FOURIER SERIES XI: GIBBS' PHENOMENON

By Kazuo Ishiguro

1. Concerning the Gibbs phenomenon of Fourier series, H. Cramér [1] proved the following

Theorem 1. There exists a number $r_{0}, 0<r_{0}<1$, with the following property: If $f(x)$ is simply discontinuous at a point ξ, the (C, r) means $\sigma_{n}^{r}(x)$ of the Fourier series of $f(x)$ present Gibbs' phenomenon at ξ for $r<r_{0}$, but not for $r \geqq r_{0}$.

We shall extend this theorem to the discontinuity of the second kind. In this direction S. Izumi and M. Sato [2] proved the the following

Theorem 2. Suppose that

$$
\begin{equation*}
f(x)=a \psi(x-\xi)+g(x), \tag{1}
\end{equation*}
$$

where $\psi(x)$ is a periodic function with period 2π such that

$$
\begin{equation*}
\psi(x)=(\pi-x) / 2 \quad(0<x<2 \pi) \tag{2}
\end{equation*}
$$

and where

$$
\begin{array}{ll}
\limsup _{x \downarrow \xi} g(x)=0, & \liminf _{x \uparrow \xi} g(x)=0, \tag{3}\\
\liminf _{x \downarrow \xi} g(x) \geqq-a \pi, & \limsup _{x \uparrow \xi} g(x) \leqq a \pi,
\end{array}
$$

$$
\begin{equation*}
\int_{0}^{x}|g(\xi+u)| d u=o(x) \tag{4}
\end{equation*}
$$

then the Gibbs' phenomenon of the Fourier series of $f(x)$ appears at $x=\xi$.
We shall prove that Theorem 1 holds even when ξ is the discontinuity point of the second kind, satisfying the condition in Theorem 2. More precisely,

Theorem 3. Suppose that

$$
\begin{equation*}
f(x)=a \psi(x-\xi)+g(x), \tag{1}
\end{equation*}
$$

where $\psi(x)$ is a periodic function with period 2π such that

$$
\begin{equation*}
\phi(x)=(\pi-x) / 2 \quad(0<x<2 \pi) \tag{2}
\end{equation*}
$$

and where

$$
\begin{array}{ll}
\lim _{x \downarrow \xi} \sup g(x)=0, & \liminf _{x \uparrow \xi} g(x)=0, \tag{3}\\
\liminf _{x \downarrow \xi} g(x) \geqq-a \pi, & \lim _{x \uparrow \xi} \sup g(x) \leqq a \pi,
\end{array}
$$

$$
\begin{equation*}
\int_{0}^{x}|g(\xi+u)| d u=o(|x|) \tag{4}
\end{equation*}
$$

Received December 14, 1956.

Then there exists a number $r_{0}, 0<r_{0}<1$, with the following property: the (C, r) means of the Fourier series of $f(x)$ present Gibbs' phenomenon at ξ for $r<r_{0}$, but not for $r \geqq r_{0}, r_{0}$ being the Cramér number in Theorem 1.

Further we prove the following
Theorem 4. Let $f(x)$ be an odd function about ξ such that

$$
\lim _{x \downarrow \xi} \sup f(x)=a \pi / 2, \quad \quad \liminf _{x \uparrow \xi} f(x)=-a \pi / 2 .
$$

Let the Fourier series of $f(x)$ be

$$
\begin{equation*}
f(x) \sim \sum_{n=1}^{\infty} \alpha_{n} \sin n(x-\xi) \tag{5}
\end{equation*}
$$

where

$$
\alpha_{n}=\frac{a}{n}(1+o(1)), \quad \Sigma \Delta \alpha_{n}<\infty, \quad \Sigma \mid \Delta^{2} \alpha_{n}:<\infty .
$$

Then there exists a number $r_{0}, 0<r_{0}<1$, with the following property: the (C, r) means of the Fourier series of $f(x)$ present Gibbs' phenomenon at ξ for $r<r_{0}$, but not for $r \geqq r_{0} . r_{0}$ is the Cramer number in Theorem 1.

