have

Γ F(\X^Φ(reίQ)~\\)dθ^ Γ
J-<7C J-7C

where Φ*(z) denotes the particular function

The function Φ*(εz) is for any constant ε with \ ε \ = 1 always an extremal
function of this estimation.

Proof. The representation formula for Φ(z) given in theorem 1 implies

rβί(9-9))] dρ(φ)

since the operation J? and the integration with respect to p(φ) are supposed
commutable. The increasing character and the convexity of F(X) imply
further

F(\ X[Φ(reί0)] I) ̂  F(\ \ X[Φ*(reί(0-9)] | dp(φ)

^ F(\ jτ
— π
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since p(φ) is increasing for —π<φ^π and has the total variation equal to
unity. Hence, integrating with respect to θ, we get

Γ
J —

9))] \)dp(ψ)

=
J —

Finally, for any ε = e~ίφ° with real ^0, we have

Γ F(|j:[0*(reί(θ-φo)]|)^^ Γ""0 jF
J— -π J — π— <PO

= f
J-

since the integrand of the last member is periodic in θ with the period
equal to 2π.

As a supplement to theorem 3, it must be natural to consider the problem
of determining extremal functions in the estimation. But lemma 1 which
serves for this purpose has been formulated in a weaker form than in the
simply-connected case. Accordingly, to deal with the problem, we have here
to impose an additional restriction on the operator X which seems somewhat
superfluous.

THEOREM 4. Under the conditions imposed on X in theorem 3, suppose
further that X[Φ*(z)~\ is non-constant and that the function F(X) is
strictly increasing. Moreover, let X\_Φ*(z)~\ be a single-valued function of
zn and the image-curve of the arc \z\=r, 0 ̂  arg z < 2π/n by the mapping
w = J?[Φ*(2)] be a Jordan curve. Then, the equality sign in the estimation
given in theorem 3 holds if and only if Φ(z) is of the form

= ΣpkΦ*(e-2k"t/nεz)

where ε is a constant with \ ε \ = 1 and {pk} is a set of n real numbers
satisfying

Proof. Based on the proof given above for theorem 3, we see that the
extremal character of Φ(z) is characterized in terms of its associated func-
tion p(ψ) by the requirements

I Γ J7[0*(reί(θ-9))] dp(ψ) = Γ I j:lΦ*(re«»-"K \ dp(φ)1 J-OT J-OT

and
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( Γ I
\ J — -π

X [Φ*(reί(<>-' »)] I = F(\ )] I) dp(ψ),

both to be valid identically with respect to 0. By applying lemma 1 to the
function defined by /(0) = X[Φ*(reίθ)], it follows from the first requirement
that for any extremal function Φ(z) its associated function p(ψ) remains
unchanged except possibly at n jump-points which are distributed equi-
distantly in — π <ψ^ π. Let p(<p) jump at φ0 + 2kπ/n (Q^k^n — 1) with the
heights j t f f c ^ O , respectively. Then, the extremal function Φ(z) must have
the form

Φ(z) _r
-J-Φ*(e~ίφz) dp(φ) =

Conversely, for any function Φ(z) of this form its associated function p(ψ)
satisfies the above requirements. In fact, by virtue of the assumption that
J7[Φ*(z)] is single-valued with respect to zn, we obtain

Γ
J — *

dp(ψ)
TO-1

γiί

= Σ!

and hence further

.,,.,]l=j-
J -<π

=

6. Illustrating examples.

In theorems 3 and 4, several sorts of choice are possible for JL as well as
F. We first give a simple example which is really an immediate consequence
of these theorems but may be of some practical interest.

THEOREM 5. Let L(r) = L(r; Φ) denote the length of the image-curve of
\z\=r by a (not necessarily univalent) mapping Φ(z) e Σft. Then we have

_ ΓOT|Ξ2L < r < 1).

equality sign holds here if and only if Φ(z) is of the form Φ*(sz)
with I ε I = 1.

Proof. Put j:=zd/dz and F(X) = X. Then it follows from theorem 3
that
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\Φ'(reίQ) ^r Γ \ Φ*f

J — π
(reίθ) \ dθ = L(r; Φ*).

In order to verify the assertion on extremal functions by means of theorem
4, we have only to remember that the function J7[Φ*(2)] — zΦf(z) is univalent
in q< \z\ < 1, a fact which has been shown in §3 and assures the condition
imposed on X in theorem 4 with n = I.

