FOURIER SERIES X: ROGOSINSKI'S LEMMA

By Shin-ichi Izumi and Masako Satô

1. W.W. Rogosinski has proved the following theorem [1]:

Theorem 1. If $f(t)$ is continuous at $t=\xi$, then

$$
\begin{equation*}
\frac{1}{2}\left\{s_{n}\left(x_{n}\right)+s_{n}\left(x_{n}+\pi / n\right)\right\} \rightarrow f(\xi), \quad(n \rightarrow \infty) \tag{1}
\end{equation*}
$$

for any sequence $\left(x_{n}\right)$ tending to ξ, where $s_{n}(t)$ is the nth partial sum of the Fourier series of $f(t)$.

This theorem has many applications.
We shall prove the following
Theorem 2. If

$$
\begin{equation*}
\int_{0}^{t}(f(x+u)-f(x-u)) d u=o(t), \quad(t \rightarrow 0) \tag{2}
\end{equation*}
$$

uniformly in x in a neighbourhood of a point ξ, then

$$
\begin{aligned}
& \frac{1}{2}\left\{s_{n}\left(x_{n}\right)+s_{n}\left(x_{n}+\pi / n\right)\right\} \\
& \quad=\frac{1}{2 \pi} \int_{-\pi / n}^{2 \pi / n} f\left(x_{n}+t\right)\left(\frac{1}{t}-\frac{1}{t-\pi / n}\right) \sin n t d t
\end{aligned}
$$

$$
\begin{equation*}
+n \pi \int_{0}^{\pi / n}\left(f\left(x_{n}+t\right)+f\left(x_{n}-t\right)\right) c(n t) \sin n t d t+o(1) \tag{3}
\end{equation*}
$$

$$
=\frac{1}{2 \pi} \int_{-\pi / n}^{2 \pi / n} f\left(x_{n}+t\right) R_{n}(t) d t+o(1),
$$

where ${ }^{1)} R_{n}(t) \geqq 0$ and

$$
c(t)=\sum_{k=1}^{\infty} \frac{1}{(t+(2 k-1) \pi)(t+2 k \pi)(t+(2 k+1) \pi)} .
$$

If $f(t)$ is continuous at $t=\xi$, then, supposing that $f(\xi)=0$, the right side of (3) tends to zero. Thus (1) holds.

From Theorem 2, we get a sort of converse theorem of Theorem 1; that is,

Received December 14, 1956.

1) $c(t)$ is continuous and

$$
c(0)=\frac{1}{\pi^{3}} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)(2 k)(2 k+1)}<\frac{1}{2 \pi^{3}}
$$

Theorem 3. If $f(t)$ is bounded and (2) holds in a neighbourhood of a point ξ, and further if (1) holds for any sequence $\left(x_{n}\right)$, tending to ξ, then $f(t)$ is essentially continuous ${ }^{2}$ at $t=\xi$.

On the other hand, it is known [2], [3] that if a function $f(x)$, satisfying a certain uniformity condition ${ }^{3}$, is continuous at $x=\xi$, then the Fourier series of $f(x)$ converges uniformly at $x=\xi$. Conversely, uniform convergence of the Fourier series of $f(x)$ at $x=\xi$ does not imply the continuity of $f(x)$ at $x=\xi$. For, values of $f(x)$ in a null set do not effect its Fourier series. Then there arises the problem to find conditions for $f(x)$ under which the uniform convergence of its Fourier series at a point implies the essential continuity of $f(x)$ at that point. As an answer to this problem we get the following theorem which is a corollary of Theorem 3.

Theorem 4. If $f(x)$ is bounded in a neighbourhood of $x=\xi$ and (2) holds uniformly there, and further if the Fourier series of $f(x)$ converges uniformly at $x=\xi$, then $f(x)$ is essentially continuous at $x=\xi$.

On the other hand, considering the case where $x_{n}=\pi / n$ in (3), we obtain the following

Theorem 5. Suppose that

$$
\begin{equation*}
f(t)=a \psi(t-\xi)+g(t), \tag{4}
\end{equation*}
$$

where $\psi(t)$ is a periodic function with period 2π such that

$$
\psi(t)=(\pi-t) / 2, \quad(0<t<2 \pi),
$$

and where

$$
\begin{array}{cc}
\limsup _{t \downarrow \xi} g(t)=0, & \liminf _{t \uparrow \xi} g(t)=0, \\
\underset{t \downarrow \xi}{\liminf g(t)} \geqq-a \pi, & \limsup _{t \uparrow \xi} g(t) \leqq a \pi, \\
\int_{0}^{t} g(\xi+u) d u=o(i t \mid), \tag{6}
\end{array}
$$

then the Gibbs phenomenon of the Fourier series of $f(t)$ appears at $t=\xi$.
The Gibbs set contains the interval $[a(H+1) \pi / 4,-a(H+1) \pi / 4]$ where

$$
H=\frac{2}{\pi} \int_{0}^{\pi} \frac{\sin t}{t} d t=1.17 \cdots>1
$$

In this theorem, it is not supposed that the point $t=\xi$ is the simple discontinuity point of $f(t)$. Theorem 5 of this case owes to W. W. Rogosinski

[^0][4]. ${ }^{4}$
We can generalize Theorem 5 in the following form.
Theorem 6. In Theorem 5, if we replace the condition (6) by the following condition:
\[

$$
\begin{gathered}
\int_{0}^{t} g(\xi+u) d u=o(. t \mid) \\
\int_{0}^{t}(g(x+u)-g(x-u)) d u=o(|t|)
\end{gathered}
$$
\]

uniformly for all x in a neighbourhood of ξ, then the Gibbs phenomenon of $f(t)$ appears at $t=\xi$, and the Gibbs set contains the interval $[a(H+1) \pi / 4$, $-a(H+1) \pi / 4]$.

Further we prove the following theorem.
Theorem 7. Suppose that

$$
f(t)=a \psi(t-\xi)+g(t)+h(t)
$$

where $\psi(t)$ is a periodic function with period 2π such that

$$
\begin{array}{cc}
\psi(t)=(\pi-t) / 2, & (0<t<2 \pi), \\
\int_{0}^{\pi}|g(t+\xi)| t^{-1} d t<\infty & \tag{7}
\end{array}
$$

and $h(t)$ is of bounded variation and is continuous at ξ, then the Gibbs set of $f(t)$ contains the interval $[a(\pi / 2) H,-a(\pi / 2) H]$.
More generally, (7) may be replaced by

$$
\begin{equation*}
\int_{0}^{t} g(\xi+u) d u=o(t), \quad \int_{\pi / n}^{\pi} \frac{|g(t)-g(t+\pi / n)|}{t} d t=o(1) . \tag{8}
\end{equation*}
$$

Theorem 85). Suppose that

$$
f(t)=a \psi(t-\xi)+g(t)
$$

where $g(t)$ is odd about $t=\xi$, that is

$$
g(\xi-t)=-g(\xi+t)
$$

for small t and

$$
\begin{array}{ll}
\int_{0}^{t} g(\xi+u) \mid d u=o(t) & (t>0) \\
\int_{0}^{t} \mid g(\xi+u) \cdot d u=o(|t|) & (t<0) \tag{10}
\end{array}
$$

then the Gibbs set of $f(t)$ contains the interval $[a(\pi / 2) H,-a(\pi / 2) H]$.
We conclude this paper proving the following
4) This paper has not been available for us, but this result is stated in [5].
5) This is a special case of a theorem of O. Szász [6 Theorem 10].

