
AN EXTENSION OF MNTCHINE-OSTROWSKTS

THEOREM AND ITS APPLICATIONS

BY CHUJI TANAKA

1. Introdution. As an extension of Vitali's theorem, A. Kintchine and A.
Ostrowski have proved

THEOREM ([1], [2], [3] p. 157). Let {/„(*)} (n = 1, 2, •••) be a sequence of func-
tions regular and uniformly bounded in \ z \ < 1. // the sequence of boundary
functions {fn(eίθ)} (n = 1,2, •••) converges on a set E of θ of positive measure,
then the sequence of {fn(z)} converges uniformly in the wider sense in | z \ < 1.

We shall first generalize this theorem as follows.

THEOREM 1. Let {fn(z)}{n — 1, 2, •••) be a sequence of functions regular in
z\<l and of uniformly bounded characteristic, i.e.

(1.1) -^t i Γ l θ g + I ̂ re*^ I dθ < M < + °° (0 ̂  r < 1, w = 1, 2,..•),

where M is a constant independent of n. If the sequence of boundary functions
ifn(eiθ)} converges on a set E of θ of positive measure, then the sequence {fn(z)}
converges uniformly in the wider sense in \ z | < 1.

P. Montel has proved.

THEOREM ([4] p. 170). Let f(s)(s = σ + it) be regular except at s = oo and
bounded in the strip-. cc<<τ <g β. If limt-++aof((X + it) = a, then f{s) tends
uniformly to a as t -> + oo in the strip: ci^cr ^ β — s, 8 being any given
positive constant.

Before we establish an extension of MonteΓs theorem by theorem 1, we
begin with

DEFINITION 1. Let f(s) be regular in the domain D. If

(1.2) log+l/(s))</*(s) for sefl,

where h(s) is a harmonic function in D, then we say that f(s) belongs to the
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class Ho in D. For brevity we denote it by

DEFINITION 2. // we replace log+)/(s)! by \f(s)\ϊ>{p > 0) in definition 1, i.e.

(1.3) \f(s)\*<h(s) for SΪΞD,

we call that f(s) belongs to the class HP in D. We denote it by

f{s)e=Hp(D,h(s)).

Our extension of MonteΓs theorem is

THEOREM 2. Let f(s) (s = σ + it) be regular and f{s) e H0(S,h(s)) in the strip
S: a < σ < β. Let E be the set of points on <τ = a such that

(ii) Eo: the set of positive measure contained in the segment: o = a,
(1.4) \t\<tQ,

(iii) En: the set obtained by the parallel translation of Eo by int0 {n
= 1,2,...).

Suppose that

(1°) h{sn) (n = 0,1,2, •••) is bounded', w ̂ r ^ sw = σ + mί0, a < cr0 < β,

( L 5 ) (2°) lim/(s) = « (Φoc).2>

Under these conditions, f(s) tends uniformly to a as t -* + oo in the strip S*:
<x-{-ε^Lcr<^β — 8, 8 being any given positive constant.

As its corollary, we easily obtain the following theorem, which is an an-
alogue of E. Lindelόf's theorem.

COROLLARY. Let f(s) (s = σ + it) be regular and f(s) e H0{S,h(s)) in the strip
S:a<σ <β. Suppose that

(1°) h(sn) (n = 0,1, 2, •••) /s bounded, where sn — σaJi- intQ, t0 > 0, α

I; By remark of lemma 2, /(s) e i7 0 (Z)( | s |<l) , h(s)) is equivalent to the bounded-
ness of characteristic.

2) If f{s) G H0(S,h(s)), mapping 5 conformally onto the unit circle, by remark of
lemma 2 and lemma 1, the boundary function f(s) on σ = a exists almost everywhere.
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(1.6) (2°) f(s) is continuous on <r = a and β, except at s = oo,

(3°) lim f{a + it) = a, lim f{β + ft) = 6, (a, &φoo),

Under these conditions, a = b and f(s) tends uniformly to a as t -> + oo in the
strip S*:a-\-S^(τ^β — 8, 8 being any given positive constant.

If f(s) belongs to the class HP (p > 0) in the strip, another extension of
MonteΓs theorem can be established.

