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BY IMSIK HONG

In a previous paper [1], we have given a theorem on an eigenvalue and
eigenfunction problem of the equation Au+λu=0 with fixed boundary
condition for a certain plane domain, concerning the first eigenvalue and
the corresponding first eigenfunction.

In the present paper, we shall first establish a more general theorem on
the fc-th eigenvalue and the corresponding k-th. eigenfunction of the same
problem for a plane domain. In the second place, we shall remark that our
2-dimensional theorem can be transferred into 3-dimensional one. Finally
two illustrative examples in the 3-dimensional case will be given.

I. THEOREM. Let D be a bounded connected plane domain1^ and C its
boundary. Let {Dn} be a sequence of domains exhausting D:

i. e. a sequence such that lim n^ooDn=D, where the boundary Cn of the
domain Dn consists of a finite number of smooth curves. Let further λk,n

and uk)n be the k-th eigenvalue and k-th eigenfunction, respectively, of the
problem

λ=0 in Dn,

=^0 on Cn

= 1.
and uk)n be normalized by I 1 u\ ndσ=

JJnn

Then limn->ooλic,n=λk exists independently of the choice of an exhausting
sequence and, for any infinite subsequence {uk>nr} of the corresponding
sequence {uk)7l} of the eigenf unctions, there exists a uniformly convergent

fTsubsequence {uk>n"}. Putting lim. n^^ooUk}n^=uk, I u%dσ=l holds. Moreover
JJD

the limit function uk and limit value λk satisfy the equation Δuk-\-λkuk—^
in D together with the condition uk = 0 on the boundary of D except at most2}

Received December 11, 1957.
1) In the previous paper the boundary of D consists of a smooth closed curve C

and a closed set lying entirely in the interior of the domain surrounded by C, while in
the present paper D is supposed to be a bounded connected plane domain.

2) If k=l the exceptional points are identical with those of the ordinary Green's
function for the same domain.
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for the exceptional points of ordinary Green's function for the same domain,
which is of capacity zero. Furthermore if we have the relation^

lim 4-i,7*<Hm ^ ι n < l i
W>OO 7Ϊ>OO ?1 k+hn,

then Uic is determined independently of the choice of exhausting sequence.
Otherwise, that is, if we have

then uk depends on the choice of an infinite subsequence of {uk>n}. But,
among possible limit functions uk there exist only m linearly independent
uk.

Proof. Our proposition can be established with almost the same reasoning
as in our previous paper except for a few steps there. To avoid the tedi-
ousness, we will not repeat the same reasonings as those in the previous paper.
In §4 and §8 of the previous paper, there are some places to be modified,
while in the other paragraphs, besides some trivial modifications, we need
only to replace the first eigenvalues and the first eigenfunctions by the &-th
eigenvalues and &-th eigenfunctions.

Before making modifications for §4 and §8, we notice that, from the
reasoning of §2 in the previous paper, the uniform boundedness of the
sequence {uk}7l} in A can be shown, where A denotes a subdomain of D
with a positive distance ε from the boundary of D.

Now we shall mention in details how to modify the §4. For a fixed N,
let the smooth boundary curves of the domain DN be

where Cffi denotes the outer boundary of DN and the others are the inner
ones. If N is taken sufficiently large, then the area of the part of the
domain D cut off by C$° and lying outside of the domoin enclosed by C^)

becomes as small as we wish. The area of the part of D cut off by C%
( ΐ = l , •••, s—1) and lying inside of the domain enclosed by Cffi then becomes
also small.

We decompose the domain DN into s-fl subdomains not overlapping each
other:

the domain D^p being surrounded by Cψ and a smooth closed curve Ba) with

positive distance from boundaries of Dψ{jφi) and DN being taken to be

contained completely in the interior of DN and also of A.
Let the area of the part of the domain D cut off by the curve J5(0) and

lying outside of the domain enclosed by Bω) be smaller than the area of

3) Especially, this is always the case for k=l.
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the circle with λk}1 as the first eigenvalue for the same boundary value
problem. For n>N, denote by Z^0 ) the part of the domain Dn cut off by
i?C0) and lying outside of the domain enclosed by J5C0). The area of ZK0) is
of course smaller than the area of the circle above mentioned.

Next apply the same procedure to each of curves BCι)(i — l, •••, s—1),
denoting by D%> the part of the domain Dn cut off by Ba} lying inside of
the domain enclosed Ba\ The area of D^ (ΐ = l, •••, s—1) is also smaller
than the area of the above circle.

