A SUPPLEMENT TO <“ON AN EIGENVALUE
AND EIGENFUNCTION PROBLEM OF THE
EQUATION 4u+4u=0"’

By Imsix HoNG

In a previous paper [1], we have given a theorem on an eigenvalue and
eigenfunction problem of the equation du+Au=0 with fixed boundary
condition for a certain plane domain, concerning the first eigenvalue and
the corresponding first eigenfunction.

In the present paper, we shall first establish a more general theorem on
the k-th eigenvalue and the corresponding k-th eigenfunction of the same
problem for a plane domain. In the second place, we shall remark that our
2-dimensional theorem can be transferred into 3-dimensional one. Finally
two illustrative examples in the 3-dimensional case will be given.

I. THEOREM. Let D be a bounded connected plane domain® and C its
boundary. Let {D,} be a sequence of domains exhausting D:

D,cD,c..-cD,c---,

1. e. a sequence such that lim ,,.D,=D, where the boundary C, of the
domain D, consists of a finite number of smooth curves. Let further A,
and ui,, be the k-th eigenvalue and k-th eigenfunction, respectively, of the

problem
{Au—Hu:O wm D,

=0 on C,

and u,, be normalized by ” ug do=1.
JJ Dy

Then lim,selr,n=4s exists independently of the choice of an exhausting
sequence and, for any infinite subsequence {U .} of the corresponding
sequence {uxn.} of the eigenfunctions, there exists a uniformly convergent

subsequence {wn}. Putting 1im ety o =1us, ﬁ uido=1 holds. Moreover

D
the limit function w; and limit value 2, satisfy the equation Auiz+Au,=0
iwn D together with the condition u,=0 on the boundary of D except at most®
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1) In the previous paper the boundary of D consists of a smooth closed curve C
and a closed set lying entirely in the interior of the domain surrounded by C, while in
the present paper D is supposed to be a bounded connected plane domain.

2) If k=1 the exceptional points are identical with those of the ordinary Green’s
function for the same domain.
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for the exceptional points of ordinary Green’s function for the same domain,
which s of capacity zero. Furthermore if we have the relation®
lim z10—1,n<1i1n 2k,n<lim '{k-rl,m
nH>0 n->00 >0
then u; is determined independently of the choice of exhausting sequence.
Otherwise, that s, if we have
lim ey g n<limAp v a=limAx v n=" =Mt yim 1, <iM v m,n,
7-»00 7>»00 >R 7-»00 >0

then u, depends on the choice of an infinite subsequence of {ux.}. But,
among possible limit functions u; there exist only m linearly independent

Ui

Proof. Our proposition can be established with almost the same reasoning
as in our previous paper except for a few steps there. To avoid the tedi-
ousness, we will not repeat the same reasonings as those in the previous paper.
In §4 and §8 of the previous paper, there are some places to be modified,
while in the other paragraphs, besides some trivial modifications, we need
only to replace the first eigenvalues and the first eigenfunctions by the k-th
eigenvalues and k-th eigenfunctions.

Before making modifications for §4 and §8, we notice that, from the
reasoning of §2 in the previous paper, the uniform boundedness of the
sequence {u;,} in A can be shown, where A denotes a subdomain of D
with a positive distance ¢ from the boundary of D.

Now we shall mention in details how to modify the §4. For a fixed N,
let the smooth boundary curves of the domain Dy be

Cy={CP, CP, -+, CE-1},

where C{’ denotes the outer boundary of Dy and the others are the inner
ones. If N is taken sufficiently large, then the area of the part of the
domain D cut off by C{’ and lying outside of the domoin enclosed by C®
becomes as small as we wish. The area of the part of D cut off by Ci
(1=1, ---, s—1) and lying inside of the domain enclosed by C{’ then becomes
also small.