THEOREM 3. Let f(s) (s = σ + it) be regular and f(s) C HP(S,h{s)) (p > 0) in
the strip S: a <σ < β. Suppose that

(1°) h(sn) (n = 0,1,2 ) ίs bounded, where sn = σ0 + /wf0, ί0 > 0, α < σ-0

(1.7) (2°) /(s) is continuous on σ = a, except at s = oo,

(3°) lim/(tf + ft) = a (Φ oo)..

Under these conditions, f(s) tends uniformly to a as t -> + oo in the strip
OL^CΓ ^ β — st 8 being any given positive constant.

2. Lemmas. To establish our theorems, we need some lemmas.

L E M M A 1. // f(z) is regular and of bounded characteristic in \z\ < 1, then
following propositions hold:

[A] liπw/(re l β) = f(eiθ) for almost all θ,
[B] log\f{eίθ)\ is Lebesgue-integrable,
[C] if f(z) Φ 0 at a fixed point z, then

where (l/27r) [2*log+\f(reίθ)\dθ<M< + oo.
Jo

Proof. Since T{r,f) = (l/2π ) f2*log+|/(^< β)|rfβ is bounded, by R. Nevan-
Jo

linna's theorem ([5] p. 197) the proposition [A] holds.
If f(z) φ o, putting P = {R2 - r2)/(i?2 - 2i?r cos (6> - φ) + r2) (0 < r < R < 1),

by Poisson-Jensen's formula we get

\og\f(z)\<^2*log\f(Reiφ)\ Pdφ (z = re'*)



100 CHUJI TANAKA

Γ2Λ 1

-Pdφf(Re«)

Since (R - r)/(R + r)<P<(R + r)/{R -r), we have

log! f(z) I ^ 2 (R + r)/(# - r) ^ j**log+1 f(Retφ) \ dφ

- (R-r)/(R+ r) -^FH'\log\ f(Reiφ)\\dφ.

Hence,

< 2M((R + r)/(R - r)Y - (R + r)/(Λ - r) log | f(z) < + oo.

By [A] and Fatou^s lemma,

log 1/(̂ )1 I^^Hm^Jj log |

^ 2M((1 + r)/(l - r))2 - (1 + r)/(l - r) log|/(*)|,

which proves [B] and [C].

LEMMA 2. Γ/zg necessary and sufficient condition for {fn(z)} to satisfy (1.1) is
the existence of a sequence of positive harmonic functions {un{z)} such that

( i ) log+!/„(*) I ^«n(z) in | * | < 1 , ( j f = 1 2

(ii) ^ ( 0 ) ^ M < + oo.

Its proof is essentially due to W. Rudin ([6] p. 47).

REMARK. By the entirely similar arguments as in lemma 2, we can prove
that

(1°) the boundedness of (l/2π)-[**log+\f(rete)\dθ {0^r<ΐ) is equivalent
Jo

to the existence of the harmonic function h(s) satisfying (1.2) in \s\ < 1.
(2°) the boundedness of {l/2π)λ2%\f(reiθ)\»dθ {p > 0, 0 ^ r < l ) is equiva-

Jo

lent to the existence of the harmonic function h{s) satisfying (1.3) in \s\ < 1.

Pra?/. ( I ) Sufficiency: By (2.1),



EXTENSION OF KINTCHINE-OSTROWSKl'S THEOREM 101

un(χe^) dθ =

which proves (1.1).
(II) Necessity: Let us define a sequence of positive harmonic functions

un{z, r){n = 1,2, — ; 0 ^ r < 1) such that

«»(*, r) = log*' /„(««•) I on | z j = r,
(2. 2)

( ): harmonic in | z \ < r.

Then,

un(0,r) = - ^

Hence

(2.3) «n(0,

Since log*\fn(z)\ is subharmonic, by (2.2)

(2.4) log* I fn(z) \ ^ un(z, r) in 121 < r.

By (2.2) and (2.4)

«»(z,y) = log+|/ n(2) |^« n(z,i?) on \z\ = r<R,

so that

^ f e r) < un(z,R) in | z f ̂  ^ < R.

Therefore, {^(2, r)} (0 ̂  r < 1) is an increasing sequence of r. Hence, by
(2.3) and Harnack's theorem, un(z, r) (n = 1,2, ••• 0 < r < 1) converges to un(z)
(n = 1,2, —) uniformly in the wider sense in \z\ < 1. Letting r - * l in (2.3)
and (2.4), we get (2.1), which proves the necessity.

LEMMA 3. Under the condition (1.1) in theorem 1, the family {fn{z)}{n = 1,
2, •••) zs normal in \ z \ < 1.