Then for such a domain D^ the Green's function Γn(p, q) of the equation
Λu+λk>nu=0 is uniquely determined, because of that, for the first eigen-
value of the fixed boundary condition, the first eigenvalue of the domain
for the same problem is not less than λkiU as shown by the isoperimetric
inequality, and therefore it is greater than λk,n since λk}1>λk,n. Using the
domain D%\ instead of Dn in §4 of the previous paper, we get

\uk}n\<const=c in D% (ί = 0, 1, •••, s-1)

by the same reasoning as in the § 4, where the constant c is independent of n.
Combining this with the uniform boundedness of {uk)7l} in A, its uniform
boundedness in D can be shown exactly in the same way as in the previous
paper.

The reasoning for the last paragraph § 8 in the previous paper, which has
established the unique determination of the limit function independent of
the choice of exhausting sequence, is available with trivial modifications for
our limit function uk if

λk_1)n < l i m λk>n<\\m λk+hn.

Otherwise, namely, if

(2) limΛfc-v-i,n<lίniλk^)n=liπi λk^+ltn= =lim /ίfc_v+m-i5w<li

uk depends on the choice of a subsequence of {uk)7l^}, but among the various
limit functions obtained from our limit process, there exist only m linearly
independent limit functions.

First suppose that λh)7l (h=k—v, •••, k-p+m—1) are all distinct for every
Dn, i. e.

( 3 ) dk-v Π^Λk-V + 1,71^ ' ' ' ^Λft-v + m-l,?!;

then for every Dn, the corresponding eigenfunctions

are all orthogonal each other, i. e., for every hφj (h, j~k—v, , k — v+m—l)f

(4) uh)n-uJ}ndσ=0.
JjDn

By the uniform boundedness in D of functions uk.v,n, •••, uk^+m^1>n the
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above integral relations (4) also hold in the limiting case, i. e.

11 uhUjdσ=0

for

uh=limuhin, Uj = li
n->oo n->co

Thus m functions uh (h=k — v, •••, k —v+ra—1) are all orthogonal each
other, therefore they are linearly independent.

Now consider the general case. If in the sequence

(50) Du D2, -.., Dn, ••• l i m f l B = A

there are infinite number of Dn for which λk.v,n is distinct from ΛΛ_v+i,n,
take them as a subsequence (Si). If there are only finite number of Dn for
which λk_VίnΦλk-v+ι,n, then there are infinite number of Dn for which λk-v,n

=άk-v+i,n- In this case, take them as a subsequence. In every case, we
denote them by

(51) D x , , D 2 r , •-., D n , , •-..

Next, from this sequence (Si), choose the second subsequence (S2) such that
(i) if there are infinite number of Dnr for which λk-v+i,n':£λk-v+2,n', take them
as a subsequence (S2), and (ii) if there are only finite number of Dn, for
which Λfc_v+i,n':£Λfc-v+2,n', then there are infinite number of Όnr for which
Λfc-v+i,n'=Λfc-v+2,n' and take them as the subsequence (S2). Continuing the
same process, we finally obtain the subsequence

(Sm_0 A*, Z>3 , •••, Dn*, . .-.

In this sequence (Sm_0, for every Dn*, each consecutive eigenvalues are all
distinct or all equal, i. e. for every n*

^h,n*^^h+i}n* or λflιn*=λh+ltn* (h=k—v, , k—

Consider the case where

Then, for each n*, there correspond for this multiple eigenvalue μ inde-
pendent eigenfunctions uh,n*, •••, uh+μ_1>n* which are orthogonal each other,
i. e.

(5) I I uttn*-uJtn*dσ=0,
JJz>n*

We can choose from the domains Dn*, a subsequence for which the sets
of above functions (uhfn*, •••, uh+μ_1}n*) for the multiple eigenvalues tend to
a definite set of functions such that

limut}n*=ulf (i = hy '", h+μ—T).
71*-><X>
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According to the uniform boundedness of these functions, we can conclude
that the above relations (5) also hold in the limiting case, i. e.

( 6 )

Thus the limiting functions uh, •••, uh+μ.i are orthogonal each other, hence
they are also linearly independent.

Since for distinct eigenvalues their eigenfunctions are orthogonal, there-
fore the whole m limiting functions uk.Vf uk^+u •••, uk_v+m-i constructed
above are orthogonal each other, and hence linearly independent. Moreover
they satisfy evidently the equation

where we put

Let ΰ be a limiting function chosen from another sequence {Dn'}, which
corresponds to the same eigenvalue A. Now let us show that this function
ΰ can be represented as a linear combination of the m functions %&_v, •••,
Mfc_v+m-i, which we have got before.

Obviously

(7)

Now we will develop the function ΰ in the series of the eigenfunctions of
the domain Dn*, which we have considered above. For the simplicity, we
replace this n* merely by n in the sequel. Let us introduce an auxiliary
harmonic function fn defined such that

(8) 4f»=0 in Dn,

(9) fn=ΰ onthe boundary of Dn.