Theorem 9. (i) There is a function which presents Gibbs phenomenon at a point $t=\xi$ and has $t=\xi$ as the second kind discontinuity. (ii) There is a function which does not present Gibbs phenomenon at $t=\xi$ and has $t=\xi$ as the second kind discontinuity.

The first part is almost evident, and in fact follows from Theorems 5 and 6. The second part is proved by constructing an example whose construction is suggested by Theorems 5-7.
2. Proof of Theorem 2. ${ }^{6)}$ We put $\varphi_{x}(t)=f(x+t)+f(x-t)$ and we can suppose that $\xi=0$. Then we have

$$
\begin{aligned}
s_{n}(x) & =\frac{1}{\pi} \int_{0}^{\pi} \varphi_{x}(t) \frac{\sin n t}{t} d t+o(1) \\
& =\frac{1}{\pi} \sum_{k=0}^{n-1} \int_{k \pi / n}^{(k+1) \pi / n} \varphi_{x}(t) \frac{\sin n t}{t} d t+o(1) \\
& =\frac{1}{\pi} \sum_{k=0}^{n-1}(-1)^{k} \int_{0}^{\pi / n} \frac{\varphi_{x}(t+k \pi / n)}{t+k \pi / n} \sin n t d t+o(1) .
\end{aligned}
$$

Accordingly we have

$$
\begin{aligned}
& s_{n}(x)+s_{n}\left(x_{n}+\pi / n\right)=\frac{1}{\pi} \sum_{k=0}^{n-1}\left\{(-1)^{k} \int_{0}^{\pi / n} \frac{\varphi_{x_{n}}(t+k \pi / n)}{t+k \pi / n} \sin n t d t\right. \\
& \left.+(-1)^{k} \int_{0}^{\pi / n} \frac{\varphi_{x_{n}+\pi / n}(t+k \pi / n)}{t+k \pi / n} \sin n t d t\right\}+o(1) \\
& =\frac{1}{\pi} \sum_{k=0}^{n-1}(-1)^{k} \int_{0}^{\pi / n} \frac{f\left(x_{n}+t+k \pi / n\right)+f\left(x_{n}+t+(k+1) \pi / n\right)}{t+k \pi / n} \sin n t d t \\
& +\frac{1}{\pi} \sum_{k=0}^{n-1}(-1)^{k} \int_{0}^{\pi / n} \frac{f\left(x_{n}-t-k \pi / n\right)+f\left(x_{n}-t-(k+1) \pi / n\right)}{t+k \pi / n} \sin n t d t+o(1) \\
& =I+J+o(1) \text {. }
\end{aligned}
$$

We shall estimate I. Since J. may be quite similarly estimated, we shall omit it. We write

$$
\begin{aligned}
I= & \frac{1}{\pi} \int_{0}^{\pi / n} \frac{f\left(x_{n}+t\right)}{t} \sin n t d t+\frac{1}{n} \int_{0}^{\pi / n} \frac{f\left(x_{n}+t+\pi / n\right)}{t(t+\pi / n)} \sin n t d t \\
& \quad+\frac{1}{n} \sum_{k=1}^{n-1}(-1)^{k} \int_{0}^{\pi / n} \frac{f\left(x_{n}+t+(k+1) \pi / n\right)}{(t+k \pi / n)(t+(k+1) \pi / n)} \sin n t d t+o(1) \\
= & I_{1}+I_{2}+I_{3}+o(1) .
\end{aligned}
$$

We can here suppose that n is an odd integer and we put, for the sake of simplicity, $N=(n-1) / 2$. Then

$$
I_{3}=\frac{1}{n} \sum_{k=1}^{n-1}(-1)^{k} \int_{0}^{\pi / n} \frac{f\left(x_{n}+t+(k+1) \pi / n\right)}{(t+k \pi / n)(t+(k+1) \pi / n)} \sin n t d t
$$

[^1]\[

$$
\begin{aligned}
= & -\frac{1}{n} \sum_{k=1}^{N} \int_{0}^{\pi / n}\left\{\frac{f\left(x_{n}+t+2 k \pi / n\right)}{(t+(2 k-1) \pi / n)(t+2 k \pi / n)}\right. \\
= & \left.-\frac{1}{n} \sum_{k=1}^{N} \int_{0}^{\pi / n} \frac{f\left(x_{n}+t+(2 k+1) \pi / n\right)}{(t+2 k \pi / n)(t+(2 k+1) \pi / n)}\right\} \sin n t d t \\
& -\frac{2 \pi}{n^{2}} \sum_{k=1}^{N} \int_{0}^{\pi / n} \frac{f+2 k \pi / n)-f\left(x_{n}+t+(2 k+1) \pi / n\right)}{(t+(2 k-1) \pi / n)(t+2 k \pi / n)} \sin n t d t \\
= & -I_{31}-I_{32}
\end{aligned}
$$
\]

say. Now, by repeated use of the second mean value theorem,

$$
\begin{aligned}
I_{31} & =\frac{1}{n} \sum_{k=1}^{N} \frac{n^{2}}{(2 k-1) 2 k \pi^{2}} \int_{0}^{\xi}\left[f\left(x_{n}+t+2 k \pi / n\right)-f\left(x_{n}+t+(2 k+1) \pi / n\right] \sin n t d t\right. \\
& =\frac{n}{\pi^{2}} \sum_{k=1}^{N} \frac{\theta_{n}}{2 k(2 k-1)} \int_{5}^{\eta}\left[f\left(x_{n}+t+2 k \pi / n\right)-f\left(x_{n}+t+(2 k+1) \pi / n\right)\right] d t
\end{aligned}
$$

where $0<\zeta<\eta \leqq \xi<\pi / n$ and $0<\theta_{n} \leqq 1$. Since, by the condition (2),

$$
\begin{equation*}
\int_{0}^{t}\left[f\left(x_{n}+t+2 k \pi / n\right)-f\left(x_{n}+t+(2 k+1) \pi / n\right)\right] d t=o(1 / n) \tag{11}
\end{equation*}
$$

uniformly in k and n, we get $I_{31}=o(1)$.
On the other hand we have, by Abel's lemma,

$$
\begin{aligned}
I_{32}= & \frac{2 \pi}{n^{2}} \sum_{k=1}^{N} \int_{0}^{\pi / n} \frac{f\left(x_{n}+t+(2 k+1) \pi / n\right)}{(t+(2 k-1) \pi / n)(t+2 k \pi / n)(t+(2 k+1) \pi / n)} \sin n t d t \\
= & \frac{2 \pi}{n^{2}} \int_{0}^{\pi / n} f\left(x_{n}+t+3 \pi / n\right) \sin n t d t \\
& \cdot\left[\sum_{k=1}^{N} \frac{1}{(t+(2 k-1) \pi / n)(t+2 k \pi / n)(t+(2 k+1) \pi / n)}\right] \\
& -\frac{2 \pi}{n^{2}} \sum_{k=2}^{N} \int_{0}^{\pi / n}\left[f\left(x_{n}+t+(2 k+1) \pi / n\right)-f\left(x_{n}+t+(2 k-1) \pi / n\right)\right] d t \\
& \cdot\left[\sum_{j=k}^{N} \frac{\sin n t}{(t+(2 j-1) \pi / n)(t+2 j \pi / n)(t+(2 j+1) \pi / n)}\right] \\
= & I_{321}-I_{322 .} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
I_{322}= & \frac{2 \pi}{n^{2}} \sum_{k=2}^{N} \sum_{j=k}^{N} \frac{\theta_{n}^{\prime} n^{3}}{(2 j-1) 2 j(2 j+1)} \\
& \cdot \int_{\xi_{k}}^{\eta_{k}}\left[f\left(x_{n}+t+(2 k+1) \pi / n\right)-f\left(x_{n}+t+(2 k-1) \pi / n\right)\right] d t
\end{aligned}
$$