As further illustrating examples, we can state more generally the fol-
lowing results:

THEOREM 6. Let n be a positive integer and F(X) be an increasing
function convex for X^Q. Then, for any Φ(2) e Dΐ, we have

ΓJ- π

ί
π

*
— π

n
V ί

-π

..
dθ^ F(\Φ*(rV°, qn)\)dθ (q<r<

n
θ^\ F(nrn \ Φ*'(rneίθ, qn) \ ) dθ

(q<r<ΐ);

here the parameter qn associated to Φ* and Φ*f indicates that the ζ- and
p -functions involved in the expressions for Φ* and Φ*' depend on the
primitive periods 2π and —2i Ig qn. Suppose F(X) be strictly increasing.
Then the equality in every estimation holds if and only if Φ(z} is of the
same form as in theorem 4.

Proof. We may put

n
and

respectively, whence readily follow both estimations desired. In fact, we
remember the identities

1 n-1

W ^0

1 n-1 / co /yfι£>2?ιk<π^//n
-fl + 2 Σ' r̂ ijr-

Λ = - O O 1 ~ α^Λ

and

cί 1 w~^
d ;̂ tι Λ=O

cf. the series expansion of Φ*(z) given at the end of §3. Thus, theorem 3
implies

J_^ \n l*=o
dθ

F(\Φ*(rne10,qn)\)dθ
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and

Γ F(~~\Σe-2k'πί/nΦ'(reί™-2k"/n^ }dθ^Γ F(nrn\Φ*'((reίQY, qn)\)dθ
J _ ^ \n\Xs=Q / J _ π

= Γ F(nrn 1 0*'(rVθ, qn) |) dθ.
J-<π

The mapping characters explained in § 3 then show that both Φ*(zn, qn) and
nznΦ*'(zn, qn) satisfy the conditions imposed on J7[Φ*(2)] in theorem 4, whence
follows the final part of the present theorem.

While — Ig X is a function convex for X > 0, it is not increasing so that
theorem 3 cannot be applied directly with F(X) = — Ig X. However, a sup-
plementary inequality can be derived with reference to this function.

THEOREM 1. Let X satisfy the conditions mentioned in theorem 3. Then,
for any Φ(z) e 9ϊ, we have

r^6)] | dθ (q<r< 1).- Γ te I -£lΦ(reίθK \dθ^lg (^ Γ
ft J- π \ 6K J -π

Let X further satisfy the additional conditions imposed in theorem 4.
Then, the equality sign in the estimation appears for any fixed r if and
only if Φ(z) is of the form stated in theorem 4 and further w = <£[_Φ*(z)~]
maps \z\=r onto an n-ply covered circle with center at the origin.

Proof. The estimation can be derived readily by means of theorem 3
applied to F(X) = X/2π together with the concavity of Ig X. In fact, we
thus get

-0- [" Ig I X[Φ(re' 0)] I dθ ̂  Ig (- -1- f [ X[Φ(reίθ)] | dθ

In the last relation the equality sign of the first inequality holds if and
only if \Φ(reίθ)\ is independent of ΰ, while that of the second holds if and
only if Φ(z) is of the form stated in theorem 4. But, for any Φ(z) of the
last-mentioned form, we have

so that I J7[Φ(reίθ)] I and |X[Φ*(reί9)]| are simultaneously independent of θ.
The image-curve of | z \ = r, 0 ̂  arg z < 2π/n by the mapping w = J?[0*(z)] is
supposed to be a Jordan curve and hence the requirement of this inde-
pendency is equivalent to the final assertion of the theorem.

7. Areal distortion.

Theorems 3 and 4 imply as an immediate consequence an areal distortion
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which is formulated as follows:

97

THEOREM 8. Under the conditions imposed on x and F(X) in theorem
3, we have

Γ r dr Γ F(\ j:[Φ(re'Θ)] |) dβ ^ Γ r dr Γ F(\ X[Φ*(reίθ)] |) dθ
Jro J — -π Jr0 J — <ττ

(g ̂  r0 < r < 1)

and £/&e function Φ*(εz) is for any s with \ e \ = 1 always an extremal func-
tion of this estimation. By supplementing further assumptions imposed
on X and F in theorem 4, we can conclude that the equality sign appears for
any fixed r0 and r if and only if Φ(z) is of the form stated in theorem 4.

Though the subsequent theorem may be regarded as a particular case of
theorem 8, it will be of some practical interest, so that we formulate it here
explicitly.

THEOREM 9. Let A(r0, r) = A(rQ, r; Φ) denote the area of the image-domain
of (q^)r0<\z <r(<l) by a (not necessarily univalent) mapping
the area being counted according to multiplicity. Then we have

A(r0, r) ΞΞ Γ r dr [ * | Φf(reίQ) |
Jr0 j -<ττr

dθ

v α 2

The equality sign in the estimation appears for any fixed r0 and r if and
only if Φ(z) is of the form

Φ(z) = Φ*(εz) = 2.(c(i Ig (εz)) - -?1

^\ π

Proof. The estimate for A(r0, r) becomes

Γ rdrΓ \Φ*'(reiθ)\2dθ
Jr0 J — <π

ί
r Γπ A

r dr 4
rβ J-ot T2

Cr 4 C ̂
= *dr\

Jr0 r J _ π

The mapping character of zΦ*f(z) explained in § 3 shows by virtue of theorem
4 that extremal functions are only those of the form Φ*(ez) with | s \ = 1.