We decompose the domain Dy into s+1 subdomains not overlapping each
other:

Dy=Dy+DQ+DP+ -+ +Dg0,

the domain D¢ being surrounded by C§’ and a smooth closed curve B® with

positive distance from boundaries of DY (j+#1%) and Dy being taken to be

contained completely in the interior of Dy and also of A.
Let the area of the part of the domain D cut off by the curve B and
lying outside of the domain enclosed by B‘” be smaller than the area of

" 8) Especially, this is always the case for k=1.
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the circle with ;; as the first eigenvalue for the same boundary value
problem. For n>N, denote by D the part of the domain D, cut off by
B® and lying outside of the domain enclosed by B‘. The area of D is
of course smaller than the area of the circle above mentioned.

Next apply the same procedure to each of curves B¥(t=1, ---, s—1),
denoting by D¥® the part of the domain D, cut off by B% lying inside of
the domain enclosed B‘”. The area of D® (=1, --., s—1) is also smaller
than the area of the above circle.

Then for such a domain D the Green’s function I',(p, ¢) of the equation
Au+ 2, =0 is uniquely determined, because of that, for the first eigen-
value of the fixed boundary condition, the first eigenvalue of the domain
for the same problem is not less than 1, as shown by the isoperimetric
inequality, and therefore it is greater than A;, since A;;>4,. Using the

domain D®, instead of D, in §4 of the previous paper, we get

| %, [<const=c¢ in DP (6=0, 1, ---, s—1)

by the same reasoning as in the §4, where the constant ¢ is independent of #.
Combining this with the uniform boundedness of {u.} in A, its uniform
boundedness in D can be shown exactly in the same way as in the previous
paper.

The reasoning for the last paragraph §8 in the previous paper, which has
established the unique determination of the limit function independent of
the choice of exhausting sequence, is available with trivial modifications for
our limit function w; if
(1) lim ch-l,n <1];m lk’n<1im 11“_1,7;.

n-»>o0 >0

72-»00
Otherwise, namely, if

(2) lim zk‘v-l,n<lim Zlcw,nzlim zlc—‘u+1,n: cee=lim Agvimor,,<lim Ak;um,m
nyo0 n->00 >0

7 -»00 >0 n

ux depends on the choice of a subsequence of {u; .-}, but among the various
limit functions obtained from our limit process, there exist only m linearly
independent limit funections.

First suppose that 4., (h=k—v, .-+, k—v+m—1) are all distinct for every
D,, i. e.
(3) Jk-v,n<2k—v+1,n< e <2k—v+m—1,ny

then for every D,, the corresponding eigenfunctions

Uk-vny Uk-vitny *°°*y Uk_vim-1,n
are all orthogonal each other, i. e., for every h+#j (h, j=k—v, -+, k—v+m—1),
(4) HD Ui, Uy Ao =0.

By the uniform boundedness in D of functions iy, -+, %z vim-1,» the
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above integral relations (4) also hold in the limiting case, i. e.

j‘j UnU do=0
D

uh=lim Uhn,ny u]=1im Uy,me
ny00

7-»00

for

Thus m funetions w, (h=k—v, ---, k—v+m—1) are all orthogonal each
other, therefore they are linearly independent.

Now consider the general case. If in the sequence

(Sy) D, D, ---, D,, ---; lim D,=D,

n-»00

there are infinite number of D, for which 2.y, is distinet from Az y,s,x,
take them as a subsequence (S;). If there are only finite number of D, for
which Az v, n#Ax_v.1,n, then there are infinite number of D, for which A;_v,,
=A5.vi1,n- In this case, take them as a subsequence. In every case, we
denote them by

(Sl) Dl’y D2’y ] Dn’y Tt

Next, from this sequence (S;), choose the second subsequence (S;) such that
(i) if there are infinite number of D,  for which A;_v.1n Ak v 2., take them
as a subsequence (S;), and (ii) if there are only finite number of D,  for
which Ay_v,1,nv#Ak_vi2,ns, then there are infinite number of D, for which
Ak-viiw =Rk vz and take them as the subsequence (S;). Continuing the
same process, we finally obtain the subsequence

