
ON THE JUMP FUNCTIONS

BY KENJI YANO

1. Let f ( x ) be an L-integrable function with period 2π, and its allied Fou-
rier series be

oo oo

(1.1) S (bn cos nx — On sin nx) — Σ Bn (x) .
n~l r*-l

We write

(1.2) ψ(t) = Ψ*(t] = /(* + *) -/(*-*) -l(x),

and denote the n-ih (C, a) mean of the series (1.1) by σ%(χ) with

sn (x) = σ° (AT) and σn (x) = σ^ (^r) ,

that is

where A* is Andersen's notation, A* = (a + !)(# + 2) ••• (a + n)/nl.

In this paper we shall consider a particular value of ΛΓ such that 0 ̂  # < 2τr.

O. Szasz [1] has showed:

THEOREM S^ // ψ(t) satisfies the two conditions

(a) ^ ψ(u)du = o(/),
Jo

(b) f <^(«) du = 0(t)
Jo

# s / -> + 0, then

(1.3) ίίn(*) -<?nW

as n -> co.

S. Izumi [3] improved this theorem as following:

THEOREM I. Theorem Sx is valid even if the condition (b) would be replaced
by
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L(1. 4) Γ J ^ ( L + ^ L dt = 0(
Jιr/w t

as w -> oo.

H. C. Chow [4] has showed:

THEOREM C. // a > 0 and ψ (t) satisfies the conditions (a) and (b) , then

S ^ -> oo.

G. Maruyama [5] has showed:

THEOREM Mj. Under the conditions (a) and (b) , if μn > Xw om/ lim

S w -̂  oo.

Further if μn/^n -> °° then

THEOREM M2. If f ( x ) is of bounded variation and μn/~λn ->• 1 £/z£^ (1. 5)
as n — >• co.

O. Szasz [2] showed:

THEOREM S2. // ^(ί) satisfies the conditions (a) ^rnJ (b), ί/ί^n ^^ sequence
{nBn(x}'} is summable (C, 2) to £/z# z α/wβ l ( x ) / τ r .

Recently, R. Mohanty and M. Nanda [6] proved:

THEOREM M.N. // ψ(t) = o(log (l/ί))"1 ΛW^ ΛΛ - O(w-5), &w - O(w-δ), 0 < δ
< 1, then the sequence {nBn(x}} is summable (C, 1) to the value l(x) fπ.

In this paper, we shall prove a number of theorems which contain the
above theorems as particular cases.

2. We denote the n-th (C, a) conjugate Fejer kernel by XjJ(ί) with Dn(t)

= X2(f), i.e.

(2. 1) ^ (ί) - \Λ- Σ ΛU sin vt9A.n v = ι

then we have, from the definition of ψ(ί) in (1.2),

(2. 2) σi (X) = ̂  JJ ίΓS (/) Λ + -|-J^ ̂  (ί) K (t) dt.
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We shall first prove the following

LEMMA 1. // a > — 1 then

(2.3) Γ JSfj (t)dt - X (a, n) + log2 + o( I )
Jo

as n -> oo, where

<2 4> λ^M)=^TΪ + ̂ Γ2 + -+^

In fact, from (2.1) we have

' n X4 „ >, — 1 V Ά . Λ, — 1V = l

- p^ + α,,
say. Then

\ n 1 1

i i ^ i / Ag-y __ A .I.V \
A^ n^ a i / V Aϊ <-! ^

1
= (a + n) Ά -Ί

i i ^ i
n^ a i/

1 1

U

1
(α + n)An-ι v

and, since P! = !/(# + 1) we have

1 . 1p
•* » ~~

which equals to λ (#, w) . Qn is the ^-th (C, a) mean of the convergent series
0 4- 1 — 1/2 + 1/3 — •-•, which is summable (C, — 1 + δ) for every δ > 0 since
the n-th term (- l)w-γrc is O ( I / n ) , and so

as n -+ oo for every a > — 1. Thus we get (2. 3) and our lemma is established.

