ON A METHOD OF CESARO SUMMATION
FOR FOURIER SERIES

By Kenj1 YanNo

1. Introduction. Let f(f) be an L-integrable function with period 2z, and
f(t)~ % a, + il(an cos nt + by sin nt),

Pt) =P, (t) =Flx+8) + flx—t) — 2f(x),

and
1 (° a1
D.(t) = T“(_&)_So (t—u)*" p(u) du (a>0).
F.T. Wang [3] proved the following

THEOREM A. If 0 < a <1 and
D,(t) = o(11*) (t—>+0),
then the Fourier series of f(t) is summable (C, ) to f(x) at t = x.

Later S. Izumi and G. Sunouchi [1] generalized the above theorem as
follows:

THEOREM B. If0< B <v, B=(v—RB)+1 and
0p(t) = o(t") (t—>+0),

then the Fourier series of f(t) is summable (C,a) to f(x) at t = x, where

a=8/(y—B+1).

Moreover they conjectured that Theorem B would hold when « > 1, and
later G. Sunouchi [2] solved this problem by the method of Bessel summation.

In this paper we shall prove that in Theorems A and B o can be replaced
by O, and then the latter theorem holds also when « > 1 by means of
modified Cesaro summation. Our theorems to be proved are as follows;
above all the main purpose is to establish Theorem 4.

THeorEM 1. If 0 < a<1 and O,(t) = O(#'!*), then the Fourier series of f(f)
is summable (C,a) to f(x) at t = x.

THEOREM 2. If 0< B <y, BZv—B+1 and 0s(t) = O(t"), then the Fou-
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50 KENJI YANO
rier series of f(t) is summable (C, @) to f(x) at t = x, where aa=£/(v — B+ 1).
THEOREM 3. Theorem 2 holds also when a > 1.

THEOREM 4. If o > — 1 then there exist quasi Fejér kernels Ly (t) of order
o such that 1° the Fourier sevies of f(t) is summable (C, ) to f(x) at t = x if
and only if

1 (- ” _

TSO <p(t)Ln(t) dt = 0(1) (n.+ OO),

and that 2°
d R

1.1 [La(@)1 ™= (7{{) L) = O(#n"*)  for all t and h=0,
(1.2) [Ly(®) 1™ = O /n*~"t>+)  for nt=1and h=0,1,-,h,,
and
(1.3) {7 220 du = 01 /nerte) for wt=1,

where hy, may be as large as we wish.

In this theorem we may take for L3(¢), e.g.

a+k
a — o < . m n-k
L3() = adn 3( 1)k(k) N

where K (t) are Fejér kernels defined by (2.2), and m is sufficiently large,
h, depends on m, and

2 (" ;a —
= S L2(t) dt = 1.

Theorem 4 gives a new modification of Cesaro summation for Fourier
series corresponding to Bessel summation which is generally useful only for
a > 0 where « is the order of summation.

2. Proof of Theorems 1,2 and 3. We require a lemma.
LemMmAa 1. If a> 0 and
Ly () = O(1/n°t*+) for nt=1,
then the integrability of @ (t) in Lebesgue sense implies
[\ i PO LA dt = 0(1) (1 o),

where H=1 is a constant.

1) Theorem 4 may be applied to Fourier series of functions integrable in Cesaro-
Lebesgue sense.
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Indeed divide the left hand side integral into two parts,

—a/2(a4l) T
SH—ln—a/(a+l) + Sn—a/2(a+l) =1+ I,

say. Then

I 0<S WOl p(h) | dt)

H—l —a/(a4l) nata+1
n—ol2(a+1)

= 0(1{“‘*15~ ~1, =aCat1) l(t) ldt) =0(1) (n— ),

since the last integral tends to zero with 1/#. And
lp(t)
IZ = O (S —a[2(a4l) ne tu-.-ll dt)

=0(nr[" 9@ dt) = o(1) (n—>o0).
0
Thus we have the desired result.