In order to prove Theorems 3 and 4 we use the methods of S. Izumi and M. Satô [2] and of H. Cramér [1], respectively.
2. Proof of Theorem 3. Without loss of generality, we can suppose that $\xi=0$ and $a=1$. We have

$$
\sigma_{n}^{r}(x, f)=\sigma_{n}^{r}(x, \psi)+\sigma_{n}^{r}(x, g) .
$$

By Theorem $1 \sigma_{n}^{r}(\pi / n, \psi)$ tends to a constant which is greater than $\pi / 2$ if $r<r_{0}$ but less than $\pi / 2$ if $r \geqq r_{0}$. We can see that $\sigma_{n}^{r}(k \pi / n, \psi)$ is near to $\pi / 2$ for large k, and if $r<r_{0}$, then there is a k such that

$$
\begin{equation*}
\frac{1}{2}\left(\sigma_{n}^{r}(\pi / n, \psi)+\sigma_{n}^{r}(k \pi / n, \psi)\right) \tag{6}
\end{equation*}
$$

tends to a constant, greater than $\pi / 2$, and if $r \geqq r_{0}$, then (6) tends to $\pi / 2$. Hence it is sufficicient to prove that

$$
\begin{equation*}
\sigma_{n}^{r}(\pi / n, g)+\sigma_{n}^{r}(k \pi / n, g) \tag{7}
\end{equation*}
$$

tends to zero as $n \rightarrow \infty$, for any $r, 0<r<1$, and any k. Now

$$
\sigma_{n}^{r}(x, g)=\frac{1}{\pi} \int_{-\pi}^{\pi} g(t+x) K_{n}^{r}(t) d t=\frac{1}{\pi} \int_{-\pi}^{\pi} g(t) K_{n}^{r}(t-x) d t,
$$

where $K_{n}^{r}(t)$ is the Fejér kernel of order r. It is known that ${ }^{1)}$

$$
\begin{equation*}
K_{n}^{r}(t) \mid \leqq A n \tag{8}
\end{equation*}
$$

1) A denotes a numerical constant which may by different in each occurence.
and

$$
\begin{align*}
K_{n}^{r}(t)= & \frac{1}{A_{n}^{r}} \frac{\sin \left[\left(n+\frac{1}{2}+\frac{1}{2} r\right) t-\frac{1}{2} \pi r\right]}{\left(2 \sin \frac{1}{2} t\right)^{r+1}} \\
& +\frac{r}{n+1} \frac{1}{\left(2 \sin \frac{1}{2} t\right)^{2}}+\frac{\theta}{n^{2}} \frac{8 r(1-r)}{\left(2 \sin \frac{1}{2} t\right)^{3}} \tag{9}\\
= & K_{n 1}^{r}+K_{n 2}^{r}+K_{n 3}^{r},
\end{align*}
$$

where $A_{n}^{r}=\binom{n+r}{n}$ and $\boldsymbol{\theta} \leqq 1$. We write

$$
\sigma_{n}^{r}(x, g)=\frac{1}{\pi}\left(\int_{0}^{\pi}+\int_{-\pi}^{0}\right) g(t) K_{n}^{r}(t-x) d t=\frac{1}{\pi}\left(I_{1}(x)+I_{2}(x)\right) .
$$

We shall estimate I_{1} only, since I_{2} may be estimated quite similarly. We write now

$$
I_{1}(x)=\int_{0}^{\pi}=\int_{0}^{2 k \pi / n}+\int_{2 k \pi / n}^{\pi}=I_{11}(x)+I_{12}(x)
$$

Then by (8) and (4) we have

$$
I_{11}!\leqq n \int_{0}^{2 k \pi / n} \mid g(t) \quad d t=o(1)
$$

Thus it is sufficient to prove that

$$
\begin{equation*}
I_{12}(\pi / n)+I_{12}(k \pi / n)=o(1) \tag{10}
\end{equation*}
$$

The left side is

$$
\begin{equation*}
J=\int_{2 k \pi / n}^{\pi} g(t)\left(K_{n}^{r}(t-\pi / n)+K_{n}^{r}(t-k \pi / n)\right) d t \tag{11}
\end{equation*}
$$

