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1. Introduction. Let f ( t ) be an L-integrable function with period 2π, and

f(t) ~ -7Γ #0 + Σ! (0» cos nt + bn sin nt) ,

and

Φa(t) = 7ϊ^y-£ (ί - u)-lφ(u) du (a > 0).

F. T. Wang [3] proved the following

THEOREM A. //" 0 < a < \ and

Φι(t) = o(t1**) (*-++o),
/Λ^^ Zλe Fourier series of f ( t ) is summable (C, Λ) ίo /(AT) at t = AT.

Later S. Izumi and G. Sunouchi [1] generalized the above theorem as
follows :

THEOREM B. // 0 < β < 7, β < (7 - β) + 1

0β(f) = 0 ( f γ ) (ί->+0),

/ί^ Fourier series of f ( t ] is summable (C, #) ίo /(AT) at t — x, where

Moreover they conjectured that Theorem B would hold when a > 1, and
later G. Sunouchi [2] solved this problem by the method of Bessel summation.

In this paper we shall prove that in Theorems A and B o can be replaced
by O, and then the latter theorem holds also when a > 1 by means of
modified Cesaro summation. Our theorems to be proved are as follows;
above all the main purpose is to establish Theorem 4.

THEOREM 1. // 0 < a< 1 and Φ^t) = O(ί1/α), then the Fourier series off(t)
is summable (C, a) to f(x) at t — x.

THEOREM 2. // 0 < β < γ, β< 7 - β + 1 and Φβ(t) = O(ty), then the Fou-
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rier series of f(ί) is summάble (C, a) to f(x) at t = x, where a = β/(γ — β + 1).

THEOREM 3. Theorem 2 holds also when a > 1.

THEOREM 4.J) If a> — \ then there exist quasi Fejer kernels L%(t) of order
a such that Γ the Fourier series of f(t) is summable (C, a) to f(x) at t — x if
and only if

and that 2°

(1. 1) [/£(*)]<*> = ~-L«(t) = 0(^+1) /or *// t and h^ 0,

(1.2)

(1. 3)

where h0 may be as large as we wish.

In this theorem we may take for L%(t), e.g.

where ϋCX (ί) are Fejer kernels denned by (2. 2) , and m is sufficiently large,
/z0 depends on m, and

Theorem 4 gives a new modification of Cesaro summation for Fourier
series corresponding to Bessel summation which is generally useful only for
a > 0 where a is the order of summation.

2. Proof of Theorems 1,2 and 3. We require a lemma.

LEMMA 1. If a > 0 and

L%(t) = 0(l/nata+ί) for nt^l,

then the integrability of φ(t] in Lebesgue sense implies

ι -aK*wφ(t}L"n(t} dt = o(l) (
n

where H^I is a constant.

1) Theorem 4 may be applied to Fourier series of functions integrable in Cesaro-
Lebesgue sense.
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Indeed divide the left hand side integral into two parts,

say. Then

o/scM-1) φ(t)\
7l = naίa

since the last integral tends to zero with l/n. And

/2 =

Thus we have the desired result.

For the proof of Theorems 1 and 2 it is sufficient to replace the division

{* rψί»~α^α+1) ΛTZ:
= I 4- 1 _α/(α + l)

o Jo JΉ ^

in the second proof of Izumi-Sunouchi [1] by

r* j.ψ-ιn-«/<«+υ ^

Jo = J o +Jψ-ιn-«/<«+υ=/ι + Λ

where ψ — ψ(ri) tends to infinity with w sufficiently slowly, and plays the role
of Hm the above lemma. In fact /2 = o(l) by Lemma 1, and we see easily
that under our assumption J^ tends to zero with l/n by the same arguments
as in the cited paper [1].

We prove Theorem 1 for the sake of completeness. Let &n(x} be the nib.
Cesaro mean of order a of the Fourier series of f(t) at t = x, and K * (ί) be
the Fejer kernel, i.e.

(2. 1) σ% (x) = -ί ^o + Σ -A2-V (tf, cos ^ΛΓ + &„ sin vx
Δ v=ι

and

(2. 2) X; (ί) = ~ + I] 4Ϊ.V cos
Z v = ι

where An are Andersen's notation defined by

Then it is well-known that
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Kt(t) = 0(n), [«(*)]' = 0(rc2) for all f,

and

κ*(t] = O(i/wβr+1), [#£(*)]'= O(i/nα-1r+1)
for wf J> 1 and — 1 < a< 1. Now denoting (^(f) by 0(0 we have

ττ|>S(*) -•/(*)] =

rprc-1

= L J o "

r Λ ι^-1»-α/(α+1) r*
+ \Φ(t) K"n (t)\t_Q + j^-ln-α/c+D^U) ίrίU) Λ

= /! + /2 + /» + /4,

say. Then

Λ - O w2 ί1/ - O (l/^1/0-1) = 0 (1) ,

/r#-^-a/<a

72 = O !

