FOURIER SERIES XI: GIBBS® PHENOMENON

By Kazuo IsHIGURO

1. Concerning the Gibbs phenomenon of Fourier series, H. Cramér [1]
proved the following

THEOREM 1. There exists a number r,, 0 < v, < 1, with the following property:
If f(x) is simply discontinuous at a point &, the (C,r) means o, (x) of the Fourier
series of f(x) present Gibbs' phenomenon at & for v < r,, but not for r = 7,.

We shall extend this theorem to the discontinuity of the second kind. In
this direction S. Izumi and M. Saté [2] proved the the following

THEOREM 2. Suppose that

(1) f(x) =ap(x— &) + g(x),
where ¢ (x) is a periodic function with period 27 such that
(2) d(x) = (wr —x)/2 (0 < x < 2m)
and where
limsup g(x) =0, liminf ¢g(x) =0,
(3 ) E2% ztE
liril;ignf g(x)= —an, linmlrsgup g =< an,
(4) S:ly(5+u)ldu=0(‘x‘>,

then the Gibbs’ phenomenon of the Fourier series of f(x) appears at x = €.

We shall prove that Theorem 1 holds even when & is the discontinuity point
of the second kind, satisfying the condition in Theorem 2. More precisely,

THEOREM 3. Suppose that

(1) flx) =ad(x— &) + g(x),
where ¢ (x) is a periodic function with period 27 such that
(2) d(x) = (r —x)/2 (0 < x < 27)
and where
lim sup g(x) =0, liminf g(x) =0,
(3 ) 2 E ztE
limliénf g(x)= — an, listsup gx=Zan,
(4) [lg(g +wlau=o(x).
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Then there exists a number r,, 0 <7, <1, with the following property: the
(C,7) means of the Fourier series of f(x) present Gibbs’ phenomenon at & for
r < 7, but not for r =vr,, r, being the Cramér number in Theorem 1.

Further we prove the following
THEOREM 4. Let f(x) be an odd function about & such that
linmléup f(x) = an/2, Iin;xTiEnf f(x) = — am/2.
Let the Fourier series of f(x) be
(5) f(x) ~§lansinn(x~§),
where
aw=--(1+01), X dan <o,  N|La, <eo.

Then there exists a number r,, 0 <r, <1, with the following property: the
(C,7) means of the Fourier series of f(x) present Gibbs’ phenomenon at & for
v < 7o, but not for r =r,. v, is the Cvamér number in Theorem 1.

In order to prove Theorems 3 and 4 we use the methods of S. Izumi and
M. Satd [2] and of H. Cramér [1], respectively.

2. Proof of Theorem 3. Without loss of generality, we can suppose that
E=0and ¢a=1. We have
on(x,f) = on(x, ¢) + on(x, 9).

By Theorem 1 o7 (x/n, ¢) tends to a constant which is greater than 7/2 if
7 < 7, but less than #/2 if =7, We can see that o7 (k7 /n, ¢) is near to = /2
for large &, and if 7 < 7, then there is a %k such that

(6) 5 (o1 (w/n, ) + ok /n, )

tends to a constant, greater than =/2, and if » > »,, then (6) tends to =/2.
Hence it is sufficicient to prove that

(7) ot (z/n, g) + or(kx/n, g)
tends to zero as # — oo, for any 7, 0< 7 <1, and any k Now
or(mg) = " gt +xKt)dt = gt K5t — x)dt
n X5 y) - ?S——‘Ily( x) n ) - T j_ﬂy ) 75( - x) )

where K7 (t) is the Fejér kernel of order . It is known thatD

(8) KL(t) | = An

1) A denotes a numerical constant which may by different in each occurence.
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and
 snl(o ]+ 3o g
KZI/ (t) = 7;477 .1 \r+1 o
(2 sin ft
1 0 8&Q1—r7r

(9) + 7 4+ U orTr)

n+1 . 1,\? n? 1

(2 sin ?t> (2 sin ~2»—t)

= K:n + K;zz + K:z:v

where A7} = (" ;’; 7) and ' =<1. We write

g ="+ [ Jgwrse—mar = L + L.

We shall estimate I, only, since I, may be estimated quite similarly. We
write now
T 2k7 |0 T
Lw={ =" +[ =L+l

0 2knln

Then by (8) and (4) we have

2k n
Iu!gnj g6 dt=o0(1).