For the proof of Theorems 1 and 2 it is sufficient to replace the division

w el
L=t e

0 0

in the second proof of Izumi-Sunouchi [1] by

VZ Y=1,—a[(at1) 1:
= +S —1 —ajcag1y = J1 T+ Jo,
) So el = Ji+ T

where ¢ = ¢ (n) tends to infinity with » sufficiently slowly, and plays the role
of H in the above lemma. In fact J, = 0(1) by Lemma 1, and we see easily
that under our assumption J; tends to zero with 1/# by the same arguments
as in the cited paper [1].

We prove Theorem 1 for the sake of completeness. Let o7 (x) be the n th
Cesaro mean of order a of the Fourier series of f(¢) at ¢t = x, and K% (¢) be
the Fejér kernel, i.e.

2.1) ol (%) = % @ + ﬁlA:_y (@, cos vx + b, sin vx) /A2,
P2

and

2.2) K3(f) =5 + ﬁ A%, cos vt/ A%,

where A% are Andersen’s notation defined by

W=§Azx" (x| <1).

Then it is well-known that
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2(t) = O(n), [Ka(t)]'= O(n?) for all ¢,
and
Ku(t) = O(1/n°t*+),  [Ka#)]'= O(1/n""'t"+)
for nt=1and —1 <a=<1. Now denoting &, () by @(f) we have

wloh(x) — f(0)1= [ 00 K (t)dt
--[L K Sf——:wmm] O ()[K? ()]'dt

—1, —ajcat1y P (F) K5 (1) dt

g+ 7z
+|
R

+ [a) ) K& (t)]

t=0
211+12+13+I4,
say. Then

I, =0 (n2 S:_l z‘"“dt) =0 (1/nt!"Y) = 0(1),

H—ln—a[(a-l.l)
1'2 = O <S -1 nl—atl/a—a—ldt)
n

= O(1/H"*=*) + O(1/n*~)
= O1/H'*=%) 4+ o(1),

I, = [O(tlla/na ta“)],_ el = O (He+= e /ytica+1))

=0(1),

and by Lemma 1 I, = 0(1). Therefore tending #» — o and then H— co we
have o (x) — f(x) = 0(1), which proves our theorem.

Using Theorem 4 and Lemma 1 we can easily prove Theorem 3 by the
method of the cited Izumi-Sunouchi [1]. The proof is omitted.

3. Lemma 2. For the proof of Theorem 4 we require some lemmas. We
suppose that & > —1 and a« 0. The Fejér kernel K (¢) defined by (2.2)
equals to the real part of the expression

__"A'”—_,‘ Ay e
A%(1—emiryert /A2 A%7 T (1 — %)

el’ nt

— Ra(#),

where

1 et 1
[ S— A% ei(h—=v)t
AT e o A :

Ry (t) =

and m is an arbitrary integer greater than a — 1 (K. Yano [5]). Clearly if
a is an integer then A5’ vanish for all j and # such that j > « and n>j — «,
in particular Rj(f) vanish for all sufficiently large #, and the number of terms
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of the sum 3L, remains constant «. Here let

( et ) _cos (mt+ (o + 1)t — ) /2)
Mg (1 — g#)ott ) A% (2 sin £/2) *+! ’

(3.1) An(f) = R

For simplicity we denote the above expressions in imaginary forms by K& ()
and A% (t) themselves respectively for a moment. Now

A7 a@—1)-(a—j+1)
A% (at+n)a+n—1)(a+n—7+1)°
We set
Bf=ala—1)(a—j+1) (j=1,2-,m),
then

Kq(f) - A5 (8) + R (¢)

—it
=—2[B§”/(a+n)(a+n—l) (@+n—j+D] e—-“)T
Similarly we have
Ka k() — A525() + RIZE()

—E[B‘“" (a+n)a+n—1)- (a+n—1+1)](T£i—m+—u

where

w-c-lc . ] =1,2,--,m
3.2) =(a+kla+k—1)(a+k—j+1) E—=0.1 - m)
We determine m unknown constants A, Ay, -++, Ay DY
(3. 3) kﬁlBy‘.k Ap = B7 (j = 1, 29 ) m) ’

which will be solved later. Then we have for such A

K5 (t) — A5(t) + Ra(t)

_ kil KS7E () — A% () + R,
i.e.
(3.4) Ly (t) = Mz(t) — Na(t),
where
(3.5) i) = Ki() — 3K,
and _

My (f) = A7(f) — E e ()
(3.6)

N2 () = Ra(t) — kgl ARIEE(W).
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Hence we have the following

LemMma 2. If o> —1 then the functions Ly (t) defined by (3.5) possess all
the properites (1.1), (1.2) and (1.3) in Theorem A4.