(Sm—l) -Dl*9 Dz*, ] Dn*y ‘

In this sequence (S, _,), for every D, each consecutive eigenvalues are all
distinct or all equal, i. e. for every n*

ah,n”‘ith.l,n"‘ or Ah,"*=lh+1’n* (h:k—y’ oo, k_y+m_2).
Consider the case where
Ah—l,n*<zh,n*:1h+1,n*: te :Zh+p‘-1,n*<zh+}km*o

Then, for each n* there correspond for this multiple eigenvalue u inde-

pendent eigenfunctions w,a* ***, %n.u-1,,»+ Which are orthogonal each other,
1. e.
(5) ﬁ Wyt Uy o+ Ao =0, (t#3).

Dp*

We can choose from the domains D.x, a subsequence for which the sets
of above functions (#s,.*, **+, Uriu_1,.*) for the multiple eigenvalues tend to
a definite set of functions such that

lim u, ,x=u,, @=h, -+, h+u—1).

n*->00
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According to the uniform boundedness of these functions, we can conclude
that the above relations (5) also hold in the limiting case, i. e.

(6) Sjbui-ujda=0 (i%35).

Thus the limiting functions u., --:, #r.._1 are orthogonal each other, hence
they are also linearly independent.

Since for distinct eigenvalues their eigenfunctions are orthogonal, there-
fore the whole m limiting functions %x_v, %r_v.1, **+, Ur-vim-1 constructed
above are orthogonal each other, and hence linearly independent. Moreover
they satisfy evidently the equation

du~ Au=0
where we put
AElim Ak‘\l,n: tee =lim Ak—‘v+m~1,n-
72500 nr>o0

Let % be a limiting function chosen from another sequence {D,.}, which
corresponds to the same eigenvalue 4. Now let us show that this function
% can be represented as a linear combination of the m functions ui_y, ---,
Ui_vim-1, Which we have got before.

Obviously
(7 du+ Au=0.

Now we will develop the function % in the series of the eigenfunctions of
the domain D,*, which we have considered above. For the simplicity, we
replace this »* merely by » in the sequel. Let us introduce an auxiliary
harmonic function f, defined such that

(8) Afa=0  in D,,

(9) fa=u  onthe boundary of D,.

Put v=u—f.. From (7), (8) we obtain by simple calculation
(10) Av=—A(+f7).

From (9) we see that v=0 on the boundary of D.
By the usual method, the above equation (10) can be transformed into the

integral form

() w0=4([ G 0-(v@+ @),
Dy,
where G,(p, q) is the ordinary Green’s function of the domain D,. Put
(12) AU G, @) fo(@)do, =Fo(p).
Dy

Then (11) becomes
(13) v(p)—A“ G.(p, ) () doy=F.(p).
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This non-homogeneous integral equation can be solved in the form

(14) v(p)=F.(p) +h§ U, (D),
where

A
em=_ " F,
% - 2,1

and F, is the Fourier coefficient in the expansion of F,(p) by the eigen-
functions u,, .(p), i. e.

(15) F}L,n=HDnFn<p) Un,n(D) dop.

From (12)
m@rs([[ | odn)([[ fode).

On account of the reasoning of §8 in the previous paper, if ¢ tends to the
boundary of D, u(q) remains bounded and moreover u(q) tends to 0 except
for a set of capacity zero. Because the harmonic funection f,(¢) has the
common boundary values with u(q), f.(¢) becomes identically 0 in an arbitrary
closed set contained in D, as » tends to co. Therefore,

ensjjonmq) do,

tends to 0 as n—co.
Let G(p, q@) be the ordinary Green’s function of the domain D, then

G(p, )>G(p, @)

in D,, because D,cD. Therefore

.”D G0, 9) dad<jSDG2(p, Q) do=a

n

and
(16) | Fu(p) P < fPaey.
From the orthonormal property of u,., we obtain
an |], (0@~ Fu) =3P do, =31 ey

where the summation >V runs over the index h for which lim,sewds =4,
and >’ over h for which 1,, does not tend to 4. Because of the bounded
convergence of functions f,(p), F.(p) and 4 .(p), the left hand member of
(17) tends to