REMARKS. More precisely we can show that

(2. 4) ' \(a,n) = log -̂ | + cα + O (l/n)

if Λ > — 1, where crα is a constant depending on a, and 0 < cα <l/(a + I ) .
And

Thus we get

"~ 1) (-1
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r*
(2.3)' K

Jo

3. We write

/o !\ J/ x _ 1 Γ* sin(wf + (a + l) (t - π(3. 1) — -(2 sT

then, by Lemma 1, we have the following

LEMMA 2. // α: > — 1 dm/ ^(/) satisfies the condition

( a )

S ί-> +0,

log2]

as n —> oo.

Indeed, in the expression (2.2)

J Λ pTT/W

o Jo

say. Then from

K%(t)=O(n) and ~K^(t) = O(rc2)

we have, integrating by parts, /! = 0(1). UΓj(ί) is the imaginary part of the

expression

1 1 n

i -1 VΊ /1α 0iϊt
O * .yΛΛ r ' * * w—v ^ >

which is written in the form

_ _ _ _
2tan(ί/2) ^A* ί (1 - er*)»"

pίnt pint oo
i ___________ ___ r _______________ __ _ r _ VΊ /iα-fc-ι x,-ίvt
^ ^ - v 'v

where k is the positive integer such that — 2 < cί — k ̂  — 1. We can easily
see that from the last expression, integrating by parts, 72 equals to the
imaginary part of

under the condition (a), analogously as A. Zygmund [8]. Thus we get the
desired result.

Evidently, if β > a and A (a, n) -> 0 then A(β, n) -> 0.
If </»(/) satisfies the condition (a) then
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as m -> oo and n -> oo. Particularly if 0 < H < m/n < K then 0(log m — log n)

= o(l).
From the above facts and Lemma 2 we have immediately the following

LEMMA 3. // — 1 < a^β and ψ(t) satisfies the conditions (a) and Λ(a,n)
->0, then

(3. 2) σfn (X) - σl (x) = ̂  [X (β, m) - λ (a, n) ] + o (1)

as n-ϊcv for Q < H < m/n < K.

4. THEOREM 1. // a > 0, ^ > 0 #m/ ^00 satisfies the conditions

(a) fV(M)<fa = o(f) and (b)
Jo

ŝ t -> + 0,

>*) n

and for each positive integer k

as n -> oo.

n: (X) - σS« (,) = log p + ί + ... + - + 0(1)

Indeed, since the condition Λ(a,n)-+Q follows from (a) and (b) if a > 0
we have the desired result by Lemma 3 and the definition of \(a, n) in (2. 4).

This theorem contains Theorem C and the first part of Theorem Mlβ

THEOREM 2. // 0 < a < β and ψ (t) satisfies the conditions (a) and (b) then

ί*ί(x) -<(*)]/ (log m- log n) =-/£)- + 0(l)

as n —>• oo /or m/w -> oo.

In fact we have

analogously as Lemma 3. And, since \(a, n) = log w -h O(l) the first term
of the right hand side equals to l(x)(logm — logn)/π + O(l). Thus we have
the desired result.

This theorem contains the second part of Theorem Mt.
Theorem M2 is valid even if σn would be replaced by s~n, i. e. :

THEOREM 3. If f ( x ) is of bounded variation in (0, 2τr) and m/n-+I, m — n
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oo, then

[sm(x) - sn (x) ]/ (log m - log n) = - £' + o(1).