where $0<\xi_{k}<\eta_{k}<\pi / n, 0<\theta_{n}^{\prime} \leqq 1$ and hence

$$
I_{322}=-\frac{1}{n^{2}} \sum_{k=1}^{N} \sum_{j=k}^{N} \frac{n^{3}}{j^{3}} o\left(\frac{1}{n}\right)=o\left(\sum_{k=1}^{N}-\frac{1}{k^{2}}\right)=o(1) .
$$

On the other hand

$$
\begin{aligned}
& I_{321}=\frac{2 \pi}{n^{2}} \int_{0}^{\pi / n} f\left(x_{n}+t+3 \pi / n\right) \sin n t d t \\
& \cdot \sum_{k=1}^{N} \frac{n^{3}}{(n t+(2 k-1) \pi)(n t+2 k \pi)(n t+(2 k+1) \pi)} \\
&= 2 n \pi \int_{0}^{\pi / n} f\left(x_{n}+t+3 \pi / n\right) c(n t) \sin n t d t \\
&-2 n \pi \int_{0}^{\pi / n} f\left(x_{n}+t+3 \pi / n\right) \sin n t d t \\
& \cdot \sum_{k=N+1}^{\infty} \frac{1}{(n t+(2 k-1) \pi)(n t+2 k \pi)(n t+(2 k+1) \pi)}
\end{aligned}
$$

where the sum in the last term on the right is $O\left(1 / n^{2}\right)$ and then the last term is

$$
\begin{aligned}
O\left(\frac { 1 } { n } \int _ { 0 } ^ { \pi / n } f \left(x_{n}\right.\right. & +t+3 \pi / n) \mid \sin n t d t) \\
& =O\left(\int_{0}^{\pi / n} t f\left(x_{n}+t+3 \pi / n\right) \mid d t\right)=o(1)
\end{aligned}
$$

And then

$$
\begin{aligned}
I_{321} & =2 n \pi \int_{0}^{\pi / n} f\left(x_{n}+t+3 \pi / n\right) c(n t) \sin n t d t+o(1) \\
& =2 n \pi \int_{0}^{\pi / n} f\left(x_{n}+t\right) c(n t) \sin n t d t+o(1)
\end{aligned}
$$

Summing up the above estimations, we get

$$
\begin{aligned}
I & =I_{1}+I_{2}-I_{321}+o(1) \\
& =\frac{1}{\pi} \int_{0}^{\pi / n} f\left(x_{n}+t\right)\left(\frac{\sin n t}{t}-2 n \pi^{2} c(n t) \sin n t\right) d t \\
& =\frac{1}{\pi} \int_{0}^{\pi / n} f\left(x_{n}+t+\pi / n\right)\left(\frac{1}{t}-\frac{1}{t+\pi / n}\right) \sin n t d t+o(1)
\end{aligned}
$$

Similarly we get

$$
\begin{aligned}
J= & \frac{1}{\pi} \sum_{k=0}^{n-1}(-1)^{k} \int_{0}^{\pi / n} \frac{f\left(x_{n}-t-k \pi / n\right)+f\left(x_{n}-t-(k-1) \pi / n\right)}{t+k \pi / n} \sin n t d t \\
= & \frac{1}{\pi} \int_{0}^{\pi / n} \frac{f\left(x_{n}-t+\pi / n\right)}{t} \sin n t d t+\frac{1}{\pi} \int_{0}^{\pi / n} f\left(x_{n}-t\right)\left(\frac{1}{t}-\frac{1}{t+\pi / n}\right) \sin n t d t \\
& +\frac{1}{n} \sum_{k=1}^{n-1}(-1)^{k} \int_{0}^{\pi / n} \frac{f\left(x_{n}-t-k \pi / n\right)}{(t+k \pi / n)(t+(k+1) \pi / n)} \sin n t d t+o(1) .
\end{aligned}
$$

If we denote the last term by J_{3}, then
$J_{3}=-\frac{2 \pi}{n^{2}} \sum_{k=1}^{N} \int_{0}^{\pi / n} \frac{f\left(x_{n}-t-2 k \pi / n\right)}{(t+(2 k-1) \pi / n)(t+2 k \pi / n)(t+(2 k+1) \pi / n)} \sin n t d t+o(1)$

$$
\begin{aligned}
& =-\frac{2 \pi}{n^{2}} \int_{0}^{\pi / n} f\left(x_{n}-t-2 \pi / n\right) \sin n t d t \\
& \quad \cdot \sum_{k=1}^{N} \frac{1}{(t+(2 k-1) \pi / n)(t+2 k \pi / n)(t+(2 k+1) \pi / n)}+o(1) \\
& =-2 n \pi \int_{0}^{\pi / n} f\left(x_{n}-t-2 \pi / n\right) c(n t) \sin n t d t+o(1) \\
& =-2 n \pi \int_{0}^{\pi / n} f\left(x_{n}-t\right) c(n t) \sin n t d t+o(1)
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& \frac{1}{2}\left(s_{n}\left(x_{n}\right)+s_{n}\left(x_{n}+\pi / n\right)\right)=\frac{1}{2}(I+J)+o(1) \\
& =\frac{1}{2 \pi} \int_{\pi / n}^{2 \pi / n} f\left(x_{n}+t\right)\left(\frac{1}{t}-\frac{1}{t-\pi / n}\right) \sin n t d t \\
& \quad+\frac{1}{2 \pi} \int_{0}^{\pi / n} f\left(x_{n}+t\right)\left(\frac{1}{t}-\frac{1}{t-\pi / n}-2 n \pi^{2} c(n t)\right) \sin n t d t \\
& \quad+\frac{1}{2 \pi} \int_{-\pi / n}^{0} f\left(x_{n}+t\right)\left(\frac{1}{t}-\frac{1}{t-\pi / n}-2 n \pi^{2} c(-n t)\right) \sin n t d t \\
& = \\
& \frac{1}{2 \pi} \int_{-2 \pi / n}^{2 \pi / n} f\left(x_{n}+t\right) R_{n}(t) d t+o(1) .
\end{aligned}
$$

This is the required.
3. Proof of Theorem 3. We can suppose that $\xi=0$ and $f(\xi)=0$. If the theorem does not hold, then there is a set E of positive outer measure such that for any $\delta>0$, the set $E \cap(-\delta, \delta)$ is of positive outer measure and $f(t)$. does not tend to $f(0)$ as t tends to zero along E.