@18) HD[M)—E'chu,xp)?dap
where

cn :7111;12 jj ib(p)uh,n(p) da}"
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From (15) and (16)
(Fra< jj ]Fn(p)lzdap“ (Un ) dry= 5 5 | Fo(p) 'do,< Aa| D ey,
Dy Dy Dy

where |D| is the area of the domain D. Hence, as for the right hand
member of (11), we obtain

2
(Fn, WE<e Aol DY) Y"/rf,,/l

2//(6('10)2_2// A)2 (zh i ASZ .

In the summation >}/, 2,,,—A4 is greater than a certain positive number,
therefore as n tends to oo, from the above inequality we obtain
lim 3 Y(cfP)*=0.
Thus we finally obtain
|], - semnm pao,=o.

Therefore u(p) can be represented as a linear combination of m functions
Ur-vy **°y Uk-—Vvim-1.

The remaining facts given in the theorem about which we have not
discussed in the proof can be readily established just in the same way as
in our previous paper.

II. Our theorem could be transferred into the 3-dimensional case, using
the mean value theorem for 3-dimensional case:

sinkr__ 1 (27(= .
u(p) S 47J0 Sousmﬁdﬁ do,

here the integration in the right hand member being taken over the sphere

around p with radius r, instead of that for 2-dimensional one:

u(p) -J(kr)——-él;jmu e

0

in the previous paper, replacing Y,(+/4, 7,,) which appeared in the expression

for the Green’s function by cos (v, 75,)/75g, and remembering Newtonian
capacity for this time. The circumstances will be illustrated by following
examples.

ExaMPLE 1.
Let &, 7, ¢ be the prolate spheroidal coordinates such that

x:c\/(igfi)(i;;fz) cos @,
@ y=o/ @17 sin,

2=c&y
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in which coordinate surfaces &=const. and zp=const. represent confocal
spheroids and confocal hyperboloids of revolution, respectively, 2¢ being the
distance between common foci. & varies from 1 to . &=1 represents the
needle x=y=0, —c<z=<c. 7 varies from —1 to +1. 7=—1 represents the
part of the z-axis where 2<—c¢ and »=+1 represents the part z=c¢ of the
same axis.

Let us consider a three dimensional domain which has a prolate spheroid
£=¢, as its outer boundary and a needle, x=y=0, —¢<z=<c as its inner one.
Next take a sequence of confocal prolate spheroids as its exhausting bound-
aries.

Let C; and C; be two prolate spheroids represented by £=&; and £=§,,
respectively, where &, and &; are two constants such that 1<&,<é,.

Let us find non-trival solution w satisfying the conditions

(20) =0 on C; and G,
@1) du+iu=0 in D

where D denotes the domain surrounded by C; and C.. In terms of coordi-
nates &, 7, ¢, the equation (21) becomes

e ploe (€05 o0 (0 )} o @iy o0

This equation can be solved by the method of separation of variables in
putting

u=u(§) us(n)e’e.

The functions u,(§) and u,(y) satisfy the respective differential equations

(29) & (a-e %)+ [mrera-en-  E =0
and
24) ((1— 2)47‘-"> [/4+02/1(1 - 277 ]uz 0

where [ is a non-negative integer and u is a certain constant which will
be determined in following considerations.

The function u, should be finite for »==+1 (that is, on the z-axis). As
p==1 are the singularities of the equation (24), the above condition is
satisfied only for certain particular values of u which are the eigenvalues
for this singular eigenvalue problem. For a given integer [, these eigen-
values are functions of A.

