ON CERTAIN STRONG SUMMABILITY OF A FOURIER
POWER SERIES

By MasakiTi KiINUKAWA

1. Suppose that

F@) = ez, (2 = re),

is regular for |z| =7 <1 and its boundary function is f(¢*®). Let us™put

Mo f) = (5| 7 e) 2ap)”

-

o%.(6) = 54(6) = Y cve™,

4(0) = g 3435 (0), for &> —1,
tn (0) = ncn,e™
and .
T5(6) = }18 i}oAﬁziMe), for &> 0,
where

Ap4";%~wwrw+n.
Then we have
1.1) Th(8) = 8{ei1(0) — X))

Concerning the convergence of the series

SV o3 (8) — f(e%) *,

|
n=1

we have proved some results in [5]. In this paper we shall prove the fol-
lowing theorems. The method of the proof is due to H.C. Chow [2] and the
author [5].

THEOREM 1. If the integral

40 My f)ar

is finite, then the series
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SUMMABILITY OF A FOURIER SERIES 13

3

a5(0) — f(et) ¢

1

U]

”

converges for almost all 8, where 1 < p<2, q=p/(p—1), and

1
4,(r) = 1 —r)Hr-y or =(1-7) 1/1"‘1(log l—iT) p,
according as
d>1/p—1, or 3 =1/p-—1.
THEOREM 2. If the integral
1
SOAZ ) My (7, f) dr
is finite, then the series
SEAOESEOR
converges for almost all 0, where 1 < p <2, and
4i)=1—r)-Ur, or =(1-—17) -””(IOg . 7} 7_)1/12

according as
d>1/p—1, or d=1/p—1.
2. Proof of Theorem 1.

LemMa 1. We have the following inequality,” for p =1,

(Snﬂ f(ret?+i0) — f(gi0) ,“’d@)l/n

(2.1)
< KS; dP(S:z Vi (pe”’) ;Dd0>1“) +K @ (S: f (reio) l"de)l“’_

Proof is easy from the similar calculation used in [5].

LeEmMMA 2. Under the assumption of Theorem 1, we have

Ms

on(0) —f(e?)[* <o

S
]

1

for almost all 6, where a = & + 1.

For, we have

$485(0) — Fle0)en = LELZLEE) ).

For 8> 0 and |z/|=7 <1, we have

Fp(z:6) = 3, (A8n) “A{5(0) — F () )2"

1) We denote by K an absolute constant. In what follows, the value of K may
be different from one occurrence to another.
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= Bz ?| (2 — w) P F (s 0) du,
where 28 and (z — u)#~! assume their principal values. Taking B8=a >0
and using the Hausdorff-Young theorem, we get
T

(Byo50) — sy o) <k([" Futrew;0)7ap)”.

Since
F.(re*;0) = ar [ (r = p)'F(pe**;60)dp
= af: (A —p)*7'F(rpe?;0)dp,
we get
(5 50 — s o) =&(["_[ a-p)y = Fipe;00ap"an) .
n=1 -7 JO

T

éKS:dP(S L (I =p)T'F(rpe”;0) 1’d<p)llp

- KS: 1—p) a—ldp@: Frpes;0) 2dp) .

Thus we have

5:(7,2: an(0) — f(e*) iq>1lqd6

<k(" asf 0 —p)=ap([" Fipew;o) rap)”
-l a0 o anl [ SR 0

= k] 0= ap([T e | ) — s pas) .

If we replace by (2.1) the last integral in the right side of the above, then
the above integral becomes

T R T
_,_S:z. 1,:;?:—1;“;&) ngS: f(pe'?) ;md(;}tm

=k a—pae([ = ) ([ ey 12a0)”

+ k| 0 - ap(( = B de) (|77 (o) rag)”

=], +J,, say. We have
1—p)teo, for ap>1,

K
< K(log 2 ). for ap=1.

= (@2
S x |1 — pe’*%i?"“”f dp
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Thus we get
1
L=K\ 4:(p) My (p, f)dp.

For the remaining part /;,, we have

Su dp — < K(1 — p)t-oa+e,

e (1= petefptiie
since a > 0. Thus we get

]1 é K"I (1 _ P) a—1+1/p-(1+a) dPS:MI’ (r, f!) dr

Jo

= K[ M0, ) ar || (1 p)+irap
0 0

= K[ @ =n "My 0, ),
which is dominated by J,. Thus we get Lemma 2.

LeMMma 3. Under the assumption of Theorem 1, we have

S0 < o,
Jfor almost all @, where o =1 + 8.
For, since
S A )z = 2L D)~ 60,
we have

Gs (236) = 33 (4%:) " ART5(0)2" = Bz7#| (2 — ) PG (w;0) dwe.

Using the same me:tohod used in Lemma 2, we oget
(i@ 9) a0 =kl a6l a—pr=ap([" Gleer; 0)12ap)”
= KS: 1—p) “”dP<SfﬂT:%)llﬂ(gjﬂ |f' (pe?) !f’de)lm

< K[ 4,(p) M, (p, 7)dp.
Thus we get the required result.
Combining Lemmas 2, 3 and (1.1), we get Theorem 1.
3. Proof of Theorem 2.

