A DISTORTION THEOREM ON SCHLICHT FUNCTIONS

By Kôtaro Oikawa

A kind of distortion on schlicht functions meromorphic in the unit circle is discussed by Y. Komatu and H. Nishimiya [1]. In their paper, the fundamental role is played by an estimation of the spherical derivative

$$
D f(z)=\frac{\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}}
$$

of schlicht functions regular in the unit circle. Let \mathfrak{S} be, as usual, the family of schlicht functions $w=f(z)$ regular in $|z|<1$ and satisfying conditions $f(0)=0$ and $f^{\prime}(0)=1$, and r^{*} be a positive root of the quadratic equation $r^{2}+r-1=0$, i. e. $r^{*}=(\sqrt{5}-1) / 2=0.618 \cdots$. The above mentioned estimation is as follows:

Theorem of Komatu-Nishimiya [1]. ${ }^{1)}$ For any $f(z) \in \mathbb{S}$, the following holds on $|z|=r$:

$$
\begin{aligned}
& \frac{1-r^{2}}{r^{2}+(1+r)^{4}} \leqq D f(z) \leqq \frac{1-r^{2}}{r^{2}+(1-r)^{4}} \quad \text { if } \quad 0 \leqq r \leqq r^{* 2}=0.382 \cdots, \\
& \frac{1-r^{2}}{r^{2}+(1+r)^{4}} \leqq D f(z)<\frac{1}{2 r} \cdot \frac{1+r}{1-r} \quad \text { if } \quad r^{* 2}<r \leqq r^{*}, \\
& \frac{(1-r)^{3}}{1+r} \cdot \frac{1}{r^{2}+(1-r)^{4}}<D f(z)<\frac{1}{2 r} \cdot \frac{1+r}{1-r} \quad \text { if } \quad r^{*}<r<1 .
\end{aligned}
$$

Every equality sign appearing in the above estimations is realized only by the Koebe function.

The purpose of the present note is to give the best possible estimation for all r and discuss the property of functions realizing the equality sign, which will be done by the well-known variational method due to M. Schiffer [3]. The author wishes to express his gratitude to Professors Y. Komatu and M. Ozawa for their valuable suggestions.

1. We begin with statement of our results. Let r_{0} be the root of the equation $r^{6}-4 r^{5}+7 r^{4}-10 r^{3}+7 r^{2}-4 r+1=0$ contained in the interval $0<r$ <1, i. e.,

Received June 3, 1957.

1) The original estimation in [1] involves a mistake. Inequalities given here are derived by their own method in repairing the mistake.

$$
\begin{aligned}
r_{0}= & \frac{1}{3}[4
\end{aligned}+\sqrt[3]{19+3 \sqrt{33}+\sqrt[3]{19-3 \sqrt{33}}} \begin{aligned}
& -\sqrt{\left\{4+\sqrt[3]{19+3 \sqrt{33}+\sqrt[3]{19-3 \sqrt{33}}\}^{2}-36}\right]} \\
= & 0.412 \cdots
\end{aligned}
$$

Theorem 1. For any $f(z) \in \mathbb{S}$, its spherical derivative on $|z|=r$ is estimated as follows:

$$
\begin{array}{ll}
\frac{1-r^{2}}{r^{2}+(1+r)^{4}} \leqq D f(z) \leqq \frac{1-r^{2}}{r^{2}+(1-r)^{4}} & \text { if } \\
\frac{1-r^{2}}{r^{2}+(1+r)^{4} \leqq D f(z) \leqq Q(r)} & \text { if } \quad r_{0} \leqq r<1 ; \tag{3}
\end{array}
$$

the function $Q(r)$ is defined by

$$
\begin{equation*}
\log Q(r)=\frac{\alpha^{2}-1}{\alpha^{2}+1} \log \frac{1}{2\left(\alpha^{3}-\alpha\right)}+\log \frac{2 \alpha}{1-r^{2}}, \tag{4}
\end{equation*}
$$

where $\alpha=\alpha(r)$ is the inverse function of

$$
\begin{equation*}
\left.\log r=\sqrt{\frac{\alpha^{2}-1}{\alpha^{2}+1}} \log 2\left(\alpha^{3}-\alpha\right)+\log \frac{\sqrt{\alpha^{2}+1}-\sqrt{\alpha^{2}-1}}{\sqrt{\alpha^{2}+1}+\sqrt{\alpha^{2}-1}} .2\right) \tag{5}
\end{equation*}
$$