Indeed we have, by (2.3)'

Γ DH (t) dt = log n + c0 + log 2 + O (l/n),
Jo

and by (2.2)

τrsn(x) = Γ φ(t)Dn(t)dt + l ( x ) ( * D n ( t ) d t .
Jo Jo

Therefore

7τ[sm (#) - sw (x) ] = ΓV (/) [Z>OT (/) - A, (/) ]Λ + log m - log n + O (l/n).
Jo

We write

i ψ(t) [Dm(t) — Dn(t)~\dt = l + 1 = /i 4- 72Jo Jo J δ

say, where δ > 0 is small. It is evident that ψ(t) = 0(1) and

ί
c

dφ (u) =0(1)
0

as t-> + 0, since we may suppose that ^(0) = </>(+ 0) = 0. Considering the
positive and negative variations of ψ (t), by the second mean value theorem
we have

, 7ι '^ V(S) - sup : I [sin (n + l)u + ••• + smmuldu
0<ίgδ i Jί I

and

I f ' I
1 /2 ' = I J

cos (m + 1/2) t - cos (M + 1/2) t , F(τr"
2 sin (δ72ί ' ΊΓ'

Thus we get the desired result since it is evident that

/yy> _ 4/7 1

log m — log n and — = 0 (log m — log w)

under the restriction concerning m and n.

5. It1 is easily seen that Theorem 3 is valid even if sn would be replaced
by cr* for a. > 0. On the contrary, for the negative value of a we have the
following

THEOREM 4. Let — 1 < a < 0 and δ > 0 be small. If f(x) be of bounded
variation over (0, 2 π), and

(5.1) f δ ! J (ψ (t) - ψ (t + A ) ) ! - O (A"*"*1')
Jo

as h-+ +0,
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(5. 2) [ί * (x) - σ«n (x) ] / (log m - log n) = / (x) /π + o (I)

as n -> oo /br (m — n) In -> 0 <am/ (m — 72) /n |α l -> oo.

In the case a = 0 this theorem coincides with Theorem 3.
We require a lemma.

LEMMA 4. If —I < a < 0, /(#) zs 0/ bounded variation over (0, 2τr) and I
< m/n < H, then

as n-+ oo, where at = (Λ + l)(ί — TT) /2, 8 > 0 /s small, and o depends on n and δ.

This lemma can be proved by an elaboration under the conditions

(5. 4) Ψ ( t ) = o (1) and f \dψ(u)\ = o (1)
J 0

as f — >• + 0, which are the consequence of /e B. V.. The proof is omitted.

The proof of our theorem is as following : under the restriction concerning
m and n it is evident that

m~^n ~logm- log Λ, ^ft+1 = o(log m - log n) ,

and moreover, we have by an elaboration

Γ [KZ, (u) - XΪ (M) ]du = O (m~n\ o < ί < π/n,
Jo \ ft /

and

We write

! + 72 + 78

say. Then by (2.3)' we have

= /(ΛΓ) (log m — log w) + o(log m — log w) .

Integrating by parts we have 7t = o((m — w)/w) and 73 = O(l/wα+1) under the



8 KENJI YANO

conditions (5.4). Therefore it is sufficient to show that 72 = o (log m — log n)
under our assumption. From (5.1) it follows

(5.5) Δφ (t) - Δφ (0) = O (/^ow)

as h -> + 0 in (0, δ), where Δφ (t) = ψ (t) - ψ (t + h). On the other hand from
the fact

sin (mt + oίt) — sin (nt + Qfc) ,,
(2sinf/2)α + 1

- J'/n [tfl W - Ŝ (/) ]Λ + O (log m - log »)

= O (log m — log w),

we have under the condition (5.4), by Lemma 4

+ (9 (log m — log n)

= /i + Λ + o(log m - log «) ,

say, where h = TT/TZ and jRΓ > 0 is arbitrary. Letting

% ̂  = 2~sϊn(ί72)" tsin ̂ mί + Λί^ "" sin &*

= cos ( (n 4- 1/2) / + Λβ) + — + cos ( (m - 1/2) / + <*,),

Jί
% (u) du = O((m — w) /M) . Therefore, integrating by parts under the

0
conditions (5. 1) and (5. 5) we have

n

On the other hand, from

S t
\βm(mu -f au) — sm(nu + #M0

again integrating by parts we have/2 = O(K/n)a+1. Thus 72 = o(log m — log w)
since 7£ > 0 is arbitrary, and our theorem is established.