We can suppose that E is measurable. For, there is an m, for any n, such that

$$
e_{n}=m^{*} E_{n}>0
$$

where

$$
E_{n}=E \cap((-1 / n,-1 / m) \cup(1 / m, 1 / n))=E \cap I_{m, n} .
$$

By Lusin's theorem, $f(t)$ is continuous in $I_{m, n}$ except a imeasurable set E_{n}^{\prime} with measure less than $e_{n} / 2$. Hence

$$
m^{*}\left(E_{n}-E_{n}^{\prime}\right)>e_{n} / 2
$$

For any x in $E_{n}-E_{n}^{\prime}$ we put

$$
\begin{gathered}
E_{n}(x)=(t ; \mid f(x)-f(t) \ll 1 / n) \cap I_{m, n}, \\
F=\underset{x \in E_{n}-E_{n}^{\prime}}{\vee}\left(E_{n}(x) \cap c E_{n}^{\prime}\right) .
\end{gathered}
$$

Each $E_{n}(x)$ is open in $c E_{n}^{\prime}$ and hence F is also and then is measurable and
is of measure $>e_{n} / 2$, since $F \supset E_{n}-E_{n}^{\prime}$. Thus we may suppose that E is measurable.

Further we can suppose that

$$
f(x)>\varepsilon>0 \text { for all } x \text { in } E
$$

Let x be a density point of E. Then, for any $\eta(1>\eta>0)$ there is a ζ such that

$$
\operatorname{meas}\left(E \cap\left(x-\zeta^{\prime}, x+\zeta^{\prime \prime}\right)\right) /\left(\zeta^{\prime}+\zeta^{\prime \prime}\right)>\eta
$$

for any $\zeta^{\prime}<\zeta$, $\zeta^{\prime \prime}<\zeta$.
Let $2 \pi / n<\zeta$ and $x_{n}=x$, and let

$$
G=E \cap\left(x_{n}-2 \pi / n, x_{n}+2 \pi / n\right)
$$

We consider the integral in (3) and write

$$
I=\int_{-2 \pi / n}^{2 \pi / n} f\left(x_{n}+t\right) R_{n}(t) \sin n t d t=\int_{G}+\int_{c G}=I_{1}+I_{2}
$$

where the kernel $R_{n}(t) \sin n t$ is non-negative. Then we get

$$
I_{1} \geqq \frac{2}{\pi} \varepsilon \cdot n|G| \geqq 8 \varepsilon \eta, \quad\left|I_{2}\right| \leqq M \cdot n \mid E_{1} \leqq 4 \pi(1-\eta) M
$$

M being the bound of $\mid f(t)$. If we take $\eta>M /(M+1 / \pi)$, then we have, by (3),

$$
\frac{1}{2}\left\{s_{n}\left(x_{n}\right)+s_{n}\left(x_{n}+\pi / n\right)\right\}>\frac{1}{4 \pi} I+o(1)
$$

$$
\begin{equation*}
\geqq \frac{1}{4 \pi}\left(I_{1}-\left|I_{2}\right|\right)+o(1) \geqq \frac{2 \varepsilon}{\pi}\left(\eta-\frac{\pi}{2} M(1-\eta)\right)+o(1) \tag{12}
\end{equation*}
$$

$$
\geqq \varepsilon \eta / \pi+o(1)>\varepsilon M /(\pi M+1)+o(1)
$$

Since $x=x_{n}$ may be taken as near as we please to 0 , (12) contradicts (1). Thus the theorem is proved.
4. Proof of Theorem 4. If the Fourier series of $f(x)$ converges uniformly at $x=\xi$, then $s_{n}\left(x_{n}\right)$ converges to $f(\xi)$ for all $\left(x_{n}\right)$, tending to ξ. Hence (1) holds, and then the assumption of Theorem 2 is satisfied. Thus $f(t)$ is essentially continuous at $t=\xi$.
5. Proof of Theorem 5. We can suppose that $\xi=0$. Then

$$
f(t)=\psi(t)+g(t)
$$

and, by the condition (6),

$$
G(t)=\int_{0}^{t} g(u), d u=o(t)
$$

Now

$$
\begin{aligned}
& \frac{1}{2}\left(s_{n}(\pi / n, f)+s_{n}(2 \pi / n, f)\right) \\
& \quad=\frac{1}{2}\left(s_{n}(\pi / n, \psi)+s_{n}(2 \pi / n, \psi)\right)+\frac{1}{2}\left(s_{n}(\pi / n, g)+s_{n}(2 \pi / n, g)\right) .
\end{aligned}
$$

As is well known,

$$
\begin{aligned}
& s_{n}(\pi / n, \psi) \rightarrow \int_{0}^{\pi} \frac{\sin t}{t} d t=1.851 \cdots \\
& s_{n}(2 \pi / n, \psi) \rightarrow \int_{0}^{2 \pi} \frac{\sin t}{t} d t=1.418 \cdots
\end{aligned}
$$

and hence

$$
\frac{1}{2}\left(s_{n}(\pi / n, \psi)+s_{n}(2 \pi / n, \psi)\right) \rightarrow 1.637 \cdots>1.57 \cdots=\pi / 2 .
$$

Since there is an $x_{n}\left(\pi / n \leqq x_{n} \leqq 2 \pi / n\right)$ such that

$$
\frac{1}{2}\left(s_{n}(\pi / n, f)+s_{n}(2 \pi / n, f)\right)=s_{n}\left(x_{n}, f\right)
$$

by the Darboux theorem, if we prove that

$$
\begin{equation*}
s_{n}(\pi / n, g)+s_{n}(2 \pi / n, g) \rightarrow 0, \tag{13}
\end{equation*}
$$

then $t=1.637 \cdots$ belongs to the Gibbs set, and hence the Gibbs phenomenon appears.
We have

$$
\begin{aligned}
& s_{n}(\pi / n, g)+s_{n}(2 \pi / n, g) \\
= & \frac{1}{\pi} \int_{-\pi}^{\pi} g(t) \frac{\sin n(t-\pi / n)}{t-\pi / n} d t+\frac{1}{\pi} \int_{-\pi}^{\pi} g(t) \frac{\sin n(t-2 \pi / n)}{t-2 \pi / n} d t+o(1) \\
= & \frac{1}{\pi} \int_{-\pi}^{\pi} g(t)\left(\frac{1}{t-2 \pi / n}-\frac{1}{t-\pi / n}\right) \sin n t d t+o(1) \\
= & \frac{1}{n} \int_{-\pi}^{\pi} \frac{g(t) \sin n t}{(t-\pi / n)(t-2 \pi / n)} d t+o(1) \\
= & \frac{1}{n}\left(\int_{-\pi}^{0}+\int_{0}^{\pi}\right)+o(1)=I+J+o(1) .
\end{aligned}
$$

We write

$$
\begin{aligned}
J & =\frac{1}{n}\left(\int_{0}^{\pi / n}+\int_{\pi / n}^{3 \pi / 2 n}+\int_{3 \pi / 2 n}^{2 \pi / n}+\int_{2 \pi / n}^{3 \pi / n}+\int_{3 \pi / n}^{\pi}\right) \\
& =J_{1}+J_{2}+J_{3}+J_{4}+J_{5},
\end{aligned}
$$

where

$$
\left|J_{1}\right| \leqq \frac{1}{n} \cdot n \int_{0}^{\pi / n}|g(t)| \frac{d t}{t-2 \pi / n} \leqq \frac{n}{\pi} \int_{0}^{\pi / n}|g(t)| d t=o(1)
$$

and similarly $J_{2}+J_{3}+J_{4}=o(1)$. By integration by parts,

$$
J_{5} \left\lvert\, \leqq \frac{1}{n} \int_{3 \pi / n}^{\pi} \frac{|g(t)|}{t^{2}} d t=\frac{1}{n}\left(\frac{n}{3 \pi}\right)^{2} G\left(\frac{3 \pi}{n}\right)+\frac{2}{n} \int_{3 \pi / n}^{\pi} \frac{G(t)}{t^{3}} d t=o(1) .\right.
$$