J8 =

and by Lemma 1 74 = 0(1). Therefore tending n^oo and then H-^oo we
have <r%(x) — f(x) =0(1), which proves our theorem.

Using Theorem 4 and Lemma 1 we can easily prove Theorem 3 by the
method of the cited Izumi-Sunouchi [1]. The proof is omitted.

3. Lemma 2. For the proof of Theorem 4 we require some lemmas. We
suppose that a > — 1 and a Φ 0. The Fejer kernel K* (t) defined by (2. 2)
equals to the real part of the expression

stint m ΔΛ~J a-tt
_ ^ __ V n e ____ P* (f\

Λ ^ a + ί ' - ^ + Γ n(t)'

where

τ?<* (j\ __ _ 1 _ xπ Λ<*-~m—1

/,{fn—v')e
Rn(t}~ A« (!-*-«)»+' v5lι v ^ '

and m is an arbitrary integer greater than <% — 1 (K. Yano [5]). Clearly if
a. is an integer then An"3 vanish for all j and n such that j > a and n^j — a,
in particular 7?* (ί) vanish for all sufficiently large n, and the number of terms
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of the sum "Σ7-ι remains constant a. Here let

cos (M*

For simplicity we denote the above expressions in imaginary forms by Kn (t)
and An(t) themselves respectively for a moment. Now

Ag-7 _ <g(<κ - 1) -(a-- ./ + 1) _
-1- Λ)(Λ 4- n - 1) — (a 4- w - / + 1)

We set

then

>,-

= - Σ3 [B?/(α + »)(α + » - D - (« + « - 3 + 1)1 -frzι=Bp+r

Similarly we have

Kϊ+l(t) - Λϊ%(t) + R£ϊ(t)

= - Σ [SΓV(« + «)(« + » - 1) •» (α + n - j + 1)] (1_^!it);+1,

where

(3. 2) BΓ * = (α + *)(α + A - 1) (a + k - j + 1) (j = J', l' '••'•', w)

We determine m unknown constants Xj, X2, •• ,'λ,m by

w

(3. 3) Σ f?Γ * λfc = B , (j = \,Z, ,m),
k-l

which will be solved later. Then we have for such λfc

K'(t) - Λ°(t) + Rί(t)

i.e.

(3.4)

where

(3. 5)

and

(3.6)

= M«n(t}-N«n(t},

LI (t) = ίΓί (ί) n- ϊ (ί) ,
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Hence we have the following

LEMMA 2. // a > - 1 then the functions l£(t) defined by (3.5) possess all
the properties (1.1), (1.2) and (1.3) in Theorem 4.

Indeed the relation (1. 1) follows immediately from (3. 5) . The relation
(1.2) follows from (3.4), (3.6) and the definitions of R%(t) and Λn(t), since

[/£(*)]<"> = O

which equals to O(l/na~}lta+ί) for ί̂ ̂  1 and A = 0, 1, •••, A0 provided that m be
taken sufficiently large corresponding to /?0. It is analogous for the relation
(1. 3) . Thus we have the desired results.

4. Proof of Theorem 4. Using σ* (x) defined by (2. 1) we have from (3. 5)

1 Γ Λ m

-±- ψ(t) L"n(t] dt = [o ϊ(χ) -/(*)] - Σλ»[o-;iϊ(*) -/(*)].
7Γ JO fc = ι

On the other hand we can easily solve the simultaneous equations (3. 3) with
respect to λ l f X2> " ,λm, the solution is

X = ι z> - ~ , i s - i 9 ,
Δ(pι,p2, - ,p7c-ι,pk,jc+ι, - ' , m

where p* = α: + A (A = 1, 2, -••, m) , and

^ (Pl>p2> '",pm) = Plp2~ pm (Pm ~ Pl)(Pm ~ Pz)'~ (P m, — Pm-l)

' (Pm-i — Pi)(Pm-ι — Pz) '"(Pm-l ~ pm-*) '" (P* — Pl)(P* — Pz}(p2 ~ Pi)

Thus by easy calculation we have

Therefore the above identity is written as

since α Σ ? _ 0 ( - l ) * / ( r t + *) = 1/-4J, and by (3.5)

(4.2)

Now we prove Theorem 4. The quasi kernels are given by (4. 2) , and the
property 1° follows from the next Lemma 3, and 2° from Lemma 2 immediately.

LEMMA 3. If a > — 1 then a necessery and sufficient condition that a se-
quence s0,slt ,Sn>' is summable (C,cx) to s is
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m

(4-3) «Σ (-11

where σΊ

n denote the Cesάro means of order 7 of the sequence {s,ι}, and m is an
arbitrary non-negative integer.

This is a generalization of the Mercer's theorem [6]. We require a lemma.