Indeed the relation (1.1) follows immediately from (3.5). The relation
(1.2) follows from (3.4), (3.6) and the definitions of R%(¢) and A% (¢), since

o n
Ly )19 =0 (E’l/n"”‘”t“""“ + ,;(, ]./n"”"l'i—htm+i+1)’

which equals to O(1/n*~"¢*+!) for nt>1 and k = 0,1, ---, s, provided that m be
taken sufficiently large corresponding to 4,. It is analogous for the relation
(1.3). Thus we have the desired results.

4. Proof of Theorem 4. Using oy (x) defined by (2.1) we have from (3.5)
LN o0 1w at = 105 ) — F@] - Z Lot — £,

On the other hand we can easily solve the simultaneous equations (3.3) with
respect to Ay, Ay, -+, Ay, the solution is

>\fk — A(pl’ p27 ) Pk—p o, th, ) pm)
4 (pl’ p2’ R p’ﬂ—l’ pk’ plc+17 Tty pm) ’

where py = a + k(k=1,2,---,m), and
4 (171, Pz, Tty pm) = p1p2"’pm (pm - P1)(Pm - pz) (p;n - pm—1)
(Dt — Pl)(?m-q - 172) (pm—l - If’m—z) (173 - P1)(Ps - pz)(pz - Px) .

Thus by easy calculation we have

M= (=) S k=12m),
Therefore the above identity is written as
1 (" . _on m\ ontix) —fx)
- Lilowmiwar=al v () 7225

m o (M oati(x) _ f(x)
=a3i(—1) <k> a+k A2

since a Sy, (—1)*("f )/ (a + k) = 1/Ag, and by (3.5)

m w'l'k
(4.2) L) = a3l (= 1* (%) a+(2

Now we prove Theorem 4. The quasi kernels are given by (4.2), and the
property 1° follows from the next Lemma 3, and 2° from Lemma 2 immediately.

LemMA 3. If a > — 1 then a necessery and sufficient condition that a se-
quence Sy, Sy, ++*» Sny -+ 1S summable (C, ) to s is
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m my o%tk s
(4.3) a3y (=10 (3) 5 = g + o (n— o),

where o), denote the Cesaro means of order v of the sequence {s.}, and m is an
arbitrary non-negative integer.

This is a generalization of the Mercer’s theorem [6]. We require a lemma.

Lemma 4. If B> a where a==0 is arbitrary, then
(1 + D) sy — ASh-1 = 0(nP) (n—> o)
implies sn = 0(nP~"), where p =0 is arbitrary and s, = s, + $; ++-+ Su.

This lemma is false when B < a.
Lemma 4 can be proved quite analogously as the Mercer’s theorem, the

proof is omitted.

For the proof of Lemma 3, the necessity is evident, and so we prove the
sufficiency. We may suppose that a &= 0 and s = 0. Then the equation (4. 3)
is written as

a@+k a+k+1

mt m—1 On-k O n—k—1
—_— k _—— e — — = | =
Wy Fev (") (@R aRa D) mon o),
Here we denote by s, the Cesaro sums of order 7 of the sequence {s,.}, then
R~ st
a a+1l " gAY (a+1)A%0
_omsi—asitt _ msi—asil
- alin aAs-i(a+ n)
Generally we have
4.5) otk ot (m—R)siTE— (a+ k) satih
: a+k  atk+1l " (a+RAF-(a+n)

for £=0,1,---. Now letting
by = by = nsh — asyil,
and #} be the Cesaro sums of fy, ¢, -+ of order y, we have
thr = (n— RS2k — (@ + Bsalilt (k=1,2,-).