On the other hand, from the given boundary condition, we must have

(25) U1(§1) =u1(§2)=0.
This leads to the fixed boundary problem for the equation (23). To solve
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this problem, we will make some preliminary considerations on the equation
(23). This equation has two fundamental solutions represented by

(26) n(€)=©E-1)"""P(t-1),
@7 Yu(§)=(—1)""?Py(§—1)+const-yi(£) log (1)

where P,(6—1) and P,(6—1) are Taylor series in £—1 converging in the circle
[E—1|<2 with P;(0)=1 and P,(0)+0 [2]. First we notice that

0 for I=1,
(28) lim (&)=
1 1 for 1=0,
(29) lzl_l;fll Yu(§)=oo.

The solution which satisfies the condition (25) can be obtained by putting
u=c,y1(&)+cxyn(§)

where the constants ¢; and ¢, are determined by the equations

cyi(Er)+exyu(§:)=0,
30) {

c1Y1(&2)+ cayu(§2)=0.
In order to obtain non-trivial coefficients c¢i, ¢, the relation

Y€1) yu(&r) [=0
y1(&2) Yu(&2)

must hold. For a given integer I, the left hand member of the equation
(81) is a function of 2 and u. Hence, the above relation together with the
condition that the functions w, remains finite for »==+1, gives us the eigen-
values of 2 and at the same time the corresponding values of x. We then
get the corresponding ¢;/c; from the equation (30) by inserting the values
of 2 and u obtained above.

Now let the inner ellipsoid £=§&; tend to the needle £=1. Because ¥i(§)— o
as &—1, ¢, has to tend to 0 as &—1. Therefore as £—1, the limit of eigen-
functions becomes ¥:(§). For 1=0, we see from (28) that the first eigen-
function tends to the function for which u;(1)#0. Thus our limit function
of the first eigenfunction does not satisfy the zero boundary condition on
the inner boundary which degenerates to a needle of capacity zero.

C3Y)

EXAMPLE 2.
For the example 2, we use the oblate spheroidal coordinates

z=cv (£8+1)(1—7%) cos ¢,
(32 y=cv (E+1)1—7sin ¢,

z=c&y
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in which coordinate surfaces £=const. and 7=const. represent confocal oblate
spheroids and confocal hyperboloids of revolution, respectively. & varies
from 0 to +oo, £=0 corresponding to the circular dise z=0, #*+y’=<c. 7
varies from —1 to +1, »=F1 corresponding to the z-axis, lower or upper,
respectively.

Now let us consider the same problem concerning the domain which has
an oblate spheroid £=§&; as its outer boundary and a circular disc z=0,
2?2 +y%<c as its inner boundary, where the inner boundary is of Newtonian
capacity positive. Take a subsequence of confocal oblate spheroids as ex-
hausting domains. We first solve the equation

(33) Adu+iu=0 in D
under the condition
(34) u=0 on &£=§&, £=§&

where 0<&;<€, and D is a domain surrounded by £=¢&; and £=§&..
Using a method analogous to that employed in example 1, we put

u=u(§) u:(7) e’

where u,(£) and us(y) satisfy the respective differential equations

(35) - gg[(l +£%) —'%] + [,u-c"’l(l +&)— f_%]ul =0
and
(36) d%’[(l*’?z)d;:ﬂ+[ﬂ—023(1"72)*%]u2=0.

The reasoning in the example 1 is also valid except for the fact that the
singularities of the equation (35) are all imaginary, that is £&==++%. The last
fact gives two fundamental solutions of (85), which are regular over our
whole range 0<f<co. Let them be %i(§) and yu(¢). The relation which
determines the coefficients ¢;, ¢, for the eigenfunction becomes

cyi(€)+cyu(:) =0,
87 {

e Y1(E:2)+cayn(€2)=0.

In this case, since y:(&) and yn(£) remain finite for £=0, the above equation
can be solved even when £=0. Thus, as £&—0, the limiting function of the
eigenfunction also satisfy the zero boundary condition on the inner boundary
which degenerates to a circular disc of positive capacity. Indeed what we
expected has been again checked explicitly.

At the conclusion, the author wishes to thank Prof. M. Tsuji, Prof. Y.
Komatu and Dr. M. Ozawa for their kind advice.
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