Since I may be estimated similarly (13) is proved ; thus the theorem is proved, except the last sentence.
6. Proof of Theorem 6. From the proof of Theorem 5, we can see that it is sufficient to prove that
where

$$
\frac{1}{n} \int_{-\pi}^{\pi} g(t) \frac{\sin n t}{(t-\pi / n)(t-2 \pi / n)} d t=o(1)
$$

$$
\int_{0}^{t} g(u) d u=o(1), \quad \text { and } \quad \int_{0}^{t}(g(x+u)-g(x-u)) d u=o(t)
$$

uniformly in x. We write

$$
\begin{gathered}
\frac{1}{n} \int_{-\pi}^{\pi} g(t) \frac{\sin n t}{(t-\pi / n)(t-2 \pi / n)} d t=\frac{1}{n}\left(\int_{-\pi}^{0}+\int_{0}^{\pi}\right)=I+J, \\
J=\frac{1}{n} \int_{0}^{3 \pi / 2 n}+\frac{1}{n} \int_{3 \pi / 2 n}^{3 \pi / n}+\frac{1}{n} \int_{3 \pi / n}^{\pi}=J_{1}+J_{2}+J_{3} .
\end{gathered}
$$

By the second mean value theorem

$$
J_{1}=\int_{\xi}^{\eta} \frac{g(t)}{t-2 \pi / n} d t=\frac{1}{\eta-2 \pi / n} \int_{\xi^{\prime}}^{\eta} g(t) d t
$$

where $0<\xi<\pi / n<\eta<3 \pi / 2 n, \xi<\xi^{\prime}<\eta$. Hence $J_{1}=o(1)$. Similarly J_{2} $=o(1)$,

$$
\begin{aligned}
& J_{3}=\frac{1}{n} \sum_{k=3}^{n-1}(-1)^{k} \int_{0}^{\pi / n} \frac{g(t+k \pi / n) \sin n t}{(t+(k-1) \pi / n)(t+(k-2) \pi / n)} d t \\
& =-\frac{1}{n} \sum_{k=1}^{(n-2) / 2} \int_{0}^{\pi / n}\left[\frac{g(t+(2 k+1) \pi / n)}{(t+2 k \pi / n)(t+(2 k-1) \pi / n)}-\frac{g(t+(2 k+2) \pi / n)}{(t+(2 k+1) \pi / n)(t+2 k \pi / n)}\right] \\
& =-\frac{1}{n} \sum_{k=1}^{(n-2) / 2} \int_{0}^{\pi / n} \frac{\sin n t d t}{} \frac{g(t+(2 k+1) \pi / n)-g(t+(2 k+2) \pi / n)}{(t+2 k \pi / n)(t+(2 k-1) \pi / n)} \sin n t d t \\
& -\frac{2 \pi}{n^{2}} \sum_{k=1}^{(n-2) / 2} \int_{0}^{\pi / n} \frac{g(t+(2 k+2) \pi / n)}{(t+(2 k-1) \pi / n)(t+2 k \pi / n)(t+(2 k+1) \pi / n)} \sin n t d t \\
& =-I_{31}-J_{32},
\end{aligned}
$$

where

$$
\begin{aligned}
& J_{31}= \frac{\theta_{n}}{n} \sum_{k=1}^{(n-2) / 2} \frac{1}{(2 k \pi / n)((2 k-1) \pi / n)} \\
& \cdot \int_{\xi_{k}}^{\eta_{k}}[g(t+(2 k+1) \pi / n)-g(t+(2 k+2) \pi / n)] d t
\end{aligned} \quad \begin{aligned}
& o\left(\sum_{k=1}^{n}-\frac{1}{k^{2}}\right)=o(1), \quad\left(0<\theta_{n}<1,0<\xi_{k}<\eta_{k}<\pi / n\right),
\end{aligned}
$$

and $J_{32}=o(1)$ by the estimation similar to that of I_{32} in the proof of Theorem 2. Thus $J=o(1)$. Similarly we get $I=o(1)$. Proof of the theorem is now completed.
7. Proof of Theorem 8. Without loss of generality we can suppose that $\xi=0$. As usual, we denote by $s_{n}(x, f)$ the nth partial sum of the Fourier series of $f(t)$ at $t=x$. Then it is sufficient to prove that $s_{n}(\pi / n, g)$ tends to zero as $n \rightarrow \infty$, that is

$$
\begin{equation*}
I=\int_{-\pi}^{\pi} g(t) \frac{\sin n(t-\pi / n)}{t-\pi / n} d t=o(1), \quad(n \rightarrow \infty) . \tag{14}
\end{equation*}
$$

We write

$$
I=\int_{-\pi}^{-2 \pi / n}+\int_{-2 \pi / n}^{2 \pi / n}+\int_{2 \pi / n}^{\pi}=I_{1}+I_{2}+I_{3} .
$$

Then, by the condition (9), we have

$$
I_{2} \leqq n \int_{-2 \pi / n}^{2 \pi / n} g(t) d t=o(1)
$$

and, since $g(t)$ is odd,

$$
\begin{aligned}
& I_{1}+I_{3}= \int_{2 \pi / n}^{\pi} g(t)\left[\frac{\sin n(t-\pi / n)}{t-\pi / n}-\frac{\sin n(t+\pi / n)}{t+\pi / n}\right] d t \\
&=-\frac{2 \pi}{n} \int_{2 \pi / n}^{\pi} g(t)-\sin n t \\
&=-2 \pi \int_{2 \pi / n}^{\pi} \cos n t d t \int_{t}^{\pi} \frac{g(u)}{u^{2}-(\pi / n)^{2}} d u \\
&= 2 \pi \int_{\pi / n}^{\pi-\pi / n} \cos n t d t \int_{t+\pi / n / n}^{\pi} \frac{g(u)}{u^{2}-(\pi / n)^{2}} d u \\
&= \pi \int_{\pi / n}^{2 \pi / n} \cos n t d t \int_{t+\pi / n}^{\pi} \frac{g(u)}{u^{2}-(\pi / n)^{2}} d u \\
& \quad-\pi \int_{2 \pi / n}^{\pi-\pi / n} \cos n t d t \int_{t}^{t+\pi / n} \frac{g(u)}{u^{2}-(\pi / n)^{2}} d u \\
& \quad \quad-\pi \int_{\pi-\pi / n}^{\pi} \cos n t d t \int_{t}^{\pi} \frac{g(u)}{u^{2}-(\pi / n)^{2}} d u \\
&= J_{1}+J_{2}+J_{3 .}
\end{aligned}
$$

