
FOURIER SERIES XI: GIBBS' PHENOMENON

BY KAZUO ISHIGURO

1. Concerning the Gibbs phenomenon of Fourier series, H. Cramer [1]
proved the following

THEOREM 1. There exists a number r0, 0 < r0 < 1, with the following property:
If fix) is simply discontinuous at a point ξf the (C, r) means <rr

n(x) of the Fourier
series of f(x) present Gibbs' phenomenon at ξ for r < r0, but not for r^r0.

We shall extend this theorem to the discontinuity of the second kind. In
this direction S. Izumi and M. Sato [2] proved the the following

THEOREM 2. Suppose that

(1) fix) ^aψ(x-ξ)+g{x),

where ψ(x) is a periodic function with period 2n such that

(2) ψ(χ) = (π-x)/2 (0<x<2n)

and where

lim sup a (x) = 0, lim inf σ (x) = 0,

(3)
lim inf g(x)^ — an, lim sup g (x) ^ an,

( 4 )

then the Gibbs' phenomenon of the Fourier series of f(x) appears at x = ξ.

We shall prove that Theorem 1 holds even when ξ is the discontinuity point
of the second kind, satisfying the condition in Theorem 2. More precisely,

THEOREM 3. Suppose that

(l) /W=#(*-f)+ίW,
where ψ (x) is a periodic function with period 2π such that

(2)

and where

(3)

( 4 )

lim sup

lim inf

Φ(χ)

Jo

= («--

— an,

+ " > "

*)/2

lim inf

lim sup

u = o(\x\).

(0<

yW = o,

g(χ)^ an,
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Then there exists a number rOy 0 < r0 < 1, with the following property: the
(C, r) means of the Fourier series of f{x) present GibbsJ phenomenon at ξ for
r < r0, but not for r ^ r0, r0 being the Cramer number in Theorem 1.

Further we prove the following

THEOREM 4. Let f(x) be an odd function about ξ such that

lim sup f(x) = an 12, lim inf f{x) = — an/2.

Let the Fourier series of f(x) be
CO

( 5 ) f(x) ~ YJ an sin n (x — ξ),

where

Σ Δan < oo, Y\\Δ2an\<oo.

Then there exists a number r0, 0 < r0 < 1, with the following property: the
(C, r) means of the Fourier series of f(x) present Gibbs* phenomenon at ξ for
r < r0, but not for r^ r0. rQ is the Cramer number in Theorem 1.

In order to prove Theorems 3 and 4 we use the methods of S. Izumi and
M. Sato [2] and of H. Cramer [1], respectively.

2. Proof of Theorem 3. Without loss of generality, we can suppose that
ξ = 0 and a = 1. We have

<(χ,f) = <(χ,Φ) + <rr»(χ.sr).

By Theorem 1 <rr

n(jtln, ψ) tends to a constant which is greater than τr/2 if
r <r0 but less than τr/2 if r^ r0. We can see that σr

n{kπ/n, ψ) is near to π/2
for large k, and if r < r0, then there is a k such that

(6) \(<rr

n(*/n,φ) + σl(kπ/n9φ))

tends to a constant, greater than τr/2, and if r > r 0 , then (6) tends to τr/2.
Hence it is sufficicient to prove that

(7) <rζ>

tends to zero as n-+oo, for any r, 0< r < 1, and any k. Now

where JKJ(ί) is the Fejer kernel of order r. It is known that1)

(8) '#;(*) I ̂ 4 n

1) A denotes a numerical constant which may by different in each occurence.
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and

κ r ( t , i #

θ_ 8r(l-r

2 sin -

where ^ - (Λ + ^ and ! 0 ί ̂  1. We write

We shall estimate /x only, since I2 may be estimated quite similarly. We
write now

ί
tt Γ2Ίeτtjn Pit

0 Jo J2Ieπln

Then by (8) and (4) we have

ιff(t) dt = o(l).
0

Thus it is sufficient to prove that

(10) Iί2 in In) + I12 (kτt/n) =o(l).

The left side is

(11) / = Γ y (t) (ϋΓ; (ί - TΓ/ )̂ + Kl (t - ^TT/^) ) dt.

