THE PERMUTABILITY IN A CERTAIN ORTHOCOMPLEMENTED LATTICE

By Masahiro Nakamura

1. In an orthocomplemented lattice ${ }^{1)} L$, two elements a and b will be called permutable in the sense of Maeda and Sasaki, symbolically $a \propto b$, if they satisfy

$$
\begin{equation*}
a=(a \cap b) \cup(a \cap b \perp) \tag{P}
\end{equation*}
$$

It is clear that the permutability satisfies $a \propto a^{\perp}$ and

$$
\begin{equation*}
a \leqq b \quad \text { implies } \quad a \propto b . \tag{Q}
\end{equation*}
$$

For, $a \leqq b$ implies $a=a \cup\left(a \cap b^{\perp}\right)=(a \cap b) \cup\left(a \cap b^{\perp}\right)$.
In general cases, the permutability is not symmetric. However, we have ${ }^{2}$
Theorem 1. The permutability of an orthocomplemented lattice is symmetric if and only if the lattice satisfies

$$
\begin{equation*}
a \leqq b \quad \text { implies } \quad b=a \cup\left(a^{\perp} \cap b\right) \tag{V}
\end{equation*}
$$

Proof. If the permutability is symmetric, then (Q) implies $b \propto a$ when $a \leqq b$, that is, $b=(a \cap b) \cup\left(a^{\perp} \cap b\right)=a \cup\left(a^{\perp} \cap b\right)$ which is (V).
If $a \propto b$, i. e., (P) is true for a and b, then $a^{\perp}=(a \cap b)^{\perp} \cap\left(a^{\perp} \cup b\right)$, whence

$$
b \cap a^{\perp}=(a \cap b)^{\perp} \cap\left(a^{\perp} \cup b\right) \cap b=(a \cap b)^{\perp} \cap b
$$

Therefore, (V) implies

$$
b=(a \cap b) \cup\left(b \cap(a \cap b)^{\perp}\right)=(a \cap b) \cup\left(a^{\perp} \cap b\right)
$$

which shows $b \infty a$. This completes the proof.
Since the symmetric permutability is characteristic for the lattices satisfying (V), we shall call them symmetric lattices. In the present note, we shall extend the permutablility theorem of Sasaki [3; Theorem 5.2] for a general symmetric lattice.
2. In a symmetric lattice L, the Sasaki projection on a is defined by

[^0](S)
$$
x \rightarrow x^{a}=\left(x \cup a^{\perp}\right) \cap a
$$

The product of two Sasaki projections will be defined as usual by $x^{a b}$ $=\left(x^{a}\right)^{b}$. They will be called permutable, symbolically $a b=b a$, if $x^{a b}=x^{b a}$ for all x. A typical example for permutable projections is the following

$$
\begin{equation*}
a \leqq b \quad \text { implies } \quad a b=b a=a \tag{T}
\end{equation*}
$$

For, we have $x^{a b}=\left(x^{a} \cup b^{\perp}\right) \cap b=x^{a}$ by (V) and using $\left(\mathrm{V}^{\prime}\right)$

$$
x^{b a}=\left(\left(\left(x \cup b^{\perp}\right) \cap b\right) \cup a^{\perp}\right) \cap a=\left(\left(x \cup b^{\perp}\right) \cup a^{\perp}\right) \cap a=\left(x \cup a^{\perp}\right) \cap a=x^{a}
$$

Theorem 2. In a symmetric lattice L, a unary operation $x \rightarrow x^{*}$ into itself is a Sasaki projection on a if and only if it is a Nagao ${ }^{3}$ operation, i.e.,
(I) idempotent: $x^{* *}=x^{*}$,
(II) join-endomorphic: $\quad(x \cup y)^{*}=x^{*} \cup y^{*}$,
(III) it carries $1 / a^{\perp}$ onto a/0 isomorphically.

Necessity. It is clear by the monotonity of the lattice polynomials $[1 ; 19]$ that the projection on a preserves the order and carries $1 / a^{\perp}$ into $a / 0$. We shall show that the mapping is one-to-one. If $x \cap a=y \cap a$ and $x, y \geqq a^{\perp}$, then by (V), we have $x=(x \cap a) \cup a^{\perp}=(y \cap a) \cup a^{\perp}=y$. Furthermore, the mapping is onto. If not, there is an x such as $0<x<a$ and $x \neq y \cap a$ for all $y \geqq a^{\perp}$. By $\left(\mathrm{V}^{\prime}\right), x=a \bigcap\left(a^{\perp} \cup x\right)$ becomes a contradiction. Therefore, the Sasaki projection on a maps $1 / a \perp$ onto $a / 0$ in order-preserving and one-to-one way, whence it is an isomorphism. This proves (III). Obviously the projection keeps $a / 0$ element-wise, by (V^{\prime}), whence it satisfies (I). Since $x \rightarrow x \cup a^{\perp}$ is join-endomorphic and $1 / a^{\perp}$ is its range, the first half of the present proof shows (II).