Put v=ΰ—fn. From (7), (8) we obtain by simple calculation

(10) 4v=-Λ(v+fn).

From (9) we see that v=0 on the boundary of D.
By the usual method, the above equation (10) can be transformed into the

integral form

(11) V(P) = Λ[[ Gn(v,q)'{v(q)+Uq)}dσq,
JjDn

where Gn(p, Q) is the ordinary Green's function of the domain Dn. Put

(12) A [[ Gn(p,
JjDn

Then (11) becomes

(13) v(p)-Λ [[ Gn<P, q) v{q) dσq = Fn(
J
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This non-homogeneous integral equation can be solved in the form

(14) v(p)=Fn(p)+ Σ <%»uh,n(p),
7ι=l

where

and Fh>n is the Fourier coefficient in the expansion of Fn(p) by the eigen-
functions uh,n(p), i. e.

(15) FKn=[[ Fn(p)uh,n(p)dσv.
JJDn

From (12)

I Fn{p) \^

On account of the reasoning of §8 in the previous paper, if q tends to the
boundary of D, ΰ(q) remains bounded and moreover ΰ(q) tends to 0 except
for a set of capacity zero. Because the harmonic function fn(q) has the
common boundary values with ΰ(q), fn(q) becomes identically 0 in an arbitrary
closed set contained in D, as n tends to oo. Therefore,

en^[[ J*(q)dσq
JjDn

tends to 0 as w->oo.
Let G(p, q) be the ordinary Green's function of the domain D, then

G(p,q)>Gn(p,q)

in Dni because DnaD. Therefore

[ f Gl{p, q) dσq<[[ G*(p, q) dσq~a

and

(16) \Fn(p)\*<Λ2aen.

From the orthonormal property of uh)ny we obtain

(17) (ί

where the summation Σ ' r ^ n s over the index h for which l i m ^ o Λ ^ Λ ,
and Y\" over h for which λh>n does not tend to Λ. Because of the bounded
convergence of functions fn(p), Fn{p) and uh>n(p), the left hand member of
(17) tends to

(18) ίί ίΰ(p)-Σfchuh(p)7dσp

c c _
cfι = \im u(p)uh)n(p)dσp.

W->OO J J

where
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From (15) and (16)

( F h > n f S [ [ I Fn(p) \Hσp [ [ (uh>nYdσp= [ [ \ Fn{p) \2dσp<Λ*a \D\en,
J J Dn J J Dn J J Dn

where | D | is the area of the domain D. Hence, as for the r ight hand
member of (11), we obtain

Σ///C(w)\2 __ yv/ A? (Fh \2<-p /j 2 I 7) I γi// A2

{λh>n — Λ) {λh}n — Λ)

In the summation ][]", λhin—Λ is greater than a certain positive number,
therefore as n tends to oo, from the above inequality we obtain

Thus we finally obtain

11 ίΰ(p)~ΣifChUh(pyfdσp=O.

Therefore ΰ(p) can be represented as a linear combination of m functions

The remaining facts given in the theorem about which we have not
discussed in the proof can be readily established just in the same way as
in our previous paper.

II. Our theorem could be transferred into the 3-dimensional case, using
the mean value theorem for 3-dimensional case:

u(p)sιτiJcr=~- P Γu sin θ dθ dφ,
r 4τrJ0 Jo

here the integration in the right hand member being taken over the sphere
around p with radius r, instead of that for 2-dimensional one:

in the previous paper, replacing Y0(Vλn rpq) which appeared in the expression
for the Green's function by cos (Vλn rpq)/rpq, and remembering Newtonian
capacity for this time. The circumstances will be illustrated by following
examples.

EXAMPLE 1.

Let ξ, η, φ be the prolate spheroidal coordinates such that

ί
^ϊ)[ΐ-vfj cos φ,

y=cVJξΓ~Wϊ-ψ) sin φ,
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in which coordinate surfaces ξ=const, and η=const, represent confocal
spheroids and confocal hyperboloids of revolution, respectively, 2c being the
distance between common foci, ξ varies from 1 to oo. ξ=l represents the
needle x=y=0, —c^z^c. η varies from —1 to + 1 . η=—l represents the
part of the z-axis where z^—c and η=+l represents the part z^c of the
same axis.

Let us consider a three dimensional domain which has a prolate spheroid
ξ=ξι as its outer boundary and a needle, x=y=0, —c^z^c as its inner one.
Next take a sequence of confocal prolate spheroids as its exhausting bound-
aries.

Let Cι and C2 be two prolate spheroids represented by ξ=ξι and ξ=ξ2,
respectively, where ξi and ξ2 are two constants such that l<$2<ξi.