0

Thus it is sufficient to prove that

(10) Iy (m/n) + I, (kz/n) = o(1).
The left side is
(1 7=\ g (Kit—m/m) + Kilt — kr/n))at.

We denote by J; ( =1,2,3) the J, replaced K by K&,. Then

7, = 1 S;,,/,,, (t)jsin[(n +a)t—n/n)—B] sin[(n+ a)t —7/n) — B8] }dt

AL { {t—m/n)™ (t — k/n)*

if we take % such that (n + a)(k —1)/n is an odd integer. Thus we have

L= fl g R o sin L + )t — w/m) — 1.

a; (= m/m) ¥ — ke /m) ™
Since

t—kr/n)™ — (t—a/n)"™ <Al —n/n)"/n,
we have

A ™ . dt
= Wl—gzmln.’ﬂ(l) g
(12> A 1 t ) £ A T dt t
- ‘Wr [WZ—SO y(u) du]zlcn/-n n"* Szrnt/n s 50 y(%) ’du’

which is o(1) by the condition (4). On the other hand we have
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F= 0 g (Kialt —m/m) + Kis(t — /) dt = Jui + Jan.

Then

| (= 7 dt A [~ - dt
”“'=ism/,.5’(’) 1) @sin (£ = 7/n) 2 | *ns g

2knln bl
which is the case » =0 in (12), and then tends to zero. Similarly we get
J:2 = 0(1). Finally

_ & (1—ne (" 1 1
= nz_"Sz,,,,,,ﬂ (t)(<2 sin G—=/m) /2 T @sin (t = kr/n) /2)3>‘”’

which is majorated by

n' 2kxn/n

A 9w %

This is the case » =1 in (12), and then tends also to zero. Thus we have
proved that J= ], + J; + J; = 0o(1), and hence (10) is proved, which is the
required.

3. Proof of Theorem 4. For the froof, we need a lemma, which is an
extension of the Cramér’s,

LeMMA. Let g(x) be an odd integrable function. Then, for any &, there
are an M and an N such that

(13) lor(x, 9) — Pr(n,nx, 9) | <E  for 'x|<m, n>N,
where

(1, %, 9) = nS: 1 — #)"a(nt) sin xt dt,

a(t) = ﬁ—g:g () sin tu du.

Proof. We denote by 77(x,g) the Riesz mean of the Fourier series of g (x)
of order 7, that is

(% 9) = él(l - —Z—)Ta,, sin vz,
It is well known that
or(x,9) — TH(%,9) >0 (n— o).
Hence (13) is equivalent to
(14) L%, 9) — Pr(n,nx, g) | <E.
Let us now use Euler’s summation formula which reads as follows:
0

(15) é}h(v) - S:h(t)dt + S (t—ta— Dwwar— Ln + Lrw),
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where h(#) is continuously differentiable. In (15) we put
—(1—-2LY i
hit) = (1 " ) a(t) sin tx,

then k(¢#) is continuously differentiable and %4(0) = h(z) = 0. Furthermore

r—1
n(t) = — %(1 — -t?) a(t) sin tx
+ (1 - %)rd’(t) sin tx + (1 — —;—)Ta(t)xcos %t.
Thus we get
ty = 755, 9) — @m0z, 9) = [ PO (D)t
k ¢

=~ 2 Po( - L) aw sinwdx+ [P0 (1- L) @) sintxar

+x SOP(t)(l - %) alt) costxdt =1, + I, + I,
where
PR N o
P(t) =t — [£] 9
We have first
I =— —5,—§:P<t) (1 — £)"a(t) sin tx dt

and hence

B S ]

We take m such that
a(t) <& for t>m,

which is possible by a(¢) = o(1) (f > o). Thus we get

1S o e e
ZAn" — mn—m)7)/n" + AE
= Ag,
for sufficiently large n. Secondly, we have

I, = S:P(t) (1 — %)Ta’(t) sin {x dt.
By the second mean value theorem
L={"P@ya®sintxdt 0= 8.=<n),

and then by integration by parts
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I, = [a’(t) S:P(u) sin ux du]:n — Sena”(t)dt S:P(u) sin ux du.

