
ON SOME ANALYTIC FUNCTIONS IN AN ANNULUS

BY HITOSHI ABE

1. Introduction.

Recently Goodman [2] has studied the class of analytic functions f(z)
typically-real in the unit circle | z | < l , i.e., satisfying the condition

^ 0 for | s | < l ,

and further having a zero or pole of order 1 at the origin. He then has
derived some sharp distortion theorems and many other results.

In the present paper we shall first deal with the class of functions which
are single-valued and meromorphic and satisfy the condition 3/(2)32=^0 in
the annulus

q<\z\<l

Hereafter we denote this annulus by D. Under the condition 3/(2)32^0
we can easily show that all the poles of these functions lie on the real axis
and are of order 1, as it has been remarked by Goodman in the case of the
unit circle [2].

On the other hand, Komatu [3] has investigated conformal mapping of an
annulus onto a ring domain bounded by convex curves or a star-like ring
domain and established several distortion theorems. We shall secondly deal
with the class of single-valued functions with positive real part in the
annulus D by means of Robinson's results [5] and then derive distortion
theorems related to Komatu's.

2. Typically-real function.

Let f(z) be single-valued, meromorphic and typically-real in the annulus D.
We begin with evaluating the absolute value of f(ά) (q<\a\<l). In this
section we assume 3α>0. It will be understood later that the case of 3α<0
is quite similar. In order to map the upper semi-annulus of D conformally
onto the unit circle we consider the following three steps:
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. v—v(a) , v I π . . -, a
t= - --- ;-<, v(α) = sn - - + 1 log—

v v ( α ) \ 2 g

In the first step the upper semi-annulus of D is mapped onto the rectangle
Dx: —π/2<ΪRu<π/2, 0<3u<\og (1/q), where an appropriate branch of log (z/q)
is considered. In the second step Dx is mapped onto the upper half plane
D2: 3v>Q, where an appropriate branch of the inverse function of the
elliptic function snu is considered. (See Nehari [4, p. 280].) In the last
step D2 is mapped onto the unit circle | ί | < l . In this mapping z~a corre-
sponds to t=0. Now we put

9(t)=f(z(u(v(t)))).

Then 3#(ί)>0 in the unit circle | ί | < l , and therefore 5R(~ΐflf(ί))>0. Hence
by means of Caratheodory's theorem

that is,
\f(a)zf(u(a))u\v(a))v\0) \ ^2S/(α)^2 \f(a) |.

Since

ww)1 U
we have the following theorem:

THEOREM 1. Let f(z) be single-valued, meromorphic and typically-real in
the annulus Ώ, For each non-real a ( g < | α | < l ,

where

is estimate is sharp as is shown by

f(z) = i 1 ±10*) = _snJτr/2-K log (^/g))-^ sn (ττ/2_+ ijog (α/g))

REMARK. The extremal function w=fo(z) maps the upper semi-annulus
onto the upper half-plane SwX) in such a way that the segment —l<z<— q
or q<z<l correspond to the segment — l/k<w< — 1 or l<w<l/k, respec-
tively. It is sufficient to make analytic continuation of fo(z) along each seg-
ment by the principle of reflection in order to understand fo(z) as a single-
valued analytic function in the annulus Ώ.
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Next we shall estimate the absolute value of f(a) (<j<|α|<l). Let α o =i
•(l+qO/2. Without loss of generality we can assume f(ao)=i, because if the
condition is not satisfied, it is only necessary to consider a linear trans-
formation of f(z). Moreover we assume 3α>0 as in theorem 1. We consider

v(z)—v(a0)'

where v(z) = sn (π/2+log (z/q)). It is clear that the upper semi-annulus of D
is mapped conformally onto the unit circle | s | < l by s(z) in such a way that
z=a0 corresponds to s=0. We put

9(s)=f(z(s)).