Let us find non-trival solution u satisfying the conditions

(20) u=0 on CΊ and C2,

(21) Λu+λu=0 in D

where D denotes the domain surrounded by CΊ and C2. In terms of coordi-
nates ξ, η, φ, the equation (21) becomes

This equation can be solved by the method of separation of variables in
putting

The functions ux{ξ) and u2{rj) satisfy the respective differential equations

( 2 3 )

and

( 2 4 )

where I is a non-negative integer and μ is a certain constant which will
be determined in following considerations.

The function u2 should be finite for η=±l (that is, on the z-axis). As
η=±l are the singularities of the equation (24), the above condition is
satisfied only for certain particular values of μ which are the eigenvalues
for this singular eigenvalue problem. For a given integer I, these eigen-
values are functions of λ.

On the other hand, from the given boundary condition, we must have

(25) Ul(ξ1)=u1(ξ2)=0.

This leads to the fixed boundary problem for the equation (23). To solve
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this problem, we will make some preliminary considerations on the equation
(23). This equation has two fundamental solutions represented by

(26)

(27) yn(ξ) = (ξ~iyι/2P2(ξ-l)+^onst'y1(ξ) log (f-

where Px(ξ—1) and P2(ξ—1) are Taylor series in ξ—1 converging in the circle
| £ - 1 | < 2 with Pi(0)=l and P2(0)^0 [2]. First we notice that

f 0 for
(28) limyι(ξ)=\

w \ 1 for 1=0,

(29) \i

The solution which satisfies the condition (25) can be obtained by putting

u=c1y1(ξ)+c2yn(ξ)

where the constants cL and c2 are determined by the equations

(30)
[c1yi(ξ2)+cayn(ξ2)=0.

In order to obtain non-trivial coefficients clf c2, the relation

= 0
(31)

must hold. For a given integer I, the left hand member of the equation
(31) is a function of λ and μ. Hence, the above relation together with the
condition that the functions u2 remains finite for η=±l, gives us the eigen-
values of λ and at the same time the corresponding values of μ. We then
get the corresponding Cχ/c2 from the equation (30) by inserting the values
of λ and μ obtained above.

Now let the inner ellipsoid ξ=ξ2 tend to the needle ξ=l. Because yi(ξ)->oo
as f2-»l, c2 has to tend to 0 as ξ2~>l. Therefore as £2->l, the limit of eigen-
functions becomes yι(ξ). For 1=0, we see from (28) that the first eigen-
function tends to the function for which u2(l)Φ0. Thus our limit function
of the first eigenfunction does not satisfy the zero boundary condition on
the inner boundary which degenerates to a needle of capacity zero.

EXAMPLE 2.

For the example 2, we use the oblate spheroidal coordinates

(32)

-ϊf) cos φ,
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in which coordinate surfaces £=const, and η=const, represent confocal oblate
spheroids and confocal hyperboloids of revolution, respectively, £ varies
from 0 to +00, ξ=0 corresponding to the circular disc 2=0, x2+y2^c. η
varies from —1 to + 1 , η=+l corresponding to the 2-axis, lower or upper,
respectively.

Now let us consider the same problem concerning the domain which has
an oblate spheroid £=£1 as its outer boundary and a circular disc 2=0,
x2-hy2^c as its inner boundary, where the inner boundary is of Newtonian
capacity positive. Take a subsequence of confocal oblate spheroids as ex-
hausting domains. We first solve the equation

(33) Λu+λu=0 in D

under the condition

(34) u=0 on ξ=ξu £=£ 2

where 0<£ 2 <£i and D is a domain surrounded by £=£1 and £=£2.
Using a method analogous to that employed in example 1, we put

where ux(ξ) and u2(yj) satisfy the respective differential equations

(35) -

and

( 3 6 )

The reasoning in the example 1 is also valid except for the fact that the
singularities of the equation (35) are all imaginary, that is £ = ± i . The last
fact gives two fundamental solutions of (35), which are regular over our
whole range 0^£<oo. Let them be yι(ξ) and #π(£). The relation which
determines the coefficients cu c2 for the eigenfunction becomes

( eίyi(ξι)+c2yn(ξi)=0,
(37)

I cιyι(ξ2)+c8yn(ξ2)=0.

In this case, since yτ(ξ) and yu(ξ) remain finite for £=0, the above equation
can be solved even when £2=0. Thus, as £2->0, the limiting function of the
eigenfunction also satisfy the zero boundary condition on the inner boundary
which degenerates to a circular disc of positive capacity. Indeed what we
expected has been again checked explicitly.

At the conclusion, the author wishes to thank Prof. M. Tsuji, Prof. Y.
Komatu and Dr. M. Ozawa for their kind advice.
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