LemMma 4. Under the assumption of Theorem 2, we have

oo

21 oa(8) —f(e*) ? < oo,

n=1
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for almost all §, where o = & + 1.

As in the proof of Lemma 2, we have

3 (A4) 7 A3 (0) — f(e) 2" = Bz (2 — )57 F (u;0) d

n=0
= Fp(z;0).
By the Hardy-Littlewood theorem, we get, for 1 < p <2,

S A3/ A% o5(0) — F(e) re < K[ | Fa(a;0) vde,

n=1

where

(1" 1Fez0) rap)” < &{[" [ = p)eFirpe; 0)ap "ap)™

=k( (1~ p)rap([" | Firpe;6) rdp) .
0 -
Since p—2+ p(aa—B) =0, that is, B=a—2/p+1>0,

§ {,i{l Th(0) — f(e*) P’}de] "
/

< k([ ao{fa—preap([" (Fipeio)ar) )"

T

=k&{ 0 —p)eap([” ao]" 1 Fpe;0) rap)”

1 _ z d n - 1/p
= KSO 1—p)e ldPG_”"ﬁ:‘Pé%WS_ﬂ |f(petotie) — f(e*) a1d6> .

Thus, by the similar way used in the proof of Lemma 2, the above integral
is majorized by

el orman( = gl ) G 7o vas)”

1/»

v K a=peap([  h e 49) (17 e ra6)

-7

= J, +J,, say. Since
1 —p)tr-e, for ap>1,

e e = K{ (i

1 i/»
1—p

for ap=1,
we get

L= K| 4(0) My (p, F)dp,
and, since B3 —1+1/p — a = —1/p<0, we get

]1 é KS (1 _— p) ﬁ—l+l[1)—(1+a)dp S:Mp (r' f/) dr

1
0
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- KSlMp (#, f) drj’ (1 — p)pHiin—i-sgp
0 0

< K[ 0= 71,0, F)ar,
which completes the proof of Lemma 4.

LemMma 5. Under the assumption of Theorem 2, we have
31 THO)" <o,

for almost all 9, where o = 8 + 1.

For, we have
S1(Af) " ASTE(0)2" = B2 A (e — ) PG (w3 0) du = G (230),
where 8 =a +1—2/p>0. Hence we get

S (A A T (0) e < K| Gales0) vdg.

n=1
By the same argument as in Lemma 4, we get
£ oo 1/p 1 _ k4 dQ) 1/
a ) _— 1 . ’
[ (Sims@e)ae] " =& 0 = oo ([ =i ) " Mate. 110

1
= K| 4.(p) M, (p, F)dp,
which completes the proof of Lemma 5.
Using Lemmas 4 and 5, we get Theorem 2.

4. If we use Chow’s theorem [2, Theorem 2], we may get easily by the
method used above the following

THEOREM 3. If the integral
(4.1) S:M »(r, fdr

is finite, then the series

oo

Sion() — f(e*) |7/n

%=1

converges for almost all 0, where 1 < p <2, and 6 =2(1/p —1).

THEOREM 4. If the integral (4.1) is finite, then the series

oo

T (6) — £(e) 1*/n

n=

converges for almost all 8, where 1 < p<2, q=p/(p—1) and 6=1/p — 1.
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5. Finally we shall prove the following theorem, which is analogous to
T. Tsuchikura’s theorem ([6], [7]).

THEOREM 5. If, for a point @,
[[17ete0) — (o) vdep = Ot 08 1/} 723,
then the series
3 oh(0) = f(e) */n
converges at the point 8, wheve 2=p>1, 1/p+1/p' =1, p=k>0, B> p/k
and 8 > 1/p—1.

The method of proof is due to Hardy-Littlewood [4] and Chow [1]. For
the purpose, we need the following lemma.

LemmMma 6. If u(8) is integrable L,

1 £ 1— 7’¥
u(r,0) = 5| 4O T—sreorg—gr T 2
and
[T1u@ at = ogx s0g1/ix ), =20,
then

§ wlr,f) dt = O{'x /(log 1/ x )P}, uniformly for 1 —r=|x|,
or =0{x/(logl/lx)B +|1—7r)xt~4},
where 1 > 4> 0.