Then St(-ίflf(β))>0 and -iflr(0) = l. Therefore, we get

l-\s\

Thus we have the following theorem:

THEOREM 2. Let f(z) satisfy the same conditions as in theorem 1 and
moreover f(ao) = i, (ao=i(l+q)/2). For non-real a

l~\s(a)\

where
s(a)=—"-^άT' 1KJ* w ^ ~ ~ s n (π/2+i log (flo/g))_

sn (π/2+i ίog (α/g))-sn (π/2+i log (θo/<?)) '

Γ/̂ 'is estimate is sharp as is shown by

f (z)= id+?(?).) = sn (ττ/2+^ log (3/g))-9t sn (π/2+i log (αo/g))
W 1-8(3) 3sn(τr/2+ίlogf- 7-Nλ

Now we can derive the following theorem immediately from theorems 1
and 2.

THEOREM 3. Let f(z) satisfy the same condition as in theorem 2. For
each non-real a ( # < | α | < l , 3α>0),

* l±\s(a)[
|α|3t;(α) *

where v(z) and s(z) are the functions already defined.

In the following lines we shall estimate the absolute value of f(a) (q< | a | <1)
by means of the Bergman kernel function. As before, we assume 3α>0.
Let t~g(z) map the upper semi-annulus of D conformally onto the unit circle

under the conditions g(a)=0 and gf(a)>0, and K(z,a) denote the
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Bergman kernel function of the upper semi-annulus of D. Then it is known
(See Nehari [4, p. 252]) that

If we put
h(t)=f(g~\t))=f(z),

then 3t(-ίft(ί))>0 in | ί | < l . Hence |Λ'(0)|^23/(α), that is,

\f'(a)\^2VπK(a,a)\Λa)\.

Now let d denote the shortest distance from a to the boundary of the upper
semi-annulus of D. Then K(a, a) is estimated in terms of d as follows (See
Bergman [1, p. 6]):

Hence we have the following theorem.

THEOREM 4. Let f(z) satisfy the same conditions as in theorem 1. For
each non-real a ( g < | α | < l , 3α>0),

where d denotes the shortest distance from a to the boundary of the upper
semi-annulus of D.

3. Functions with positive real part and related ones.

We shall begin with proving the following two lemmas, which are slight
extensions of Robinson's results [5].

LEMMA 1. Let f(z) be single-valued and regular in the annulus D except
perhaps for a simple pole a (q<\a\<l) and satisfy, for given s>0 and
any point ζ on the boundary of D,

for zt=DΠV(O,

where V(Q is a neighborhood of ζ determined appropriately for ε. If
q<\z\<l and z/a<0, then

Equality occurs only when f(z) is a constant.

Proof. We may assume that α<0 and therefore q<z<l. Otherwise,
putting z'=az (aa<0, |αr| = l), g(z')=f(a~1z')=f(z), we have only to consider
g(z') for f(z). Without loss of generality we can assume f(zo)>O for a given
Zo with q<zo<l. We put



42 HITOSHI ABE

2F(z)=f(z)+f(z).

Then F(z) satisfies the same conditions as f(z), and moreover F(z) is real
for real z and F(zo)=f(zo). If F(z) is regular in D> lemma 1 is clear. If
F(z) has a simple pole at α, w=F(z) takes all real values from w^l+ε or
w^ —(1+ε) in the interval — l<z<— q, because F(a) = oo and \F(z)\<l+ε in
the appropriate neighborhood of C——1 and ζ=—q. Suppose F(zo)^l+ε.
Then this is incompatible with the fact that the values w^l+β are taken
only once by F(z). In fact, we consider the integral

1 f FΦ dz
)~2πi)~F(z)- w

along a simply closed curve which is sufficiently near the boundary of D,
and then we see that if we make w tend to oo, this integral tend to zero
and therefore F(z) takes every value | w | ^ l + ε once by the principle of
argument together with the continuity of this integral in w, because F(z)
has only one simple pole at a. Hence F(zo)<l+ε, that is, f(zo)=F(zo)^l. If
the equality occurs, F(z) = l and hence $tf(z) = l for real z. Therefore on the
positive real axis

because \f(z)\<l+ε in the neighborhood of C=# and ζ = l . On the other
hand, f(z) can take no value in \w\^l+ε more than once on the segment
q<z<l, where 3lf(z) = l. Hence f(z) = l in D identically. This completes the
proof.