Sufficiency. Let Δ be the isomorphism indicated in (III) and ∇ be its inverse. If $x^{\prime}=x^{* \nabla}$ then $x \rightarrow x^{\prime}$ is an idempotent join-endomorphism of L onto $1 / a \perp$, whence

$$
a^{\perp} \leqq x \cup a^{\perp}=\left(x \cup a^{\perp}\right)^{\prime}=x^{\prime} \cup a^{\perp^{\prime}}=x^{\prime}
$$

This shows that ∇ acts on $a / 0$ as the converse of the Sasaki projection on $a: x^{\nabla}=x \cup a^{\perp}$ if $x \leqq a$. Therefore $x^{*}=\left(x \cup a^{\perp}\right) \cap a$.
3. Sasaki's permutability theorem [3; Theorem 5.2] will be now extended in the following

THEOREM 3. In a symmetric lattice, the permutabilities of projections and elements are equivalent, that is, symbolically

[^1]$$
a c s b \text { if and only if } a b=b a=a \cap b
$$

Necessity. By Theorem 2 it is sufficient to show that $a b$ is a Nagao operation having the range $a \cap b / 0$. Clearly, $a b$ satisfies (II) since it is the product of two join-endomorphisms. It is also obvious that $a b$ preserves $a \cap b / 0$ element-wise since a and b keep $a / 0$ and $b / 0$ element-wise, respectively. The permutability of the elements implies

$$
a^{b}=\left((a \cap b) \cup\left(a \cap b^{\perp}\right)\right)^{b}=(a \cap b)^{b} \cup\left(a \cap b^{\perp}\right)^{b}=(a \cap b)^{b}=a \cap b
$$

whence $x^{a} \leqq a$ implies $x^{a b} \leqq a \cap b$, and so $a b a b=a b$, that is, $a b$ satisfies (I). Thus it remains to show that $a b$ satisfies (III). If $x \geqq a^{\perp} \cup b^{\perp}$, then

$$
x^{a}=x \cap a \leqq(x \cap a) \cup b^{\perp} \leqq(x \cap a) \cup x=x
$$

implies $x \cap a \cap b \leqq x^{a b} \leqq x \cap b$. Therefore we have $x^{a b}=x \cap a \cap b$ since we have proved $x^{a b} \leqq a \cap b$.

Sufficiency. Since $\left(a^{\perp} \cup b^{\perp}\right)^{a b}=0$ implies

$$
b \cap\left(b^{\perp} \cup\left(a \cap\left(b^{\perp} \cup a^{\perp}\right)\right)\right)=b \cap\left(b^{\perp} \cup\left(a \cap\left(a^{\perp} \cup b^{\perp} \cup a^{\perp}\right)\right)\right)=0
$$

and since $x \rightarrow x \cap b$ is an isomorphism between $1 / b^{\perp}$ and $b / 0$, we have b^{\perp} $=b^{\perp} \cup\left(a \cap\left(a^{\perp} \cup b^{\perp}\right)\right)$ or ($\left.a^{\perp} \cup b^{\perp}\right) \cap a \leqq b^{\perp}$. On the other hand, we have clearly $\left(a^{\perp} \cup b^{\perp}\right) \cap a \leqq a$, whence we have ($\left.a^{\perp} \cup b^{\perp}\right) \cap a \leqq a \cap b^{\perp}$. Using (V), we finally have

$$
a=(a \cap b) \cup\left(\left(a^{\perp} \cup b^{\perp}\right) \cap a\right) \leqq(a \cap b) \cup\left(a \cap b^{\perp}\right) \leqq a
$$

which proves the theorem.

References

[1] G. Birkhoff, Lattice Theory. rev. ed., New York, 1948.
[2] L.H. Loomis, The lattice theoretic background of the dimension theory of operator algebras. Mem. Amer. Math. Soc., No. 18, 1955.
[3] U. Sasaki, Orthocomplemented lattices satisfying the exchange axiom. J. Hiroshima Univ. (A) 17 (1954), 293-302.

Osaka University of Liberal-Arts and Education, Tennozi, Osaka.

[^0]: Received July 4, 1957.

 1) The standard terminologies of G. Birkhoff [1] will be used without any explanation. u / v indicates the interval between u and v.
 2) The condition (V) is taken from U. Sasaki [3] and H.L. Loomis [2]. The dual of (V) will be referred to as $\left(\mathrm{V}^{\prime}\right)$. The second part of Theorem 1 has been already proved by Sasaki [3; Lemma 5.5].
[^1]: 3) The operation considered in Theorem 2 has been originally introduced by A. Nagao, Zenkoku Sizyo Sugakudanwakwai (in Japanese), 2nd ser., No. 4 (1947), 49-58, for a finite-dimensional modular lattice in connection with the Remak-Schmidt Theorem. The corresponding theorem for a modular lattice has been proved by the author, ibid., No. 5 (1947), 115-117.