We denote by J% (i = 1,2,3) the /, replaced Kr

n by Kr

ni% Then

r - JL-f* (+\ ίs*n [ (̂  + a)(t — ̂ /M) ~ ffi _ sin [ (M + ct)(t — τr/n) — β\
Jl " Al ) 2 J ΰ 7 t l n

 3 [T) \ (t - π/n) r+1 (t - kπ/n) r+ι

if we take k such that (n + α:)(̂  — l)/n is an odd integer. Thus we have

T I ί4-\ \ /27ZΓIft) ' \L 7TIrt) r / . \ /» ^ . / \ /QT /J+

Since

(£ — kτr/n)r+1 — (t — ̂ r/w) r + 1 5j 4̂ (ί — τr/w) r/n,

we have

r <^L_f |«(Λ!-Λ_
J l : ^ r + 1 i ! Jr V̂ / ' /r+2

' * J2JC7Clil If

A Γ 1 f* I 7 2 " A Γ71' dt i1

=-rf+r\—pF+r\ g(u) du\ + ^ r + 1 \ , r + 3 \ g{u)\du,

which is 0(1) by the condition (4). On the other hand we have
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J, = Γ g (t) (Kr

n2 (t - τr/n) + Kr

n, (t - ka/n))dt = /„ + /„ .
J2Ίΰτt!n

Then

21C7tln I

which is the case r = 0 in (12), and then tends to zero. Similarly we get
). Finally

_ 8 r ( l - r ) g r ( . / 1 1 ^ ,
7 3 "" rc2 J 2 f c 7 r / /^ ; V(2sin (ί - τtjn)l2Y ^ (2 sin (ί - kτr/n)/2)Vaΐ'

which is majorated by

A Γ f. , Λ
W J27eτt/n t

This is the case r— 1 in (12), and then tends also to zero. Thus we have
proved that / = Jx 4- /2 + /3 = 6>(1), and hence (10) is proved, which is the
required.

3. Proof of Theorem 4. For the froof, we need a lemma, which is an
extension of the Cramer's.

LEMMA. Let g{x) be an odd integrable function. Then, for any £, there
are an V and an N such that

(13) \<rr

n(x>9)-<PΛn,nx,g)\<8 for \x\<V, n>N,

where

<Pr(n,x,g) = n\ (1 — t)ra(nt) sinxtdt,
Jo

2 f7*
a(t) = — \ y(κ)sin^έ/^.

Proof. We denote by τr

n(x, g) the Riesz mean of the Fourier series of g(x)
of order r, that is

; ( , y) ΣSt( ^ ) ^ s i n

It is well known that

Hence (13) is equivalent to

(14) |τ;(i,y) -φr(n,nx,g)\<e.

Let us now use Euler's summation formula which reads as follows:

(15) ±h(v) = j"A(0Λ + J"(ί - [fl - \)h'{t)dt - -|
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where h(t) is continuously differentiable. In (15) we put

h(t) = (l-~-Ja{t) sin tx,

then h(t) is continuously differentiable and h(0) = h(n) = 0. Furthermore

λ'(ί) = - JL(ι - J_V ^(^) S i n tχn\ n ) w

+ (l - ^)V(ί)sinίΛΓ + (l - ~^ra(t)x cos xt.

Thus we get

4. - τz(χ,g) - φr(n,nx,g) = ΓP(t)h'(t)dt
Jo

) fl - —Ya(t) cos ίΛΓ Λ = /i + /2 + 73

where

We have first

/i = ^r-[nP(t) (n - t)r-χa{t) sin txdt
fi Jo

and hence

We take m such that

,a(t)\<8 for

which is possible by #(£) = o(l) (ί-> oo). Thus we get

I r l < r 4

(n-t)1-' + ~ ^ " J W (n-/) 1 " '

^ ^ . ( ^ r - (n-m)r)/nr + AS

<A£,

for sufficiently large w. Secondly, we have
72 -

By the second mean value theorem

Jo

and then by integration by parts
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Γ fί 1 θn Γθn fί

h = \a'(t) \ P(u) sinuxdux —\ a" (t) dt\ P(u) sin ux du.
L Jo Jo Jo Jo

Since P(u) = J}y=1(sin2πvu)/τrv, we have

ί
ϋD/ \ J V1 - (^Λ sin2nvu \ , JX 1 f* .