Let α0 and ax be two points in D, where |αo| |αi |=g. And suppose that
H(z, 1 α0, aλ) is single-valued and regular, and has only two zero points of
order 1 at a0 and a0, and its absolute value is equal to 1 on the boundary
of D. Indeed such a function exists and it is expressed explicitly by means
of the theta function as follows:

1 a a\JMΔUJMΔ\, 1, Oo, *ύ-Wao lzVq)θ(lai i z,,/q)>

z'=a1z (|^i |=1, arg«f1=τr-argα0),

z"=a2z

n=l

LEMMA 2. Let f(z) be single-valued and regular in the annulus D. More-
over |/(s) |<l and /(αo) = O, (αo = i(l+g)/2). Then

mH(z,l; ao,a1)\ (q<\z\<l),

where ax is determined by the relation z/a,!<0, and | α o | | α i | = g. Equality
occurs only when f(z)=aH(z,l; α0, ax) (\a\ = l).
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Proof, We denote H(z, 1; α0, ax) simply by H{z). We consider

Then F(z) is single-valued and regular in D except perhaps for a simple
pole ax. Moreover, for given ε>0 and any point ζ on the boundary of D,
there exists always such a neighborhood of G denoted by F(C), that we have

\F(z)\<l+ε z

Here by means of lemma 1 we have the relation

\F(z)£l, that is, \f{z)\S\H(z)\.

The final part of the present lemma is also obtained similarly.

THEOREM 5. Let f{z) be single-valued and regular in the annulus D.
Moreover 9ΐ/(z)>0 and f(ao) = l (ao = i(l+q)/2). Then

l~\H(z)\<]f l+\H(z)\
l + | # ( z ) Γ n==l~\H(z)\'

This estimate is sharp as is shown by

Proof. The assumption /(αo)=l means no restriction on the generality.
We put

•/ω+r

Then |gr(z)|<l in D and ^(αo)=O. Hence by means of lemma 2

iίτ(*)i^ifl(*)i.
On the other hand

Therefore

i+\H(z)\"
Λ + \H(z)\
l-\H(z)\

THKOKEM 6. Under the same conditions as in theorem 5,

where K(z, z) is the Szegδ kernel function of the annulus D.
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Proof. We remember that f(z) = (X+g(z))/(χ-g(z)) with \g(z)\<l in D.
Hence (See Bergman [4, p. 87] and Nehari [4, p. 391])

Therefore

, f,(z) 1 = 21 g'(z) I

Finally by means of theorem 5 we shall prove two theorems. For this
purpose, we define star-like ring domain and convex ring domain.

DEFINITION 1. Let Ds be a ring domain with the boundary consisting of
two simply closed analytic curves which are both star-like with respect to
the origin. Then we call Ds a star-like domain.

DEFINITION 2. Let Dc be a finite ring domain with the boundary consisting
of two simply closed analytic convex curves. Then we call Dc a, convex
ring domain.

THEOREM 7. Let. f(z) map conformally the annulus D onto a star-like
ring domain Ds, where the circle \z\=q correponds to the inner boundary
of Ds and the circle \z\ = l to the outer one. Moreover let f{z) be normalized
by the condition aof/(ao)/f(ao) = l (ao=i(l+q)/2). Then

l~\H(z)l
l+\H(z)\ =

J
f(z)

Λ±\H(z)\

Proof. The assumption aof'(a,o)/f(ao) — 1 means no restriction on the gener-
ality. Otherwise, it is only necessary to consider a linear transformation
of zf'(z)/f(z). Now f(z) is regular on the boundary of D by the principle of
analytic continuation, because the both boundary curves of D are analytic.
Further we have $ί(zf{z)/f{z)) > 0 on the boundary of D, because the bound-
ary of Ds is star-like with respect to the origin. Hence by the principle of
maximum on harmonic functions we get %t(zf'(z)/f(z))>0 in D. Therefore
we have the theorem 7.

THEOREM 8. Let f(z) map conformally the annulus D onto a convex ring
domain Dc, where the circle \z\=q corresponds to the inner boundary of
Dc and the circle \z\ = l to the outer one. Moreover let ///(α0)=0. Then

i-liMU 1+z

l+\H(z)\ =

Proof. The assumption f"(ao) = O means no restriction on the generality
as in theorem 7. And by a similar discussion as in theorem 7, we see easily
that ίR(l+zf/(z)/β(z))>0 in D because of convexity of the boundary of Dc.
This completes the proof.
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