We denote by $J_{i}(i=1,2,3)$ the J, replaced K_{n}^{r} by $K_{n i}^{r}$. Then
$J_{1}=\frac{1}{A_{n}^{r}} \int_{2 k \pi / n}^{\pi} g(t)\left\{\frac{\sin [(n+\alpha)(t-\pi / n)-\beta]}{(t-\pi / n)^{r+1}}-\frac{\sin [(n+\alpha)(t-\pi / n)-\beta]}{(t-k \pi / n)^{r+1}}\right\} d t$
if we take k such that $(n+\alpha)(k-1) / n$ is an odd integer. Thus we have

$$
J_{1}=\frac{1}{A_{n}^{r}} \int_{2 k \pi / n}^{\pi} g(t) \frac{(t-k \pi / n)^{r+1}-(t-\pi / n)^{r+1}}{(t-\pi / n)^{r+1}(t-k \pi / n)^{r+1}} \sin [(n+\alpha)(t-\pi / n)-\beta] d t .
$$

Since

$$
(t-k \pi / n)^{r+1}-(t-\pi / n)^{r+1} \leqq A(t-\pi / n)^{r} / n
$$

we have

$$
\begin{align*}
J_{1} & \left.\leqq \frac{A}{n^{r+1}} \int_{2 k \pi / n}^{\pi} \right\rvert\, g(t) \frac{d t}{t^{r+2}} \\
& \left.=\frac{A}{n^{r+1}}\left[\frac{1}{t^{r+2}} \int_{0}^{t} g(u) d u\right]_{2 k \pi / n}^{\pi}+\frac{A}{n^{r+1}} \int_{2 k \pi / n}^{\pi} \frac{d t}{t^{r+3}} \int_{0}^{t} g(u) \right\rvert\, d u \tag{12}
\end{align*}
$$

which is $o(1)$ by the condition (4). On the other hand we have

$$
J_{2}=\int_{2 k \pi / n}^{\pi} g(t)\left(K_{n 2}^{r}(t-\pi / n)+K_{n 2}^{r}(t-k \pi / n)\right) d t=J_{21}+J_{22} .
$$

Then

$$
\left|J_{21}\right|=\left|\int_{2 k \pi / n}^{\pi} g(t) \frac{r d t}{(n+1)(2 \sin (t-\pi / n) / 2)^{2}}\right| \leqq-\frac{A}{n} \int_{2 k \pi / n}^{\pi} g(t) \frac{d t}{t^{2}},
$$

which is the case $r=0$ in (12), and then tends to zero. Similarly we get $J_{22}=o(1)$. Finally

$$
J_{3}=\frac{8 r(1-r) \theta}{n^{2}} \int_{2 b \pi / n}^{\pi} g(t)\left(\frac{1}{(2 \sin (t-\pi / n) / 2)^{3}}+\frac{1}{(2 \sin (t-k \pi / n) / 2)^{3}}\right) d t,
$$

which is majorated by

$$
\frac{A}{n^{2}} \int_{2 k \pi / n}^{\pi}|g(t)| \frac{d t}{t^{3}} .
$$

This is the case $r=1$ in (12), and then tends also to zero. Thus we have proved that $J=J_{1}+J_{2}+J_{3}=o(1)$, and hence (10) is proved, which is the required.
3. Proof of Theorem 4. For the froof, we need a lemma, which is an extension of the Cramér's.

Lemma. Let $g(x)$ be an odd integrable function. Then, for any ε, there are an η and an N such that

$$
\begin{equation*}
\left|\sigma_{n}^{r}(x, g)-\varphi_{r}(n, n x, g)\right|<\varepsilon \quad \text { for } \quad|x|<\eta, \quad n>N \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
\varphi_{r}(n, x, g) & =n \int_{0}^{1}(1-t)^{r} a(n t) \sin x t d t, \\
a(t) & =\frac{2}{\pi} \int_{0}^{\pi} g(u) \sin t u d u .
\end{aligned}
$$

Proof. We denote by $\tau_{n}^{r}(x, g)$ the Riesz mean of the Fourier series of $g(x)$ of order r, that is

$$
\tau_{n}^{r}(x, g)=\sum_{\nu=1}^{n}\left(1-\frac{\nu}{n}\right)^{r} a_{\nu} \sin \nu x .
$$

It is well known that

$$
\sigma_{n}^{r}(x, g)-\tau_{n}^{r}(x, g) \rightarrow 0 \quad(n \rightarrow \infty)
$$

Hence (13) is equivalent to

$$
\begin{equation*}
\left|\tau_{n}^{r}(x, g)-\varphi_{r}(n, n x, g)\right|<\varepsilon . \tag{14}
\end{equation*}
$$