Now

$$
\begin{aligned}
\left|J_{2}\right| & \leqq 2 \pi \int_{2 \pi / n}^{\pi-\pi / n} d t \int_{t}^{t+\pi / n} \frac{g(u) \mid}{u^{2}} d u \\
& \leqq \frac{2 \pi^{2}}{n} \int_{\pi / n}^{\pi} \frac{\mid g(u)}{u^{2}} d u \\
& =o(1)+\frac{4 \pi^{2}}{n} \int_{\pi / n}^{\pi}-\frac{d u}{u^{3}} \int_{0}^{u} g(t) \quad d t=o(1)
\end{aligned}
$$

and

$$
J_{1}\left|+J_{3}\right| \leqq \frac{2 \pi}{n} \int_{\pi \mid n}^{\pi} \frac{g(u)}{u^{2}} d u+o(1)=o(1)
$$

Thus we get (14), which is the required.
8. Proof of Theorem 7. It is sufficient to prove the case that $g(t)$ is even at $t=x$. As in §7, we decompose I into I_{1}, I_{2} and I_{3}, then $I_{2}=o(1)$. But

$$
\begin{aligned}
I_{1}+I_{3} & =\int_{2 \pi / n}^{\pi} g(t)\left[\frac{\sin n(t-\pi / n)}{t-\pi / n}+\frac{\sin n(t+\pi / n)}{t+\pi / n}\right] d t \\
& =-2 \int_{2 \pi / n}^{\pi}-\frac{t g(t)}{t^{2}-(\pi / n)^{2}} \sin n t d t .
\end{aligned}
$$

When the condition (7) is satisfied, then the theorem is evident. If the condition (8) is satisfied, we have

$$
\begin{aligned}
I_{1}+I_{3}= & 2 \int_{\pi / n}^{\pi-\pi / n} \frac{(t+\pi / n) g(t+\pi / n)}{t(t+2 \pi / n)} \sin n t d t \\
= & \int_{\pi / n / n}^{2 \pi / n} \frac{(t+\pi / n) g(t+\pi / n)}{t(t+2 \pi / n)} \sin n t d t \\
& -\int_{2 \pi / n}^{\pi-\pi / n}\left[-\frac{t g(t)}{(t-\pi / n)(t+\pi / n)}-\frac{(t+\pi / n) g(t+\pi / n)}{t(t+2 \pi / n)}\right] \sin n t d t \\
& -\int_{\pi-\pi / n}^{\pi} \frac{t g(t)}{t^{2}-(\pi / n)^{2}} \sin n t d t \\
= & J_{1}+J_{2}+J_{3}
\end{aligned}
$$

Now

$$
\left|J_{2} \leqq 2 \int_{2 \pi / n}^{\pi-\pi / n}\right| g(t)-g(t+\pi / n) \mid t o(1)
$$

and $J_{1}+J_{3}=o(1)$ as in the estimation in $\S 7$. Thus the theorem is proved.
9. Proof of Theorem 9. Let us define a sequence of integers $\left(n_{k}\right)$ and a sequence of functions $f_{k}(x)$ by induction. Let $n_{1}=2$, and $f_{1}(x)$ be a triangular function in $(0, \pi)$ such that

$$
\begin{gathered}
f_{1}(0)=f_{1}\left(\pi / 2-\pi / 2^{2}\right)=f_{1}\left(\pi / 2+\pi / 2^{2}\right)=f_{1}(\pi)=0, \\
f_{1}(\pi / 2)=1
\end{gathered}
$$

If n_{1}, \cdots, n_{k-1} and $f_{1}(x), \cdots, f_{k-1}(x)$ are determined, then we define n_{k} and $f_{k}(x)$ as follows. Let n_{k} be an integer $\geqq n_{k-1}^{2}$ such that

$$
s_{n}\left(x, f_{k-1}\right)-f_{k-1}(x)^{\prime} \leqq 1 /(k-1)^{2} \quad\left(n \geqq n_{k}\right) .
$$

Further, setting

$$
\begin{gathered}
a_{k}=\pi / n_{k}-\pi / n_{k}^{2}, \quad b_{k}=\pi / n_{k}+\pi / n_{k}^{2}, \\
\Delta_{k}=\left(a_{k}, b_{k}\right),
\end{gathered}
$$

we define $f_{k}(x)$ such that

$$
\begin{array}{rlr}
f_{k}(x) & =\frac{n_{k}^{2}}{\pi}\left(x-a_{k}\right) & \text { in }\left(a_{k}, \pi / n_{k}\right), \\
& =\frac{n_{k}^{2}}{\pi}\left(b_{k}-x\right) & \text { in }\left(\pi / n_{k}, b_{k}\right), \\
& =0 & \text { otherwise in }(0, \pi) .
\end{array}
$$

We write now

$$
\begin{array}{rlr}
f(x) & =\sum_{k=1}^{\infty} f_{k}(x) & \text { in }(0, \pi), \\
& =-f(-x) & \text { in }(-\pi, 0),
\end{array}
$$

and we shall show that Fourier series of $f(x)$ does not represent the Gibbs phenomenon at $x=0$, that is,

$$
\limsup _{n \rightarrow \infty} s_{n}\left(x_{n}\right) \leqq 1, \quad \liminf _{n \rightarrow \infty} s_{n}\left(x_{n}\right) \geqq-1
$$

for any sequence $\left(x_{n}\right)$, tending to zero. We can here suppose that $x_{n}>0$ for all n.
For any n, there is a k such that

$$
n_{k} \leqq n<n_{k+1} .
$$

We distinguish two cases.
(i) $0<x_{n} \leqq \pi / n$.

$$
\begin{aligned}
s_{n}\left(x_{n}\right) & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \frac{\sin n\left(t-x_{n}\right)}{t-x_{n}} d t+o(1) \\
& =\frac{1}{\pi}\left(\int_{-\pi / n}^{\pi / n}+\int_{\pi / n}^{\pi}+\int_{-\pi}^{-\pi / n}\right)+o(1) \\
& =I_{1}+I_{2}+I_{3}+o(1) .
\end{aligned}
$$

We have easily

$$
\left|I_{1}\right| \leqq \frac{n}{\pi} \int_{-\pi / n}^{\pi / n}|f(t)| d t+o(1)
$$

by the construction of $f(t)$. Moreover

$$
\begin{aligned}
I_{2} & =\frac{1}{\pi} \sum_{j=1}^{n} \int_{\Delta_{j}} f_{j}(t) \frac{\sin n\left(t-x_{n}\right)}{t-x_{n}} d t \\
& =\frac{1}{\pi} \sum_{j=l}^{k} \int_{\Delta_{j}} f_{j}(t) \frac{\sin n\left(t-x_{n}\right)}{t-x_{n}} d t+o(1) \\
& =\frac{1}{\pi} \sum_{j=l}^{k} I_{2, j}+o(1),
\end{aligned}
$$

where l may be taken sufficiently large but fixed.

$$
\left|\sum_{j=l}^{k-1} I_{2, j}\right| \leqq \sum_{j=l}^{k-1} j^{-2} \leqq l^{-1}
$$

and

$$
\begin{array}{rlrl}
\left|I_{2, k}\right| & \leqq \frac{n}{\pi} \cdot \frac{\pi}{n_{k}^{2}} \leqq 1 & & \left(n \leqq n_{k}^{2}\right) \\
& \leqq \frac{n_{k}}{\pi}(1+o(1)) \frac{\pi}{n_{k}^{2}}=o(1) & \left(n>n_{k}\right)
\end{array}
$$

Similarly $I_{3}=o(1)$.
Thus we have

$$
\left|s_{n}\left(x_{n}\right)\right| \leqq\left|I_{2}\right|+o(1) \leqq 1+l^{-1}+o(1)
$$

where l is a sufficiently large constant.
(ii) $x_{n} \geqq \pi / n$.