Theorem 9 may be proved alternatively by means of the estimation for
Laurent coefficients of Φ(z) e 9ΐ. For this purpose, we prepare a lemma on
an integral representation for Laurent coefficients.

LEEMA 2. Let the Laurent expansion of Φ(z) e 9ί be
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Then we have
2 ΓOT

cv = --• 2v e~tv9 dp(ψ) (v = ±1, ±2, - •),
•I — (7 J — <π

where p(φ) is the function associated to Φ(z) in theorem 1.

Proof. Remembering theorem 1 together with the expansion of Φ*(t
given at the end of §3, we get

J OT 2 / yj_ \

-*c ί \ π )

ί
π / co z»e-ιv<? \ oo^ 2 Γ^

_<τA V = -Ocl — g - V / V = -00 1 — (J2V J^/π;

whence follows the desired representation.

Now, we have really

A(rQ, r) = Γ r dr Γ | Φf(reίQ) |2 dθ = Γ r dr 2ττ Σ' v 21 cv |
2r2v~2

J rO J — -π J ΓQ V - oo

ar Tϊ- -
= -oo (1-1

The extremal functions are characterized by |c v | =2/ | l—g 2 v | for any v=^0
while even a single equation \d\ =2/(l —q2) or |c_ι | = — 2/(l — ̂ ~2) implies
that dp(φ) must vanish except at a single jump, ^0 say, whence follows
Φ(z) = Φ*(εz) with ε = e'^.

8. Radial distortion.

Theorem 5 concerns the distortion on the image-curve of a concentric
circumference by a mapping function belonging to 9ί. As a supplement we
deal here with an analogous distortion on the image-curve of a radial
segment. It is an immediate consequence of a distortion theorem on deri-
vative in the class 3£ which may be formulated as follows:

LEMMA 3. For any Φ(z) <Ξ SR, we have

equality sign holds at any assigned point z = teίφ° with q<t<l if and
only if Φ(z) = Φ*(e-ίφ<z).

Proof. From lemma 1 we have, for any

3) Cf. the final remark in § 1.
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- -
dz

(v = l,2, .)

with

Γ
J-<π

The integrands in the right-hand members can be expanded in Laurent series

z~^Φ\z) = - 2(f>(i Ig z) + -'-'Λ = 2 Σ'
dz \

and

A X 2 V + 1

π μ=-oo

both containing positive real coefficients alone except the vanishing constant
terms. Consequently, there follows readily the desired results.

Though the derivative of any odd order of Φ*(z) with respect to Igz can
be so simply estimated as shown above, it is not the case for that of even
order. In the latter case, the best estimate depending on r alone will be
not analytic in r throughout q < r < 1.

THEOREM 10. Let q^r0<r<l. Then, for any 0(z)e9ΐ, we have

drJro
Φ(teiβ) dlgt

2

(- I)-1 v

' ~- C« Ig r.) - i Ig - = 2
π TO / μ=-oo 1 — q

co / /

*-»(ί Ig r) - p<«v-»(t Ig rβ)) =2 Σ' -^
μ=-oo

(v-1,2,

equality sign in every estimation holds for assigned values of r0, r
and 6 if and only if Φ(z) is given by Φ*(e~iθz).

Proof. By virtue of lemma 3, we have

Φ(teίθ)

Integration with respect to Ig t leads to

Φ*(ί).

dlgί
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whence follows the desired estimation by substituting the actual expres-
sion for Φ*(z). The extremal function is characterized by the relation
\(d/dlgtΓ+1Φ(teiθ)\=(d/dlgt)^+1Φ*(t) to be valid for any t with r0<t<r,
whence follows the final assertion of the theorem.

The case ^ = 0 in theorem 10 may be of practical interest so that it will
be separated especially as a corollary in the following lines.

COROLLARY. Let Λ(rQ, r, θ) = Λ(r0, r, θ\ Φ) denote the length of the image-
curve of a radial segment arg2 = 0, (q^)rG< \z\ <r(< 1) by a mapping

9L Then we have

Λ(r0, r, 0) = Γ \Φ'(teίθ)\dt
Jr0

r0) - '' i lg -
*fc\" ~ ' - ~ - π ~ To; μ~^ ι_ g 2μ

The bound is attained only by the extremal function

T(ίlg(e- ίθ3))--*-ilg(e-
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