Let us now use Euler's summation formula which reads as follows:

$$
\begin{equation*}
\sum_{\nu=0}^{n} h(\nu)=\int_{0}^{n} h(t) d t+\int_{0}^{n}\left(t-[t]-\frac{1}{2}\right) h^{\prime}(t) d t-\frac{1}{2} h(0)+\frac{1}{2} h(n), \tag{15}
\end{equation*}
$$

where $h(t)$ is continuously differentiable. In (15) we put

$$
h(t)=\left(1-\frac{t}{n}\right)^{r} a(t) \sin t x
$$

then $h(t)$ is continuously differentiable and $h(0)=h(n)=0$. Furthermore

$$
\begin{aligned}
h^{\prime}(t)= & -\frac{r}{n}\left(1-\frac{t}{n}\right)^{r-1} a(t) \sin t x \\
& +\left(1-\frac{t}{n}\right)^{r} a^{\prime}(t) \sin t x+\left(1-\frac{t}{n}\right)^{r} a(t) x \cos x t
\end{aligned}
$$

Thus we get

$$
\begin{aligned}
& \Delta_{n}=\tau_{n}^{r}(x, g)-\varphi_{r}(n, n x, g)=\int_{0}^{n} P(t) h^{\prime}(t) d t \\
&=-\frac{k}{n} \int_{0}^{n} P(t)\left(1-\frac{t}{n}\right)^{r-1} a(t) \sin t x d x+\int_{0}^{n} P(t)\left(1-\frac{t}{n}\right)^{r} a^{\prime}(t) \sin t x d t \\
&+x \int_{0}^{n} P(t)\left(1-\frac{t}{n}\right)^{r} a(t) \cos t x d t=I_{1}+I_{2}+I_{3}
\end{aligned}
$$

where

$$
P(t)=t-[t]-\frac{1}{2}
$$

We have first

$$
I_{1}=-\frac{r}{n^{r}} \int_{0}^{n} P(t)(n-t)^{r-1} a(t) \sin t x d t
$$

and hence

$$
\left|I_{1}\right| \leqq \frac{A}{n^{r}} \int_{0}^{n} \frac{|a(t)|}{(n-t)^{1-r}} d t=\frac{A}{n^{r}}\left(\int_{0}^{m}+\int_{m}^{n}\right)
$$

We take m such that

$$
a(t) \ll \varepsilon \quad \text { for } t>m,
$$

which is possible by $a(t)=o(1)(t \rightarrow \infty)$. Thus we get

$$
\begin{aligned}
\left|I_{1}\right| & \leqq \frac{A}{n^{r}} \int_{0}^{m} \frac{d t}{(n-t)^{1-r}}+\frac{A \varepsilon}{n^{r}} \int_{m}^{n} \frac{d t}{(n-t)^{1-r}} \\
& \leqq A\left(n^{r}-(n-m)^{r}\right) / n^{r}+A \varepsilon \\
& \leqq A \varepsilon
\end{aligned}
$$

for sufficiently large n. Secondly, we have

$$
I_{2}=\int_{0}^{n} P(t)\left(1-\frac{t}{n}\right)^{r} a^{\prime}(t) \sin t x d t
$$

By the second mean value theorem

$$
I_{2}=\int_{0}^{\theta n} P(t) a^{\prime}(t) \sin t x d t \quad\left(0 \leqq \theta_{n} \leqq n\right)
$$

and then by integration by parts

$$
I_{2}=\left[a^{\prime}(t) \int_{0}^{t} P(u) \sin u x d u\right]_{0}^{\theta n}-\int_{0}^{\theta n} a^{\prime \prime}(t) d t \int_{0}^{t} P(u) \sin u x d u
$$

Since $P(u)=\sum_{\nu=1}^{n}(\sin 2 \pi \nu u) / \pi \nu$, we have

$$
\int_{0}^{t} P(u) \sin u x d u=\int_{0}^{t} \sin u x\left(\sum_{\nu=1}^{\infty} \frac{\sin 2 \pi \nu u}{\pi \nu}\right) d u=\sum_{\nu=1}^{\infty} \frac{1}{\pi \nu} \int_{0}^{t} \sin u x \sin 2 \pi \nu u d u,
$$

where the change of order of summation and integration is legitimate since the series $\sum \sin \nu u / \nu$ is boundedly convergent. The last sum is