P(w) sin MΛΓ α^ = \ sin ux[ 2J • )du = Σ \ sin Λ̂Γ SI
o Jo \v=i TΓ^ / v=i ^ ^ Jowhere the change of order of summation and integration is legitimate since

the series ^sinvu/v is boundedly convergent. The last sum is

oo If*

Σ - « — (cos (x — 2τtv)u — cos (x + 2πv)u)du
V=l Δ7ΓV Jo

— yι 1 / sin (̂ r — 2τrz/)^ _ sin (x
" v r i 2τrz/ V ΛΓ - 2τrz^ ΛΓ +

in (Λ; — 2τtv)t — (ΛΓ — 2τrz/) s in

ΛΓ sin (x — 2τrz/)f — sin (x + 2τrz>) ί
(x - 2πv)(χ + 2τrv)

(x-2τrv)(χ i-27rv)

sin (ΛΓ — 2τtv) t + sin (x + 27tv)t \

Accordingly we get

{ θn Γt

a" (t) dt \ P(u) sin ux du
o Jo

s i n ( j y ~ 2τr^)/ - sin (x
" v-Jo W 2τrz/(ΛΓ - 2τr^)(# + 2τri/) α ί

sin (x + 2τrv)t} j,

Since ί |^f/(^) ι dt < co, \ na"(t) sin utdt is bounded, and hence

l/i ^

which is less than £ for small x. Concerning /2 we write

Σ + Σ3 =
v=l V=i^ + 1

where A/" is taken such that ΣΓ=ivr+i v~2 ^ g Then

I/22'<i4θ.

Since an(t) is absolutely integrable,

I [$na"{t) [sin (2τr^ + j»r)ί — sin {2τtv - Λr)ί]ί/ί!
1 J o I

^ 2 ! [*an(t) sinxtcos27rvtdt\ + 2\θn\a"(t) dt.
• Jo ί J j f
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ί oo

\au(t)\dt < 8, then, for such fixed M
M

187

[Ma" (t) si
Jo

sin xt cos 2τcvt dt < xM [* ! a" (t) \ dt < Ax,
Jo

which is less than £ for sufficiently small ,x. Thus we have proved that

[9nan(t)dt^P(u) sin uxdu
Jo Jo < AS.

Finally

h = x[nP(t)(l - —Ya{t) cos txdt = -^Γ-ΓPU) (W - /)r«U) cos txdt,
Jo V w / ^ Jo

and then by the second mean value theorem

J8 = * fUP(t)a(t) cos toΛ
Jo

(0 ^ f n ^ «)

iu) cos uxdu) n - x [ na'(t)dt Γ P ( « ) cosuxdu.
Jo Jo Jo

We have now

\ P(u) cosuxdu = \

i pί

= TJ -\ c
V = l 7 Γ ^ JO

S z :

2 J ~ O 1 {sin(ΛΓ + 2nv)u — sin(# — 2πv)u}du

00 1 f*= 2J-O 1 {sin(ΛΓ + 2τtv)u + sin(2τrz/ — x)u}du
v=i Δ7tv Jo

= v 1 M - co
2πv

Therefore

which is less than £ for sufficiently small x. Summing up above estima-
tions, we get

τZ(χ> 9) - Φλn, nx, g) \ < AS,

which prove (7). Thus the lemma is proved.

We shall now prove Theorem 4. Since

f{x) = ψ(χ) + g(χ), {a = 1, ξ = 0)

we have
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By Theorem 1, σr

n(x,ψ) presents Gibbs' phenomenon for r < r0 but not for
r>: r0, and hence it is sufficient to prove that

(16) *;(*,y)->0 (

for all r and for all x. Let us put

9 (x) ~ ΣJ On sin nx9
W = l

then, by Lemma, (16) is equivalent to

(17) n Γ (1 - t) ra (nt) sin xt dt -> 0.
Jo

Let us take m such that

ta(t)\<8 (t>m),

and write

(l-ί)rtf(^)sinto^ = n\ + n\ ,

o Jo Jmfn

and then its absolute value is less than

(l-t)r , X dt + 8\ (l-*)Ίsinta dt

0 * Jmln

< Axm + θ < AS

for sufficiently small x. Thus (11) and then (10) is proved. Thus the theo-
rem is proved.

Finally I wish to express here my hearty thanks to Professor S. Izumi
and Miss M. Sato for their kind advices.
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