THE PERMUTABILITY IN A CERTAIN ORTHOCOMPLEMENTED LATTICE

By Masahiro Nakamura

1. In an orthocomplemented lattice¹⁾ L, two elements a and b will be called *permutable* in the sense of Maeda and Sasaki, symbolically a riangle b, if they satisfy

(P)
$$a = (a \cap b) \cup (a \cap b^{\perp}).$$

It is clear that the permutability satisfies $a \circ a^{\perp}$ and

(Q) $a \leq b$ implies $a \circ b$.

For, $a \leq b$ implies $a = a \cup (a \cap b^{\perp}) = (a \cap b) \cup (a \cap b^{\perp})$.

In general cases, the permutability is not symmetric. However, we have²⁾

THEOREM 1. The permutability of an orthocomplemented lattice is symmetric if and only if the lattice satisfies

(V)
$$a \leq b$$
 implies $b = a \cup (a^{\perp} \cap b)$.

Proof. If the permutability is symmetric, then (Q) implies $b \circ a$ when $a \leq b$, that is, $b = (a \cap b) \cup (a^{\perp} \cap b) = a \cup (a^{\perp} \cap b)$ which is (V).

If $a \circ b$, i.e., (P) is true for a and b, then $a^{\perp} = (a \cap b)^{\perp} \cap (a^{\perp} \cup b)$, whence

$$b \cap a^{\perp} = (a \cap b)^{\perp} \cap (a^{\perp} \cup b) \cap b = (a \cap b)^{\perp} \cap b.$$

Therefore, (V) implies

$$b = (a \cap b) \cup (b \cap (a \cap b)^{\perp}) = (a \cap b) \cup (a^{\perp} \cap b),$$

which shows $b \propto a$. This completes the proof.

Since the symmetric permutability is characteristic for the lattices satisfying (V), we shall call them *symmetric lattices*. In the present note, we shall extend the permutability theorem of Sasaki [3; Theorem 5.2] for a general symmetric lattice.

2. In a symmetric lattice L, the Sasaki projection on a is defined by

Received July 4, 1957.

¹⁾ The standard terminologies of G. Birkhoff [1] will be used without any explanation. u/v indicates the interval between u and v.

²⁾ The condition (V) is taken from U. Sasaki [3] and H.L. Loomis [2]. The dual of (V) will be referred to as (V'). The second part of Theorem 1 has been already proved by Sasaki [3; Lemma 5.5].

(S)
$$x \to x^a = (x \cup a^{\perp}) \cap a.$$

The product of two Sasaki projections will be defined as usual by $x^{ab} = (x^a)^b$. They will be called *permutable*, symbolically ab = ba, if $x^{ab} = x^{ba}$ for all x. A typical example for permutable projections is the following

(T)
$$a \leq b$$
 implies $ab = ba = a$.

For, we have $x^{ab} = (x^a \cup b^{\perp}) \cap b = x^a$ by (V) and using (V')

$$x^{ba} = (((x \cup b^{\perp}) \cap b) \cup a^{\perp}) \cap a = ((x \cup b^{\perp}) \cup a^{\perp}) \cap a = (x \cup a^{\perp}) \cap a = x^{a}.$$

THEOREM 2. In a symmetric lattice L, a unary operation $x \to x^*$ into itself is a Sasaki projection on a if and only if it is a Nagao³⁾ operation, i.e.,

(1) idempotent: $x^{**} = x^*$,

(II) join-endomorphic: $(x \cup y)^* = x^* \cup y^*$,

(III) it carries $1/a^{\perp}$ onto a/0 isomorphically.

Necessity. It is clear by the monotonity of the lattice polynomials [1; 19] that the projection on *a* preserves the order and carries $1/a^{\perp}$ into a/0. We shall show that the mapping is one-to-one. If $x \cap a = y \cap a$ and $x, y \ge a^{\perp}$, then by (V), we have $x = (x \cap a) \cup a^{\perp} = (y \cap a) \cup a^{\perp} = y$. Furthermore, the mapping is onto. If not, there is an *x* such as 0 < x < a and $x \neq y \cap a$ for all $y \ge a^{\perp}$. By (V'), $x = a \cap (a^{\perp} \cup x)$ becomes a contradiction. Therefore, the Sasaki projection on *a* maps $1/a^{\perp}$ onto a/0 in order-preserving and one-to-one way, whence it is an isomorphism. This proves (III). Obviously the projection keeps a/0 element-wise, by (V'), whence it satisfies (I). Since $x \to x \cup a^{\perp}$ is join-endomorphic and $1/a^{\perp}$ is its range, the first half of the present proof shows (II).