$$
\begin{aligned}
& \sum_{\nu=1}^{\infty} \frac{1}{2 \pi \nu} \int_{0}^{t}(\cos (x-2 \pi \nu) u-\cos (x+2 \pi \nu) u) d u \\
&= \sum_{\nu=1}^{\infty} \frac{1}{2 \pi \nu}\left(\frac{\sin (x-2 \pi \nu) t}{x-2 \pi \nu}-\frac{\sin (x+2 \pi \nu) t}{x+2 \pi \nu}\right) \\
&=\sum_{\nu=1}^{\infty} \frac{1}{2 \pi \nu} \frac{(x+2 \pi \nu) \sin (x-2 \pi \nu) t-(x-2 \pi \nu) \sin (x+2 \pi \nu) t}{(x-2 \pi \nu)(x+2 \pi \nu)} \\
&=\sum_{\nu=1}^{\infty}\left(\frac{x}{2 \pi \nu} \frac{\sin (x-2 \pi \nu) t-\sin (x+2 \pi \nu) t}{(x-2 \pi \nu)(x+2 \pi \nu)}\right. \\
&\left.\quad+\frac{\sin (x-2 \pi \nu) t+\sin (x+2 \pi \nu) t}{(x-2 \pi \nu)(x+2 \pi \nu)}\right) .
\end{aligned}
$$

Accordingly we get

$$
\begin{aligned}
I_{2}= & \int_{0}^{\theta n} a^{\prime \prime}(t) d t \int_{0}^{t} P(u) \sin u x d u \\
= & x \sum_{\nu=1}^{\infty} \int_{0}^{\theta n} a^{\prime \prime}(t) \frac{\sin (x-2 \pi \nu) t-\sin (x+2 \pi \nu) t}{2 \pi \nu(x-2 \pi \nu)(x+2 \pi \nu)} d t \\
& +\sum_{\nu=1}^{\infty} \int_{0}^{\theta n} \frac{a^{\prime \prime}(t)\{\sin (x-2 \pi \nu) t+\sin (x+2 \pi \nu) t\}}{(x-2 \pi \nu)(x+2 \pi \nu)} d t=J_{1}+J_{2} .
\end{aligned}
$$

Since $\int_{0}^{\infty} a^{\prime \prime}(t): d t<\infty, \int_{0}^{\theta n} a^{\prime \prime}(t) \sin u t d t$ is bounded, and hence

$$
\mid J_{1} \leqq A x \Sigma \nu^{-3}
$$

which is less than ε for small x. Concerning J_{2} we write

$$
J_{2}=\sum_{\nu=1}^{\infty}=\sum_{\nu=1}^{N}+\sum_{\nu=M+1}^{\infty}=J_{21}+J_{22}
$$

where N is taken such that $\sum_{v=N+1}^{\infty} \nu^{-2}<\varepsilon$. Then

$$
J_{22}<A \varepsilon .
$$

Since $a^{\prime \prime}(t)$ is absolutely integrable,

$$
\begin{aligned}
& \mid \int_{0}^{\theta n} a^{\prime \prime}(t)[\sin (2 \pi \nu+x) t-\sin (2 \pi \nu-x) t] d t \\
& \quad \leqq 2\left|\int_{0}^{s} a^{\prime \prime}(t) \sin x t \cos 2 \pi \nu t d t\right|+2 \int_{M}^{\theta n} \mid a^{\prime \prime}(t) d t .
\end{aligned}
$$

If M is taken such that $\int_{M}^{\infty}\left|a^{\prime \prime}(t)\right| d t<\varepsilon$, then, for such fixed M

$$
\left|\int_{0}^{M} a^{\prime \prime}(t) \sin x t \cos 2 \pi \nu t d t\right| \leqq x M \int_{0}^{H} a^{\prime \prime}(t) \mid d t \leqq A x,
$$

which is less than ε for sufficiently small x. Thus we have proved that

$$
\left|I_{2}\right|=\left|\int_{0}^{\theta n} a^{\prime \prime}(t) d t \int_{0}^{t} P(u) \sin u x d u\right|<A \varepsilon .
$$