LEMMA 4. If β > a where #ΦO is arbitrary, then

(n + p)sn — QCSn-i = 0(^β) (w -> Oθ)

implies sn = o(nβ~1} , ^fer^ p f 0 is arbitrary and s\ = s0 +
 5ι H ----- ̂  s»

This lemma is false when β<a.
Lemma 4 can be proved quite analogously as the Mercer's theorem, the

proof is omitted.
For the proof of Lemma 3, the necessity is evident, and so we prove the

sufficiency. We may suppose that a Φ 0 and s = 0. Then the equation (4. 3)
is written as

m-l

(4-4) (-1)

Here we denote by si the Cesaro sums of order 7 of the sequence {s?l}, then

α AT-Λ+I o* 0

Λ+1

crn C'w-l SΛ Sn-l

nsί - ΛsSlϊ
aAln

Generally we have

(A
^

for k = 0, 1, •••. Now letting

ί» = ί» = wsϊ — rtsjί},

and tl be the Cesaro sums of t^t^ ••• of order 7, we have

*£-* = (Λ-*)S;ΪΪ- (α + A)sSiϊίι (ft = 1,2,-).

Hence by (4.5), the equation (4.4) is equivalent to

(4-6) -

Similarly letting

Un = Un = (n — l)tn ~~ Λ&-1,

and ul be the Cesaro sums of UQ,UI, •••of order 7, we see that (4.6) is equi-
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valent to

(4.7) &(-

which is again equivalent to

(4.8) g (- !). p - 3)

where

tfn = t& = (Λ — 2) MΛ — m^-ι,

and 0J denote the Cesaro sums of v09vl9 ••• of order 7, and so on.

We prove our lemma for m = 3, since the proof is analogous for arbitrary
?w. Then (4. 8) gives

Vn/CiAn-3 =

i. e.

(n

from which we have in turn by Lemma 4

and finally s* = o(na). Hence cr* = <?(!), and our lemma is established.

Theorem 4 may be expressed in alternate form as follows:

THEOREM 4r. Let a > — 1 and L*n (t) be defined by (4. 2) . Then the Fourier
series of f(t) is summable (C, a) to f(x) at t = x if and only if

Γ φ(t) Ln (t) dt = 0 (1) (n -> oo) ,
Jo

and for nt^l L%(t) are written as

where Λl(t] are defined by (3.1), N*(t) by (3.6),

IZV£W]< Λ ) = O(l/Λw-Λίwl+1) (h = 0,1, .-, [m -

is ^n arbitrary integer such that m^ot.

Particularly if a is an integer, then m > 0 is arbitrary, and the last relation
is replaced by

(h = 0,1, .-).
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5. Application. Let f ( x ) belong to Lipl class in (0, 2τr), i.e.

/(* + *)-/(*) =

holds uniformly for x and x + h in (0,2τr). Then Bernstein's classical
approximation theorem reads as follows:

THEOREM C. // / e Lip 1 ίw (0, 2τr)

σi (#) — f ( x ) = O (log w/w) (w -* oo) ,

uniformly in x, where o % (x) are defined by (2. 1) .

This theorem is best possible, i. e. O cannot be replaced by o (see O. Szasz
[4]). But we can prove the following theorem.

THEOREM 5. 7//e Lipl then

(5. 1) [o i (X) - /(*)] - i- [σ ».! (X) - /W] = O (l/n\ (n -> CXD) ,

more generally

(5.2) Σ (- D* ^ / W = 0(1/||) (^oo)

uniformly in x.

This theorem holds also when ^w-fc are replaced by <rl

n

+k.

Indeed if we take for Ln(t] = Ln(t) in Theorem 4

then

cos (n + V)t _, sin (n + 1/2) f
(w + 1) (2 sin ί/2)2 "*" w(w + l)(2sin ί/2)3

1
2n (n 4-'.

from which we have

Ln(t) = O(n) for all t,

and

I Ln(u) du = O(l/n2t2) for all nt^l.
jt

On the other hand by the assumption

φ(t)=O(t), Dφ(t)=θM for 0<^τr,

uniformly in ΛΓ, where Dφ(t) denotes one of the derivatives of φ(t). Now
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the left hand side of (5.1) multiplied by π equals to

J it riln Γ Λ
φ(t}Ln(t)dt = \ +\ = /, +

o Jo J i / n

say, then

I, = Γ" φ(f) Ln(t) dt = O (Γ/n nt dt] =
Jo \ J o /

and integrating by parts

I2= Γ φ(t)Ln(t)dt
J ί l n

/w) Γ L»M rfw + Γ D^W Jί Γ L'» M rf«
Jl/ίl Jl/» Jί

/«) + O (Γ (l/^2/2) Λ) = O (1/w).
VJl/ίl /

Therefore

Γ ψ (t) Ln (t) dt - O (l/n) (n -+ oo)
Jo

uniformly in x, which proves (5.1). The proof of (5. 2) is analogous.
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