$$
\begin{aligned}
s_{n}\left(x_{n}\right) & =\frac{1}{\pi} \sum_{j=1}^{\infty} \int_{\Lambda_{j}} f(t) \frac{\sin n\left(t-x_{n}\right)}{t-x_{n}} d t=\sum_{j=1}^{\infty} I_{2, j} \\
& =\sum_{j=1}^{k-1} I_{2, j}+I_{2, k}+\sum_{j=k+1}^{\infty} I_{2, j}=I^{\prime}+I_{2, k}+I^{\prime \prime}
\end{aligned}
$$

If $x_{n} \geqq \pi / n_{k-1}$, then $I^{\prime} \leqq 1+l^{-1}, I^{\prime \prime}=o(1)$ and

$$
I_{2, k}=\frac{1}{\pi} \int_{d_{k}} f_{k}(t) \frac{\sin n\left(t-x_{n}\right)}{t-x_{n}} d t=\frac{1}{\pi} \frac{n_{k-1}}{\pi} \frac{\pi}{n_{k}^{2}}=o(1) .
$$

If $\pi / n \leqq x_{n} \leqq \pi / n_{k_{-1}}$, then we get also

$$
\sum_{j=1}^{k-2} I_{2, j}+\sum_{j=k-2}^{\infty} I_{2, j}=o(1)
$$

We have

$$
\begin{aligned}
I_{2, k}= & \frac{n_{k}^{2}}{\pi^{2}} \int_{a_{k}}^{\pi / n_{k}}\left(t-a_{k}\right) \frac{\sin n\left(t-x_{n}\right)}{t-x_{n}} d t+\frac{n_{k}^{2}}{\pi^{2}} \int_{\pi / n_{k}}^{b_{k}}\left(b_{k}-t\right) \frac{\sin n\left(t-x_{n}\right)}{t-x_{n}} d t \\
= & \frac{n_{k}^{2}}{\pi^{2}} \int_{a_{k}}^{\pi / n_{k}}\left(\left(t-x_{n}\right)+\left(x_{n}-a_{k}\right)\right) \frac{\sin n\left(t-x_{n}\right)}{t-x_{n}} d t \\
& \quad+\frac{n_{k}^{2}}{\pi^{2}} \int_{\pi / n_{k}}^{b_{k}}\left(\left(b_{k}-x_{n}\right)+\left(t-x_{n}\right)\right) \frac{\sin n\left(t-x_{n}\right)}{\left.t-x_{n}\right)} d t \\
= & \frac{n_{k}^{2}}{\pi^{2}}\left(\int_{a_{k}}^{\pi / n_{k}} \sin n\left(t-x_{n}\right) d t-\int_{\pi / n_{k}}^{b_{k}} \sin n\left(t-x_{n}\right) d t\right) \\
& +\frac{n_{k}^{2}}{\pi^{2}}\left(\left(x_{n}-a_{k}\right) \int_{a_{k}}^{\pi / n_{k}} \frac{\sin n\left(t-x_{n}\right)}{t-x_{n}} d t+\left(b_{k}-x_{n}\right) \int_{\pi / n_{k}}^{b_{k}} \frac{\sin n\left(t-x_{n}\right)}{t-x_{n}} d t\right) \\
= & I_{2, k, 1}+I_{2, k, 2 .}
\end{aligned}
$$

Now

$$
\begin{aligned}
I_{2, k, 1}=\frac{n_{k}^{2}}{\pi^{2} n}\{- & \left(-\cos n\left(a_{k}-x_{n}\right)+\cos n\left(\pi / n_{k}-x_{n}\right)\right) \\
& \left.+\left(-\cos n\left(\pi / n_{k}-x_{n}\right)-\cos n\left(b_{k}-x_{n}\right)\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{2 n_{k}^{2}}{\pi^{2} n}\left(\sin n\left(\pi / n_{k}-a_{k}\right) / 2 \cdot \sin n\left(a_{k}+\pi / n_{k}-2 x_{n}\right) / 2\right. \\
&\left.\quad-\sin n\left(b_{k}-\pi / n_{k}\right) / 2 \cdot \sin n\left(b_{k}+\pi / n_{k}-2 x_{n}\right) / 2\right) \\
&= \frac{2 n_{k}^{2}}{\pi^{2} n} \sin \left(n \pi / 2 n_{k}^{2}\right) \cdot\left(-\sin n\left(b_{k}+\pi / n_{k}-2 x_{n}\right) / 2\right. \\
&\left.\quad-\sin n\left(a_{k}+\pi / n_{k}-2 x_{n}\right) / 2\right) \\
&=- \frac{4 n_{k}^{2}}{\pi n^{2}} \sin \frac{n \pi}{2 n_{k}^{2}} \cdot \sin \frac{n \pi}{4 n_{k}^{2}} \cdot \cos n\left(\frac{\pi}{n_{k}}-x_{n}\right), \\
& I_{2, k, 2}= \frac{n_{k}^{2}}{\pi^{2}}\left\{\left(x_{n}-a_{k}\right) \int_{n\left(a_{k}-x_{n}\right)}^{n\left(\pi / n_{k}-x_{n}\right)} \frac{\sin t}{t} d t+\left(b_{k}-x_{n}\right) \int_{n\left(\pi / n_{k}-x_{n}\right)}^{n\left(b_{k}-x_{n}\right)} \frac{\sin t}{t} d t\right\} .
\end{aligned}
$$

If we take

$$
n=n_{k}^{2}, \quad x_{n}=\pi / n_{k}
$$

then

$$
\begin{aligned}
I_{2, k, 1} & =-\frac{4}{\pi^{2}} \sin \frac{\pi}{2} \sin \frac{\pi}{4}=-\frac{2 \sqrt{ } 2}{\pi^{2}}=-0.285 \cdots \\
I_{2, k, 2} & =\frac{n_{k}^{2}}{\pi^{2}}\left\{\frac{\pi}{n_{k}^{2}} \int_{-\pi}^{0} \frac{\sin t}{t} d t+\frac{\pi}{n_{k}^{2}} \int_{0}^{\pi} \frac{\sin t}{t} d t\right\} \\
& =\frac{2}{\pi} \int_{0}^{\pi} \frac{\sin t}{t} d t=\frac{2}{\pi} \cdot 1.851 \cdots=1.179 \cdots
\end{aligned}
$$

and then

$$
I_{2, k}=1.179 \cdots-0.285 \cdots=0.894 \cdots<1
$$

Let x_{n} be a point in a neighbourhood of π / n_{k}. Then

$$
\begin{aligned}
\Delta & =\frac{1}{\pi} \int_{0}^{\pi} f_{k}(t) \frac{\sin n\left(t-\pi / n_{k}\right)}{t-\pi / n_{k}} d t-\frac{1}{\pi} \int_{0}^{\pi} f_{k}(t) \frac{\sin n\left(t-x_{n}\right)}{t-x_{n}} d t \\
& =\frac{1}{\pi} \int_{0}^{\pi}\left[f_{k}(t)-f_{k}\left(t-x_{n}^{\prime}\right)\right] \frac{\sin n\left(t-\pi / n_{k}\right)}{t-\pi / n_{k}} d t
\end{aligned}
$$