Finally

$$
I_{3}=x \int_{0}^{n} P(t)\left(1-\frac{t}{n}\right)^{r} a(t) \cos t x d t=\frac{x}{n^{r}} \int_{0}^{n} P(t)(n-t)^{r} a(t) \cos t x d t
$$

and then by the second mean value theorem

$$
\begin{array}{rlr}
I_{3} & =x \int_{0}^{\xi_{n}} P(t) a(t) \cos t x d t & \left(0 \leqq \xi_{n} \leqq n\right) \\
& =x\left[a(t) \int_{0}^{t} P(u) \cos u x d u\right]_{0}^{\xi_{n}}-x \int_{0}^{\xi_{n}} a^{\prime}(t) d t \int_{0}^{t} P(u) \cos u x d u
\end{array}
$$

We have now

$$
\begin{aligned}
\int_{0}^{t} P(u) & \cos u x d u=\int_{0}^{t} \cos u x\left(\sum_{\nu=1}^{\infty} \frac{\sin 2 \pi \nu u}{\pi \nu}\right) d u \\
& =\sum_{\nu=1}^{\infty} \frac{1}{\pi \nu} \int_{0}^{t} \cos u x \sin 2 \pi \nu u d u \\
& =\sum_{\nu=1}^{\infty} \frac{1}{2 \pi \nu} \int_{0}^{t}\{\sin (x+2 \pi \nu) u-\sin (x-2 \pi \nu) u\} d u \\
& =\sum_{\nu=1}^{\infty} \frac{1}{2 \pi \nu} \int_{0}^{t}\{\sin (x+2 \pi \nu) u+\sin (2 \pi \nu-x) u\} d u \\
& =\sum_{\nu=1}^{\infty} \frac{1}{2 \pi \nu}\left(\frac{1-\cos (x+2 \pi \nu) t}{2 \pi \nu+x}-\frac{1-\cos (2 \pi \nu-x) t}{2 \pi \nu-x}\right) \\
& =O\left(\Sigma \nu^{-2}\right)=O(1) .
\end{aligned}
$$

Therefore

$$
I_{3}!\leqq A x+A x \int_{0}^{\xi_{n}} \mid \dot{a^{\prime}}(t), d t \leqq A x
$$

which is less than ε for sufficiently small x. Summing up above estimations, we get

$$
\left|\tau_{n}^{r}(x, g)-\varphi_{r}(n, n x, g)\right|<A \varepsilon,
$$

which prove (7). Thus the lemma is proved.
We shall now prove Theorem 4. Since

$$
f(x)=\psi(x)+g(x), \quad(a=1, \xi=0)
$$

we have

$$
\sigma_{n}^{r}(x, f)=\sigma_{n}^{r}(x, \psi)+\sigma_{n}^{r}(x, g)
$$

By Theorem 1, $\sigma_{n}^{r}(x, \psi)$ presents Gibbs' phenomenon for $r<r_{0}$ but not for $r \geqq r_{0}$, and hence it is sufficient to prove that

$$
\begin{equation*}
\sigma_{n}^{r}(x, g) \rightarrow 0 \quad(n \rightarrow \infty) \tag{16}
\end{equation*}
$$

for all r and for all x. Let us put

$$
g(x) \sim \sum_{n=1}^{\infty} a_{n} \sin n x
$$

then, by Lemma, (16) is equivalent to

$$
\begin{equation*}
n \int_{0}^{1}(1-t)^{r} a(n t) \sin x t d t \rightarrow 0 \tag{17}
\end{equation*}
$$

Let us take m such that

$$
t a(t) \mid<\varepsilon \quad(t>m),
$$

and write

$$
n \int_{0}^{1}(1-t)^{r} a(n t) \sin t x d t=n \int_{0}^{m / n}+n \int_{m / n}^{1},
$$

and then its absolute value is less than

$$
\begin{aligned}
& \left.A_{n} \int_{0}^{m / n}(1-t)^{r} \frac{\sin t x}{t} d t+\varepsilon \int_{m / n}^{1}(1-t)^{r} \right\rvert\, \sin t x d t \\
\leqq & A x m+\varepsilon<A \varepsilon
\end{aligned}
$$

for sufficiently small x. Thus (11) and then (10) is proved. Thus the theorem is proved.

Finally I wish to express here my hearty thanks to Professor S. Izumi and Miss M. Satô for their kind advices.

References

[1] H. Cramér, Etudes sur la sommation des séries de Fourier. A. F. M. 13 (1919) No. 20, 1-21.
[2] S. Izumi and M. Satô, Fourier series X: Rogosinski's lemma. Kōdai Math. Sem. Rep. 8 (1956), 164-180.

Department of Mathematics,
Hokkaido University, Sapporo.