0

Since P(u) = 3¥_,(sin 27 vu)/zv, we have
¢ . (. = sin2zvu - N L .
SOP(M) sin ux du = So sin ux(%_‘.l Ty M%)du = E;};—Sosm ux sin 2z vu du,

where the change of order of summation and integration is legitimate since
the series >1sin vu/v is boundedly convergent. The last sum is

o t

;;{ 2;1/ SO(COS (x —27zv)u — cos (x + 2zv)u)du
= i 1 ( sin (¥ — 2zv)t  sin (x + 27v)¢t )
S 2wy x —2mv x + 27

o 1+ 27zv)sin (x — 27v)t — (x — 27v) sin (x + 27v)¢

= 27w (x — 27v)(x + 27v)

( x sin (x — 2zv)t — sin (x + 272v)¢
y=1

27y (x — 27v)(x + 27v)

sin (x — 2zv)t + sin (x + 27z v)t )
(x — 27v)(x + 27 v) y

+

Accordingly we get

o
Il

On T
S a”(t)dtSP(u) sin ux du
0 o

on sin (x — 27zv)¢t — sin (x + 27z v)¢
SO a'(t) 2nv(x — 2nv)(x + 27v) dt

= (0n g" (f){sin (x — 27v)¢ + sin (x + 27V} ,, _
so (x — 272v)(x + 27v) dt = Ji + J,.

Since 5:50"@) tdt < oo, (“a"(t) sin ut dt is bounded, and hence
v O
[ < AxSv™®
which is less than & for small x. Concerning J, we write
oo N oo
]2=E=Z+ E :]21+]22,
v=1 v=1 v=N+1
where N is taken such that 3¥° .. v <& Then
e < AE.
Since @' (t) is absolutely integrable,
! gona” (t) [sin 2zv + x)¢ — sin 27zv — %) t]dt;
"Jo

<2 (") sinwtcoszavear| + 2" ia(t) at.
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If M is taken such that S;!a” (2)| dt < €, then, for such fixed M
[ [“ar @ sin xt cos 2wt at } < xM S:’ a"(f) | dt < Ax,

which is less than & for sufficiently small x. Thus we have proved that
On 7 |
L= {"a"@at [Pl sinux au| < 4c.
Finally
" r n
I, = SOP(t) (1- LY a) costxat = %—&P(t) (n — t)a(t) cos tx dt,
and then by the second mean value theorem

I =x Sf”P(t)a(t) cos tx dt 0= En<n)

t ¢, En t
= x[a(t)_goP(u) CoS ux du]o —x So a'(t)dt SOP(u) cos ux du.
We have now

S:P(u) cos ux du = S:cos ux(ﬁ M)du

y=1 Ty

1

TV

I
M

13
S cos ux sin 2wvu du
0

<
1
—

= fj 271n/ St{sin(x + 27v)u — sin(x — 2z v)u}du

v=1 0

3

} 271”} S {sin(x + 27v)u + sin 2wv — x)u}du

il
iMs

_ 2“' 1 ( 1—cos(x+27zv)t  1—cos(2mv — x)¢ )
T & 2nv 27y + x 27y — x

=0(xr™) =0().

Therefore

}Isngx—l-Aij”ld’(t) dt < Ax

which is less than & for sufficiently small x. Summing up above estima-
tions, we get

[72(%, 9) — Pr(n,mx, g) | < AE,

which prove (7). Thus the lemma is proved.

We shall now prove Theorem 4. Since

flx) =¢(x) + g(x), (@=1, £=0)

we have
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ar(x,f) = on(x, ¢) + or(x, g).

By Theorem 1, o7 (x, ¢) presents Gibbs’ phenomenon for » < #, but not for
v = 7,, and hence it is sufficient to prove that

(16) on(x, 9) =0 (n— o)

for all » and for all x. Let us put
g(x) ~édn sin #x,
then, by Lemma, (16) is equivalent to
17 nSZ(l — t)"a(nt) sin xt dt — 0.

Let us take m such that
ta(t) | <& (t>m),

and write

n Sl(l —HTa(nt) sintxdt =n gm/n + nSl
0

Jo mln

and then its absolute value is less than

AnS:"" 1— t)fs‘inf’xdt + eS

< Axm + & < A€

1—¢)7|sintx dt

1
(
min

for sufficiently small x. Thus (11) and then (10) is proved. Thus the theo-
rem is proved.

Finally [ wish to express here my hearty thanks to Professor S. Izumi
and Miss M. Satd for their kind advices.
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