These estimations are exact.
Properties of functions which realize equality signs will be summarized as Theorem 2 at the end of this note.
2. In order to prove the above theorem, we introduce two kinds of functionals on \mathfrak{S},

$$
I_{r}(f)=\operatorname{Max}_{|z|=r} D f(z) \quad \text { and } \quad J_{r}(f)=\operatorname{Min}_{|z|=r} D f(z)
$$

for all $r(0 \leqq r<1)$, and consider extremal problems to obtain $\operatorname{Max}_{f \in \mathfrak{S}} I_{r}(f)$ and $\operatorname{Min}_{f \in \subseteq} J_{r}(f)$.
Evidently, extremal functions $w=f(z)$ exist and we may assume without loss of generality that they satisfy the condition

$$
\begin{equation*}
f(a)=\alpha>0 \quad \text { where } \quad D f(a)=I_{r}(f) \quad\left(\text { resp. }=J_{r}(f)\right),|a|=r \tag{6}
\end{equation*}
$$

By making use of the Schiffer's method, [3], we see that the complementary continuum C_{f} of the image domain $f(|z|<1)$ consists of a finite number of analytic arcs satisfying the following differential equation for a suitably chosen real parameter t :

$$
\begin{equation*}
\left(\frac{d w}{d t}\right)^{2} \frac{\alpha-\alpha^{3}-2 w}{w^{2}(w-\alpha)^{2}}=1, \quad \text { if } f \text { is the maximizing function of } I_{r}, \tag{7}
\end{equation*}
$$

2) The fact that the function $\alpha=\alpha(r)$ is actually defined by (5) will be shown in § 5 .

$$
\begin{equation*}
\left(\frac{d w}{d t}\right)^{2} \frac{\alpha-\alpha^{3}-2 w}{w^{2}(w-\alpha)^{2}}=-1, \quad \text { if } f \text { is the maximizing function of } J_{r} . \tag{8}
\end{equation*}
$$

3. First of all, we consider the minimizing function $w=f(z)$. For this purpose we observe the integral curve of (8) containing $w=\infty$, in other words the Γ-structure (see [2]) defined by

$$
\mathfrak{R} \int \frac{\sqrt{\alpha-\alpha^{3}-2 w}}{w(w-\alpha)} d w=\text { const. }
$$

Using the general theory of Γ-structure [2], we can see that it contains $w=\infty$ as an end point and contains the interval $[\alpha,+\infty]$ (cf. $\left.\left(\alpha-\alpha^{3}\right) / 2<\alpha\right)$. Furthermore, no fork point is contained in $[\alpha,+\infty]$. Since $\alpha \notin C_{f}$, we immediately see that C_{f} coincides with the interval $[1 / 4,+\infty], f(z)=z /(1+z)^{2}$ and $a=r$, which completes the proof of the left inequalities of (2) and (3).
4. To consider the maximizing function $w=f(z)$ of I_{r} satisfying (6), we observe the Γ-structure of

$$
\begin{equation*}
\Im \int \frac{\sqrt{\alpha-\alpha^{3}-2 w}}{w(w-\alpha)} d w=\text { const., } \tag{9}
\end{equation*}
$$

which is derived from (7).
If $\left(\alpha-\alpha^{3}\right) / 2 \geqq-1 / 4$, the situation is similar to the last section, and we obtain analogously that $C_{f}=[-\infty,-1 / 4], f(z)=z /(1-z)^{2}$ and $a=r$.

If $\left(\alpha-\alpha^{3}\right) / 2<-1 / 4$, we have to observe the Γ structure more closely. By the above cited method [2] we see that it is, as is illustrated, symmetric to the real axis, and consists of the interval [$-\infty$,
 $\left.\left(\alpha-\alpha^{3}\right) / 2\right]$ and a loop which passes through $\left(\alpha-\alpha^{3}\right) / 2$, surrounds 0 and separates α from 0 . Then, C_{f} is a subcontinuum of it, which contains ∞ and at the same time $\left(\alpha-\alpha^{3}\right) / 2$ as an (relative) inner point.

Now, denoting by α_{0} the root of the equation $\left(\alpha-\alpha^{3}\right) / 2=-1 / 4$, we know that $\left(\alpha-\alpha^{3}\right) / 2 \geqq-1 / 4$ is equivalent to $\alpha \leqq \alpha_{0}$. Then, $f(a)=\alpha=r /(1-r)^{2}$ because of the above result. The r satisfying $\alpha_{0}=r /(1-r)^{2}$ is equal to the r_{0} defined by (1), so that $\alpha \leqq \alpha_{0}$ implies $r \leqq r_{0}$. If $\alpha>\alpha_{0}$, the distortion theorem of Koebe shows that $\alpha=f(a)<r /(1-r)^{2}$, hence $r>r_{0}$. Therefore $r \leqq r_{0}$ and $\left(\alpha-\alpha^{3}\right) / 2 \leqq-1 / 4$ are equivalent.