Further we have the following theorem under another Lipschitz condition
cf. [7]).

THEOREM 5. Theorem 4 is valid even if the condition (5. 1) is replaced by
φ e Lip (1, p) in (0, δ) , where \a\p>l.

It is sufficient to show that 72 = o (log m — log n) . But by Lemma 4
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- iog

where Δψ(t) = ψ(t) — ψ(t -f- π/n) . And since it is evident that from \a p
> 1 it follows (a 4- ΐ)q < 1 where l/p + l/# = 1, the fisrt term of the right
hand side does not exceed

which proves our theorem.

6. Theorem I in the section 1 is trivial under the condition (1. 4) . The
purpose of S. Izumi [3] is, I suppose, to show that the theorem is valid even
if O(l), in the right hand side of (1.4), would be replaced by O(log^). This
will be negative. But we can show that (1.4) may be replaced by a weaker
condition.

Evidently, from the condition

(b) }ψ(u)\du = O(t) as

it follows

,e,

as 0 < /' < t -> 0. Inversely, if (c) holds then

f Φ(uγ ,du=
Jo Ύ X ; '

which is the condition (b). Thus the conditions (b) and (c) are equivalent.
Therefore the condition

(d)

as 0 < tr < t -> 0, is weaker than (b), and also evidently than (1.4). Now we
have the following

THEOREM 6. // ψ (f) satisfies the conditions \ ψ (u) du = o (t) and (d) then
Jo

*m (x) - ί» (x) = -®- log 2 + o (1)

as n-ϊoo.

It is sufficient to show, analogously as in the proof of Theorem I, that
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as n — >• oo, where ?7 = ττ/w and {&,»} is a positive sequence such that kn -> °°
as w -> oo sufficiently slowly. We write

then integrating by parts we have

= 0( (log *„)/*») = 0(1)

as w -»• oo. Thus we have the desired result.

7. We shall now give an application of Lemma 3 to the sequence
where Bn = Bn (x) is denned by (1. 1) .

Let T" = T£(ΛΓ) be the w-th (C, α) mean of {nBn}, i.e.

Then we have the well-known identity

(7.1) τ«+ 1- (a + 1) (σϊ - <+1)

for Λ > — 1. On the other hand, from (3.2) with β = α: + 1 and m = w it
follows

= - - ά T T - α TΊ -

as 7^ — >• oo if ^ (t) satisfies the conditions (a) and A (CL, n) = o (1) . Therefore
by (7.1) we have the following

LEMMA 5. If a > — 1 and ψ(t) satisfies the conditions

(a)

and Λ(a,ri) =0(1) <zs ^->oo, ί^n ίΛe sequence {nBn(x}} is summάble (C,
+ 1) to the value l(x)/τr.

From this lemma we have immediately the following

THEOREM 7. If a > 0 #nd ψ (t) satisfies the conditions (a) and
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(b) ^\ψ(u)du = O(t] ast-*Q,
Jo

then the sequence {nBn(x)} is summάble (C, a -f- 1) to the value l(x)/π.

This theorem with a = 1 coincides with Theorem S2.
The following theorem due to Hardy and Littlewood is well-known.

THEOREM H. L. The Fourier series of f(x) converges at the point x to the
value f(x) , if the two conditions be satisfied.

(i) f(x + h) —f(x) = ^(logΐl/,^!))-1, and (ii) the coefficients an and bn are
, S>0.

The proof of Theorem M. N. in the section 1 is reduced to the condition
2(0, Λ) =o(l), i.e.

cos (w + 1/2) f ,- " " - " -

which can be proved analogously as Theorem H. L.. Therefore, Theorem
M. N. is derived from Theorem H. L. and Lemma 5 immediately.

Finally, I wish to express my gratitude to Professors S. Izumi and G. Su-
nouchi for their kind advices.
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