Proof of Lemma 6 is quite similar to the Hardy-Littlewood lemma [4].
Hence it will be sufficient to sketch the proof.
We may suppose 1 > x > 0. We have

Jem = lutr ) at = K[ juie) {[] G o—pyr il

= K| (u@) X (@5 ndp, (h=1-17).
Using the assumption
U@) = [ u)at = 09 /g 1/ p )7}
and integrating by parts, we have
[ 1) X (@, 5 ) dp = U X e, 5, 0) = [V (0) 2
where

(5.1) U)X (, %, h) =0 (hx).
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Since oX/op = h/(W* + ¢*) — h/ (W* + (P — x)%), we have

™ oX - hxp
SoU(q)) op d‘]"—_{ K{SOU(¢) W F ) {hz__l_”‘((p — 0 ap
4 hx2
10O e 1 0 - 9 9}

=K(i+J).
Let us put 0 < 4 <1, and let us split up the first integral into following two
parts,

Ji= gwd-f- S:" =Ju + Jiz

v 0
then we have

w" ¢)2
T = O, g1+ 5 =277 (og 1797 4%}
(5.2) N
x < —
= 0 og s b, e — 4} = O/ og 1/2) %)
and
- . dp ) _ -
(5.3) Ji= O] e e} = Ohe9).
By (5.2) and (5.3), we have
(5.4) Ji=0{x/(log1/x) P + (1 —7)x*~}
Next we consider the integral J,. We have
(" hx? -
J. = Soy(qj) B+ O+ (P — %7} dp
=2 2% mA £
= So + Swlz + Sm + Sz" = Jor + Jeo + Jos + Joss
where

65 Ju=0{ gl pr g a9} = O/ (o8 1/0) Y,

2z

h
6:6)  Ju= O o b o e ey 47} = Ot/ (og 1/2)?),

»4 2
(5.7) Jos = O{ (log T/x) B Szm " I:Li_(pq)z)z d¢} = O{x/ (log 1/x) #}

and

o dP | _ 2-2
6.9 Ju= 0f(", 20| = 0 ().
Summing up (5.5), (5.6), (5.7) and (5.8), we get
(5.9) J. = O{x/(log 1/x) B + hx?—24},

Collecting (5.4) and (5.9), we get Lemma 6.
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LemMma 7. If
[[1£(eo0) — f(et0) 2ap = O 21/ (l0g 1/i2) 7},
then we have

10) = |* ALEED =S dp = o1 - nor/(10s 12, ))

where p>1, p>1, 83>0.

Proof. Let
F(2) = F(re") = f(ze") — f(e') = f(re'**) — f(e").
Then F(z) is regular for |z| <1, and belongs to H* and

S: ] F(e:’w) ‘pd‘P = S: jf(ewﬁe) —f(eie) 1”d¢7

(5.10)
= O{t/ (log 1/¢) #},
by the assumption. Since
k4 2 D
| F(re®) " = 1217; S_ﬂF(ew) 1—2r col(q)y— ) + 7’ a¢

G.11) 2
1—7r
1-—2rcos(¢ — @) + 74,

it follows from (5.10), (5.11) and Lemma 6 that

k4

= KS ﬂtF(e”’) o

Glrt) = | |Fire®)rdp = 0{ t /(log1/ t))),
uniformly for 1—7»<|¢],
and =0{ti/(logl/|t]) + Q1 — r)t: 4}
Using the above and integrating by parts, we have

(" [ F(ret®)|?
10 =) = s gy 49

o + k[l + [} F 0 erdr,  =1-1),

= 0(1) + K{Il + Iz},

where

L={"+{+{ (v=ht, 0<E<T),

13
= Iu + Im + Il3v
say. We get

1= o[! 2 [ iog Dy e + 19|} = o/ (1085 )'}.
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1 1-p
o /)8 Ui gy 7} = OUR/ (log 1/1) %)

and
I = O{Sﬂ’z‘“‘zd‘/’} =0 (y'™") = O{h'~*/log 1/h) #}.
For I,, we have also the same estimation. Thus we get Lemma 7.

We are now in position to prove Theorem 5. By the Hausdorff-Young
theorem, we have

{31 Ai(edo) - reny " < k| J%)ff‘)d

T f(ret?ti0) — f(ei®) » ;
gKS_u {{l(—e 7)? >+ ‘/)J;}g‘rﬁ))»lz s (z = 7e*).

Since u = (1 4+ d8)p > 1, by Lemma 6, the above integral is

of@—r+/(log ;1 YL

Let us put 1 — 7 = z/2*', then we have

oA /v’
[ 5 1axei0 —senrp) = oo,

l n=2"111

Hence

A o/’
{ 22] [a8(0) — fet?) 317’} = Q{2 7178200 "B} = OQ{2r@~D)\ "B},
n=2"141

Let kg = p', 1/q+1/¢’ =1 and ¢ > 1, then by the Hoélder inequality,

oA N L/e oA 1/a
5 et e m=( 5 m] (8 1ot —sen )

1;:2)‘_11»1 n=2" 41 n=z™" +1

A

9 k[p”
=z 5 o2~ flen )

n=2"" 41
= Q{2271 (QAN\TBYID) kY = O (\~BRIT)
Thus

oo

S1108(6) — £(e) f/n = O{ T +p} = 0(D),

n=2
which completes the proof of Theorem 5.

Finally, the author is thankful to Prof. S. Izumi and Miss M. Sat6 for
their kind suggestions.
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