Consequently, for $0 \leqq r \leqq r_{0}$, we know that $C_{f}=[-\infty,-1 / 4], f(z)=z /(1$ $-z)^{2}$ and $a=r$, which implies the right inequality of (2).
5. The case of $r>r_{0}$ remains. From (7) we can see, by the method used in [3], that the maximizing function $w=f(z)$ for $r>r_{0}$, satisfies the following differential equation in $|z|<1$:

$$
\begin{equation*}
\frac{z^{2}\left(\alpha-\alpha^{3}-2 w\right)}{w^{2}(w-\alpha)^{2}}\left(\frac{d w}{d z}\right)^{2}=-\left(\alpha-\frac{1}{\alpha}\right) \frac{\left(z-e^{i \varphi}\right)^{2}\left(z-e^{i \psi}\right)^{2}}{(z-a)^{2}(z-1 / \bar{a})^{2}} \tag{10}
\end{equation*}
$$

where φ and ψ are real and $e^{i \varphi} \neq e^{i \psi}$. Since the right hand side is non-
negative on $|z|=1$ because of (7), we can easily see

$$
\begin{equation*}
e^{i(\varphi+\psi)}=\frac{a}{\bar{a}} . \tag{11}
\end{equation*}
$$

Taking the square root of (10), we get

$$
\begin{equation*}
\frac{\sqrt{\alpha-\alpha^{3}}-2 w}{w(w-\alpha)} \frac{d w}{d z}=-i \sqrt{\alpha-\frac{1}{\alpha}} \frac{\left(z-e^{i \varphi}\right)\left(z-e^{i \psi}\right)}{z(z-\bar{a})(z-1 / \bar{a})}, \tag{12}
\end{equation*}
$$

(cf. $\alpha-1 / \alpha>0$ for $\alpha>\alpha_{0}>1$), where the branch of $\sqrt{\alpha-\alpha^{3}-2 w}$ is chosen such a one that takes $i \sqrt{\alpha-\alpha^{3}}$ at $z=0$. Comparing the residues of both sides at $z=a$ we get

$$
\begin{equation*}
\sqrt{\frac{\bar{\alpha}^{2}+1}{\alpha^{2}-1}}=\frac{1+r^{2}-\bar{a}\left(e^{i \varphi}+e^{i \psi}\right)}{1-r^{2}} . \tag{13}
\end{equation*}
$$

By (11) and (13), the equation (12) is changed into

$$
\begin{align*}
\frac{\sqrt{\alpha-\alpha^{3}-2 w}}{w(w-\alpha)} \frac{d w}{d z}= & -i \sqrt{\alpha-\frac{1}{\alpha}} \cdot \frac{1}{z} \tag{14}\\
& +i \sqrt{\alpha+\frac{1}{\alpha}}\left(\frac{1}{z-a}+\frac{1}{z-1 / \bar{a}}\right)
\end{align*}
$$

Putting $u=\sqrt{\alpha-\alpha^{3}-2 w}$ and integrating, we have

$$
\begin{align*}
& \sqrt{\alpha^{2}-1} \log \left(u+i \sqrt{\alpha^{3}-\alpha}\right)-\sqrt{\alpha^{2}+1} \log \left(u+i \sqrt{\alpha^{3}+\alpha}\right) \\
& \quad-\sqrt{\overline{\alpha^{2}-1}} \log \left(\frac{u-i \sqrt{\alpha^{3}-\alpha}}{z}\right)+\sqrt{\alpha^{2}+1} \log \left(\frac{u-i \sqrt{\alpha^{3}+\alpha}}{z-a}\right) \tag{15}\\
& =-\sqrt{\alpha^{2}+1} \log \left(z-\frac{1}{\bar{a}}\right)+k,
\end{align*}
$$

where k is the integration constant and branch of every logarithm is taken suitably. Now we observe the values of real part of both sides of this equality at $z=0, z=a$ and $z=c$ respectively, where c is defined by $f(c)=(\alpha$
 can see from the values at $z=c$ that the equality (5)