Sufficiency. Let Δ be the isomorphism indicated in (III) and ∇ be its inverse. If $x' = x^{*\nabla}$ then $x \to x'$ is an idempotent join-endomorphism of L onto $1/a^{\perp}$, whence

$$a^{\perp} \leq x \cup a^{\perp} = (x \cup a^{\perp})' = x' \cup a^{\perp'} = x'.$$

This shows that ∇ acts on a/0 as the converse of the Sasaki projection on $a: x^{\nabla} = x \bigcup a^{\perp}$ if $x \leq a$. Therefore $x^* = (x \bigcup a^{\perp}) \cap a$.

3. Sasaki's permutability theorem [3; Theorem 5.2] will be now extended in the following

THEOREM 3. In a symmetric lattice, the permutabilities of projections and elements are equivalent, that is, symbolically

³⁾ The operation considered in Theorem 2 has been originally introduced by A. Nagao, Zenkoku Sizyo Sugakudanwakwai (in Japanese), 2nd ser., No. 4 (1947), 49-58, for a finite-dimensional modular lattice in connection with the Remak-Schmidt Theorem. The corresponding theorem for a modular lattice has been proved by the author, ibid., No. 5 (1947), 115-117.

MASAHIRO NAKAMURA

(W)
$$a \propto b$$
 if and only if $ab = ba = a \cap b$.

Necessity. By Theorem 2 it is sufficient to show that ab is a Nagao operation having the range $a \cap b/0$. Clearly, ab satisfies (II) since it is the product of two join-endomorphisms. It is also obvious that ab preserves $a \cap b/0$ element-wise since a and b keep a/0 and b/0 element-wise, respectively. The permutability of the elements implies

$$a^{\mathfrak{d}} = ((a \cap b) \cup (a \cap b^{\perp}))^{\mathfrak{d}} = (a \cap b)^{\mathfrak{d}} \cup (a \cap b^{\perp})^{\mathfrak{d}} = (a \cap b)^{\mathfrak{d}} = a \cap b,$$

whence $x^a \leq a$ implies $x^{ab} \leq a \cap b$, and so abab = ab, that is, ab satisfies (I). Thus it remains to show that ab satisfies (II). If $x \geq a^{\perp} \cup b^{\perp}$, then

 $x^a = x \cap a \leq (x \cap a) \cup b^{\perp} \leq (x \cap a) \cup x = x$

implies $x \cap a \cap b \leq x^{ab} \leq x \cap b$. Therefore we have $x^{ab} = x \cap a \cap b$ since we have proved $x^{ab} \leq a \cap b$.

Sufficiency. Since $(a^{\perp} \cup b^{\perp})^{ab} = 0$ implies

$$b \cap (b^{\perp} \cup (a \cap (b^{\perp} \cup a^{\perp}))) = b \cap (b^{\perp} \cup (a \cap (a^{\perp} \cup b^{\perp} \cup a^{\perp}))) = 0,$$

and since $x \to x \cap b$ is an isomorphism between $1/b^{\perp}$ and b/0, we have $b^{\perp} = b^{\perp} \bigcup (a \cap (a^{\perp} \bigcup b^{\perp}))$ or $(a^{\perp} \bigcup b^{\perp}) \cap a \leq b^{\perp}$. On the other hand, we have clearly $(a^{\perp} \bigcup b^{\perp}) \cap a \leq a$, whence we have $(a^{\perp} \bigcup b^{\perp}) \cap a \leq a \cap b^{\perp}$. Using (V), we finally have

 $a = (a \cap b) \cup ((a^{\perp} \cup b^{\perp}) \cap a) \leq (a \cap b) \cup (a \cap b^{\perp}) \leq a,$

which proves the theorem.

References

- [1] G. BIRKHOFF, Lattice Theory. rev. ed., New York, 1948.
- [2] L.H. LOOMIS, The lattice theoretic background of the dimension theory of operator algebras. Mem. Amer. Math. Soc., No. 18, 1955.
- [3] U. SASAKI, Orthocomplemented lattices satisfying the exchange axiom. J. Hiroshima Univ. (A) 17 (1954), 293-302.

OSAKA UNIVERSITY OF LIBERAL-ARTS AND EDUCATION, TENNOZI, OSAKA.

160