Hence by (4.5), the equation (4.4) is equivalent to

(t.6) b O By T et I IR

Similarly letting
Uy =ty = (0 — 1)1, — Qbn-y,

and u}, be the Cesaro sums of u,, u;,--- of order vy, we see that (4.6) is equi-
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valent to

4.7) 7:2::(— 1)k<mk*2/m—;%ﬂT —o)  (n—oo),

which is again equivalent to

where
0 1
Up = Un= (1 — 2) Uy, — Qthn-1,
and v}, denote the Cesaro sums of v,, v, - of order v, and so on.

We prove our lemma for m = 3, since the proof is analogous for arbitrary
m. Then (4.8) gives

o/ A5 = 0 (n?),
i.e.
(n — 2) thy — Q-1 = v = 0 ("),
from which we have in turn by Lemma 4
(1 — 1)t — Qln-1 = un = 0 (n°+?),
nsy — asyil = t, = o(n*),
and finally s; = o(n*). Hence o} = 0(1), and our lemma is established.

Theorem 4 may be expressed in alternate form as follows:

THEOREM 4'. Let a> — 1 and L;(t) be defined by (4.2). Then the Fourier
series of f(t) is summable (C, ) to f(x) at t = x if and only if

S: @) L0 dt = 0(1) (n— o0),

and for nt=1 L;(}) are written as

@ _ & m A::k @
120 = a3y (-1 () 25— N2,
where A% (t) are defined by (3.1), Nn(t) by (3.6),
[N2 (@I = O 1/n"—ngm+) (h=0,1, -, [m—al),

and m is an arbitrary integer such that m = .

Particularly if o is an integer, then m > 0 is arbitrary, and the last velation
is replaced by

[N = O (1/nr+ignseen) (h=0,1,).
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5. Application. Let f(x) belong to Lip1 class in (0,27), i.e.
f(x+ h) — f(x) = Oh)

holds uniformly for x and x4 % in (0,27). Then Bernstein’s classical
approximation theorem reads as follows:

THEOREM C. If f € Lipl in (0,27) then
oy (%) — f(x) = O (log n/n) (n— o),
uniformly in x, where oy (x) are defined by (2.1).

This theorem is best possible, i.e. O cannot be replaced by o (see O. Szasz
[4]). But we can prove the following theorem.

THEOREM 5. If f € Lip1 then

6.1 [h(6) = F@)] = § [Fha8) — F@)] = OW/m  (n— o),

more generally

(5.2) é}(— 1)* (’Z) ”Z’tﬂxzr;f @)~ 0@/n) (n — o)
m=1,2-),

uniformly in x.
This theorem holds also when on are veplaced by otk

Indeed if we take for L,(¢) = Ly(f) in Theorem 4

L) = Kh(t) — 5 Kaa (D),

then
La(t) = — cos(n+1)¢ sin(n + 1/2)¢
LA (n + 1) (2sin ¢/2)* n(n + 1)(2sin £/2)
1

T 2n(n+ 1)(2sint/2)®°
from which we have
L,(t) = O (n) for all ¢,

and
[ o) du = 01/mt?) for all nt=1,
On the other hand by the assumption

@) =0({), Det)=0Q1) for 0<t=<m,

uniformly in x, where D@(¢) denotes one of the derivatives of ®(f). Now
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the left hand side of (5.1) multiplied by = equals to
k4 1/n k4
[fevLawar={"+| =5+,
0 0 1/n
say, then
L={"eL.@a=0("nat)=0a/m,
0 [}

and integrating by parts
L={" o L at

= p(1/n) K, Lo () du + g"/ D@ (1) dt St Lo (x) du

—O0(1/n) + 0 (Sfl (1/n%2) dt) =0(1/n).
Therefore
S: () Lo(t) dt = O(1/n) (51— o0)

uniformly in x, which proves (5.1). The proof of (5.2) is analogous.
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