where $x_{n}^{\prime}=x_{n}-\pi / n$. If we prove that $\Delta \geqq 0$, then $I_{2, k}<1$. We suppose $x_{n}^{\prime}>0$ and put

$$
h_{k}(t)=f_{k}(t)-f\left(t-x_{n}^{\prime}\right),
$$

then we distinguish three cases.
If $\pi / n_{k}-\pi / n_{k}^{2} \leqq x_{n}^{\prime} \leqq \pi / n_{k}$, then

$$
\begin{array}{rlr}
h_{k}(t) & =\frac{n_{k}^{2}}{\pi}\left(t-a_{k}\right) & \text { in }\left(a_{k}, a_{k}+x_{n}^{\prime}\right), \\
& =\frac{n_{k}^{2}}{\pi} x_{n}^{\prime} & \text { in }\left(a_{k}+x_{n}^{\prime}, \pi / n_{k}\right)
\end{array}
$$

$$
\begin{aligned}
& =\frac{n_{k}^{2}}{\pi}\left(t-\left(\pi / n_{k}+x_{n}^{\prime}\right) / 2\right) \\
& \text { in }\left(\pi / n_{k}^{\prime}, \pi / n_{k}+x_{n}^{\prime}\right) \text {, } \\
& =-\frac{n_{k}^{2}}{\pi} x_{n}^{\prime} \\
& \text { in }\left(\pi / n_{k}+x_{n}^{\prime}, b_{k}\right), \\
& =-\frac{n_{k}^{2}}{\pi}\left(b_{k}-t\right) \\
& =0 \\
& \text { in }\left(b_{k}, b_{k}+x_{n}^{\prime}\right) \text {, } \\
& \text { otherwise. }
\end{aligned}
$$

Let us prove that

$$
\begin{equation*}
\frac{1}{\pi} \int_{0}^{\pi} h_{k}(t) \frac{\sin n\left(t-\pi / n_{k}\right)}{t-\pi / n_{k}} d t \geqq 0 . \tag{15}
\end{equation*}
$$

The integral, being considered as a function of θ,

$$
\int_{\theta}^{1+\theta} \frac{\sin t}{t} d t
$$

is maximum when $\theta=0$, for any positive number A. Hence the sum of the integral of (15) on the intervals ($a_{k}+x_{n}^{\prime}, \pi / n_{k}$) and ($\pi / n_{k}+x_{n}^{\prime}, b_{k}$) is nonnegative. Further, by the second mean value theorem, the sum of the integral of (15) on the intervals ($a_{k}, a_{k}+x_{n}^{\prime}$) and ($b_{k}, b_{k}+x_{n}^{\prime}$) is also non-negative. In order to prove that the integral in the remaining interval $\left(\pi / n_{k}, \pi / n_{k}+x_{n}^{\prime}\right)$ is non-negative, it is sufficient to show that

$$
\int_{0}^{2 n a}(a-t) \frac{\sin n t}{t} d t \geqq 0
$$

for $a=\left(x_{n}^{\prime}+\pi / n_{k}\right) / 2$. The left side integral is

$$
a \int_{0}^{2 n a} \frac{\sin t}{t} d t-\frac{1-\cos 2 a n}{n}
$$

which is non-negative for larg n and small a. In the case $\pi / n_{k} \leqq x_{n} \leqq \pi / n_{k}+\pi / n_{k}^{2}$, we have

$$
\begin{array}{rlr}
h_{k}(t) & =\frac{n_{k}^{2}}{\pi}\left(t-a_{k}\right) & \text { in }\left(a_{k}, \pi / n_{k}\right), \\
& =\frac{n_{k}^{2}}{\pi}\left(b_{k}-t\right) \quad \text { in }\left(\pi / n_{k}, a_{k}+x_{n}^{\prime}\right), \\
& =\frac{n_{k}^{2}}{\pi}\left(\left(a_{k}+b_{k}+x_{n}^{\prime}\right) / 2-t\right) \\
& =-\frac{n_{k}^{2}}{\pi}\left(t-a_{k}-x_{n}^{\prime}\right) \\
& \text { in }\left(a_{k}+x_{n}^{\prime}, b_{k}\right), \\
& \text { in }\left(b_{k}, \pi / n_{k}+x_{n}^{\prime}\right),
\end{array}
$$

$$
\begin{aligned}
& =-\frac{n_{k}^{2}}{\pi}\left(t-b_{k}-x_{n}^{\prime}\right) \\
& \quad \text { in }\left(\pi / n_{k}+x_{n}^{\prime}, b_{k}+x_{n}^{\prime}\right) .
\end{aligned}
$$

In this case the estimation is similar and we get $I_{2, k}<1$.

Finally, in the case $x_{n}^{\prime}>\pi / n_{k}+\pi / n_{k}^{2}, h_{k}(t)$ becomes the function as in the graph. The estimation of $I_{2, k}$ becomes easier. Thus in the case $x_{n}^{\prime}>0$, we get also the inequality

$$
I_{2, k}<1
$$

If x_{n} lies in a neighbourhood of π / n_{k}, then we can easily see that

$$
I_{2, k_{-1}}+I_{2, k_{-1}}=o(1)
$$

If x_{n} lies in a neighbourhood of π / n_{k-1} or $\pi / n_{k_{+1}}$, then we get

$$
I_{2, k-1}<1, \quad I_{2, k}+I_{2, k_{-1}}=o(1)
$$

or

$$
I_{2, k+1}<1, \quad I_{2, k-1}+I_{2, k}=o(1)
$$

respectively.
We have proved that $I_{2} \leqq 1$. Since we can easily see that $I_{3}=o(1)$, we have thus proved that

$$
\limsup _{n \rightarrow \infty} s_{n}\left(x_{n}\right) \leqq 1
$$

Similarly

$$
\liminf _{n \rightarrow \infty} s_{n}\left(x_{n}\right) \geqq-1
$$

This completes the proof of our theorem.

References

[1] G. H. Hardy and W. W. Rogosinski, Fourier series. 1943.
[2] S. Izumi and G. Sunouchi, Notes on Fourier analysis (XLVIII) : Uniform convergence of Fourier series. Tôhoku Math. Journ. 3 (1951), 298-305.
[3] M. Satô, Uniform convergence of Fourier series I-VI. Proc. Japan Acad. 30-32 (1954-1956), 528-531, 698-701, 809-813; 261-263, 600-605; 99-104.
[4] W. W. Rogosinski, Schriften der Königsberger gelehrten Gesellschaft 3 (1926).
[5] G. H. Hardy and W. W. Rogosinski, Notes on Fourier series (II) : On the Gibbs phenomenon. Journ. London Math. Soc. 18 (1943),
[6] O. Szász, On some trigonometric summability methods and Gibbs' phenomenon. Trans. Amer. Math. Soc. 54 (1943), 483-497.

Department of Mathematics, Hokkaido University.

[^0]: 2) $f(t)$ is essentially continuous at a point ξ, if there are no sets E such that for any $\delta>0, E \cap(\xi-\delta, \xi+\delta)$ is not of zero measure and $f(t)$ does not tend to $f(\xi)$ as t tends to ξ belonging to E.
 3) For example, $\int_{0}^{u}(f(x+t)-f(x-t)) d t=o\left(u / \log \frac{1}{u}\right)$ as $u \rightarrow 0$, uniformly in x. Cf. [3].
[^1]: 6) For the method of proof, see [3].