Proof. By lemma 2, there exists a sequence of positive harmonic func-
tion {un{z)} such that

( i ) log+!/„(*) I ^««(*) in | * | < 1 ,
(» = 1,2,-).

(ii) ^ n ( 0 ) ^ M < + oo

Since un(z) > 0 in | z \ < 1, the family {^(2)} is normal. Hence, by (ii) {un{z)}
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is uniformly bounded in any closed domain D completely interior to the unit-
circle, so that {fn(z)} is also uniformly bounded in D. Then, by the usual
way, the normality of {fn{z)} is | z | < 1 is easily established.

LEMMA 4 ([7] p. 47). Let f(z) (z = reiθ) be regular and (l/27r)-\27C\f(reiθ)\p dθ

(P>0, 0^r<l)be bounded in\z\<l. If l i m ^ + 0 f(eiφ) = tf,3Mim^_0 f{eiφ)
= b, then a ~b and f{z) tends uniformly to a as z -> etθ in \z\ < 1.

3. Proofs of theorems.

Proof of theorem 1. We shall first prove that {fn(z)} converges at z = a
( a I < 1). On the contrary, there would exist two sequences {ficn(z)}, {fnn(z)}
such that

(3.1) lim fkn(a) Φ lim fmn(a).
Π->oo 7l->oo

Put φn{z) = fjcn(z) — fmn(z) - Then, by the assumptions and Egoroff 's theorem,
there exists a sub-set E* of E such that

(3. 2) lim φn{eiθ) = 0 uniformly for θ e E* {mE* > 0).

n-*oo

By the inequality

log+1 a + b \ < log+1 a \ + log+161 + log 2,

φn(reiθ) \ dθ < 2M + log 2 = M* < + oo.
Hence, by lemma 1 [C]

( 3 > 3 ) j^ l log[φ n (e i φ )\\dφ< 4τrM*.((1 + |a | )/(1 - | a ]

By (3.2) and (3.3), letting n-*coy we have lim^oo φn{a) = 0 , which is con-
trary with (3.1). Hence {fn(z)} converges at z = a (\a\ < 1). By lemma 3,
ί/»(2)} is normal in | z [ < 1, so that {fn{z)} converges uniformly in the wider
sense in | z \ < 1, which proves our theorem.

Proof of theorem 2. We consider two function-families

3) Apart from a set of measure zero, the boundary function f{ei(f) exists.
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in the domain D: a < cr < β, \t\ < 2tQ. By the assumption (1. 5) (1°),

log*\fn(s)\<hn(s) for s ε f l ,
(3.4)

0<A«K) <M< -f oo.

We map conformally D onto \z\ <1 by s = g(z)(σ 0 = g(0)). Then, by well-
known F. and M. Riesz's theorem ([8]), the set Eo on the segment L: o = a>
t\<2U is mapped on a set Ef of positive linear measure on the circular

arc corresponding to the segment L. By (3.4)

log* \Fn(z)\<Hn(z) for \z\<\,
(3.5)

0 < Hn(0) < M < + oo,

where Fn{z) = fn(g(z)), Hn(z) = hn(g(z)). Since

lim Fn(2) = « (mE* > 0) by (1.5) (2°),
zeE*

taking account of (3.5), lemma 2 and theorem 1, -[Fn(z)} converges uniformly
to a in the wider sense in | z | < 1. In particular, {Fn(z)} converges uniformly
to a in the closed domain corresponding to the domain: \t\^to + 8, a + S
< σ < β — 8, S being any given positive constant, which proves our theorem.

Proof of theorem 3. Since, by the inequality

log+ x < {\/p)-(x» +1) (p > 0, x ^ 0),

f(s) (ΞH0(S,h*(s))(h*(s) = (l/p) {h(s) + l)) follows from f(s) e HP(S,h(S)), by
(1.7) (2°), (3°) and theorem 2, /(s) tends uniformly to « as t-+ + oo in the
strip S*: a-\-8^cr<^β —e, e being any given positive constant. Hence
limί^+oc/(α: + it) = \imt^+oof{a + 8 + //) = β, so that by remark of lemma 2
and lemma 4, /(s) tends uniformly to a as £ ->• + oo in the strip: a^cr ^a
-t θ. Therefore, in the strip S**: a < <r < β - 8, f{s) tends uniformly to a
as £-> + oo, which proves theorem 3.
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