$$
\log r=\sqrt{\frac{\alpha^{2}-1}{\alpha^{2}+1}} \log 2\left(\alpha^{3}-\alpha\right)+\log \frac{\sqrt{\alpha^{2}+1}-\sqrt{\alpha^{2}-1}}{\sqrt{\alpha^{2}+1}+\sqrt{\alpha^{2}-1}}
$$

holds. The values at $z=a$ show

$$
\begin{align*}
\log \left|f^{\prime}(a)\right|= & \sqrt{\frac{\alpha^{2}-1}{\alpha^{2}+1}} \log \left\{\frac{\sqrt{\alpha^{2}+1}-\sqrt{\alpha^{2}-1}}{\sqrt{\alpha^{2}+1}+\sqrt{\alpha^{2}-1}} \cdot \frac{2\left(\alpha^{3}-\alpha\right)}{r}\right\} \\
& +\log \left\{\frac{1}{r} \cdot \frac{\sqrt{\alpha^{2}+1}-\sqrt{\alpha^{2}-1}}{\sqrt{\alpha^{2}+1}+\sqrt{\alpha^{2}-1}}\right\}+\log \frac{2 \alpha}{1-r^{2}}, \tag{16}
\end{align*}
$$

therefore

$$
\log I_{r}(f)=\log D f(a)=\log \left|f^{\prime}(a)\right|-\log \left(1+\alpha^{2}\right)
$$

$$
=\frac{\alpha^{2}-1}{\alpha^{2}+1} \log \frac{1}{2\left(\alpha^{3}-\alpha\right)}+\log \frac{2 \alpha}{1-\boldsymbol{r}^{2}}
$$

which implies the formula (4).
Now, concerning (5), we know

$$
\begin{gathered}
\frac{d \log r}{d \alpha}=\frac{2 \alpha \log 2\left(\alpha^{3}-\alpha\right)}{\left(\alpha^{2}+1\right) \sqrt{\alpha^{4}-1}}+\frac{1}{\alpha} \sqrt{\frac{\alpha^{2}-1}{\alpha^{2}+1}}>0, \quad \text { for } \quad \alpha \geqq \alpha_{0}(>1), \\
(\log r)_{\alpha=\alpha_{0}}=\log r_{0}, \quad \lim _{\alpha \rightarrow \infty} \log r=\infty .
\end{gathered}
$$

So that the inverse function $\alpha=\alpha(r)$ of (5) is determined for $r_{0} \leqq r<1$. The theorem is hereby proved completely.
6. For $r>r_{0}$, we have shown that C_{f} of the maximizing function $w=f(z)$ is a subcontinuum of the Γ-structure of (9) which contains $w=\infty$ and whose mapping radius (with respect to $w=0$) is equal to one. Conversely, any function $f(z) \in \mathbb{S}$ whose C_{r} has this property is the maximizing function of I_{r} for r corresponding to α by (5). In fact, defining a by $f(a)=\alpha$, the preceding consideration shows that $f(z)$ satisfies the differential equation (12). Consequently we know that $\log |a|$ and $\log \left|f^{\prime}(a)\right|$ satisfy (5) and (16) respectively, which implies $|a|=r$ and $D f(a)=Q(r)$, i. e. $f(z)$ is maximizing. Summing up all, we have

Theorem 2. Equality signs in (2) and (3) are realized, except the trivial transformation $f(z) \mid e^{-i \lambda} f\left(e^{i \lambda} z\right)$,
(i) for the left inequalities of (2) and (3), by and only by $f(z)=z /(1-z)^{2}$ at $z=-r$,
(ii) for the right inequality of (2), by and only by $f(z)=z /(1-z)^{2}$ at $z=r$,
(iii) for the right inequality of (3), by any function $f(z) \in \subseteq$ whose C_{j} is a subcontinuum of the Γ-structure of (9)(figure in §3) with mapping radius equal to one and containing $w=\infty$, and only by them, at $z=a$ such that $f(a)$ $=\alpha=\alpha(r)$.

It is to be noted that, in case (iii), maximizing functions form, even disregarding the trivial transformations, a family generated by one real parameter.

We remark finally that $\lim _{r \rightarrow 1} \alpha(r)<\infty$.

References

[1] Komatu, Y., and H. Nishimiya, On distortion in schlicht mappings. Kōdai Math. Sem. Rep., 2 (1950), 47-50.
[2] Schaeffer, A.C., and D.C. Spencer, Coefficient regions for schlicht functions. New York, 1950.
[3] Schiffer, M., A method of variation within the family of simple functions. Proc. London Math. Soc. (2), 44 (1938), 432-449.

Department of Mathematics,
Tokyo Institute of Technology.

