
FOURIER SERIES X: ROGOSINSKΓS LEMMA

BY SHIN-ICHI IZUMI AND MASAKO SATO

1. W. W. Rogosinski has proved the following theorem [1]:

THEOREM 1. If f(t) is continuous at t = J, then

1 ) {S(Xγ Sn(Xn + */*)}->/(£), (»-> Oθ)

for any sequence (xn) tending to ξ, where sn(t) is the n th partial sum of the
Fourier series of f(t).

This theorem has many applications.
We shall prove the following

THEOREM 2. / /

(2)

uniformly in x in a neighbourhood of a point ζ, then

-^{SniXn) + Sn(Xn + 7t/n)}

( I ^ ) Sin nt dt

( 3 )
i l n t) +f(xn -

where1) Rn(t) ^ 0 and

^ W = S (ί + (2AJ - l)τr)(ί + 2to)(i + (2* + l)τr) '

If /(ί) is continuous at t = f, then, supposing that /(f) =0, the right side
of (3) tends to zero. Thus (1) holds.

From Theorem 2, we get a sort of converse theorem of Theorem 1; that is,
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1) c(t) is continuous and
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THEOREM 3. If f(t) is bounded and (2) holds in a neighbourhood of a point
ξ, and further if (1) holds for any sequence (xn), tending to ξ, then f(t) is
essentially continuous2^ at t = ξ.

On the other hand, it is known [2], [3] that if a function f(x), satisfying
a certain uniformity condition3), is continuous at x = ξ, then the Fourier
series of f(x) converges uniformly at x = ξ. Conversely, uniform conver-
gence of the Fourier series of f(x) at x = ξ does not imply the continuity
of f(χ) at x = ξ. For, values of f(x) in a null set do not effect its Fourier
series. Then there arises the problem to find conditions for f(x) under which
the uniform convergence of its Fourier series at a point implies the essential
continuity of f(x) at that point. As an answer to this problem we get the
following theorem which is a corollary of Theorem 3.

THEOREM 4. If f(x) is bounded in a neighbourhood of x = ξ and (2) holds
uniformly there, and further if the Fourier series of f(x) converges uniformly
at x ~ ξ, then f(x) is essentially continuous at x = ξ.

On the other hand, considering the case where xn = π/n in (3), we obtain
the following

THEOREM 5. Suppose that

(4) f(t) =aψ{t-ξ)+g{t),

where ψ(t) is a periodic function with period 2τt such that

ψ(t) =• (π - t)/2, (0<t< 2π),

and where

lim sup git) = 0, lim inf git) = 0,

(5)
lim inf σ(t) ̂ > — an, lim sup y (t) ^ aπ,

(6)

then the Gibbs phenomenon of the Fourier series of f(t) appears at t = ξ.
The Gibbs set contains the interval [a(H -f 1)^/4, — a(H-\- l)?r/4] where

H = - M - 5 Ϊ 5 1 - Λ = 1.17 ••• > 1.
7Γ Jo t

In this theorem, it is not supposed that the point t = f is the simple dis-
continuity point of f(t). Theorem 5 of this case owes to W. W. Rogosinski

2) /(/) is essentially continuous at a point ξ, if there are no sets E such that for
any δ > 0, £ n (ί - δ, £ + δ) is not of zero measure and /(/) does not tend to f(ξ) as /
tends to ξ belonging to E.

ί
u / ' 1 \

(f(x+t) — fix— t))dt = of &/log as &->0, uniformly in x.
o \ I u J

Cf. [3].
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We can generalize Theorem 5 in the following form.

THEOREM 6. In Theorem 5, if we replace the condition (6) by the following
condition:

g{x + u) - gix- u))du = o(\t\)

uniformly for all x in a neighbourhood of ξ9 then the Gibbs phenomenon of
fit) appears at t = ξ, and the Gibbs set contains the interval [a(H+l)π/4,

Further we prove the following theorem.

THEOREM 7. Suppose that

f(t) = aφ(t-ξ)+f{t)

where φ{t) is a periodic function with period 2n such that

ψ(t) = (τr-^/2, (0<t <2π),

(7) l*\ff(t+ξ)\Γιdt< co

and h(t) is of bounded variation and is continuous* at ξ, then the Gibbs set
of fit) contains the interval[a(π/2)H, — a(π/2)H\.

More generally, (7) may be replaced by

r
J nln t

THEOREM 85). Suppose that

f(t) =aφ(t-ξ)+g(t)

where git) is odd about t—ξ, that is

9iξ-t) =

for small t and

(9)

(10) [\
J o

then the Gibbs set of fit) contains the interval [aiπ/2)H, — aiτr/2)H],

We conclude this paper proving the following

4) This paper has not been available for us, but this result is stated in [5],
5) This is a special case of a theorem of O. Szasz [6 Theorem 10].
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THEOREM 9. (i) There is a function which presents Gibbs phenomenon at
a point t = ξ and has t = ξ as the second kind discontinuity, (ii) There is a
function which does not present Gibbs phenomenon at t = ξ and has t = ξ
as the second kind discontinuity.

The first part is almost evident, and in fact follows from Theorems 5 and
6. The second part is proved by constructing an example whose construction
is suggested by Theorems 5 — 7.

2. Proof of Theorem 2.6) We put φx(t) = f(x -f t) + fix - t) and we can
suppose that ξ = 0. Then we have

/ \ I f * /

Sn(x)-——\ <P»{
71 JQ

sin nt
1
I

Accordingly we have

(* + l)»r/»)

HIM g (
ϊ ~Γ n>7l I Ύl

We shall estimate /. Since / may be quite similarly estimated, we shall
omit it. We write

We can here suppose that n is an odd integer and we put, for the sake of
simplicity, N= (n — l)/2. Then

n at ( 1} Jo (t Γ

6) For the method of proof, see [3],
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(t + (2k-l)π/njf

βx + t + (2k + l)x/n) \
)π/n) ) m a ι(t + 2kτr/nXi + (2k

J _ *, ΐ*'nf(x^±±±2k7t/n) -f(xn+J_+_(2k_±l)7rln) .
n έiJo ~ " (t+T2k-ί)7t7n)(f+2kπ/nT ' sm

(/ + (2ft - 1) w/»Xί + 2kτt/n)(t + (2k + 1) τr/»)

s i n nt dtS m w a l

say. Now, by repeated use of the second mean value theorem,

Σ ^ f c / U + ί + 2&τrΛz) / ( * + / + (2* +

+ *+ 2kπ/n) ~/{Xn + *+ {2k + ι)

where 0<ζ<τ)<ζ< π/n and 0 < θn < 1. Since, by the condition (2),

(11) (*[/(*» + t + 2fe/«) - / ( * „ + t + (2k + \)π/n)1dt = o(l/n)
Jo

uniformly in k and w, we get 731 = o(l)."
On the other hand we have, by Abel's lemma,

_ 2τt *r* /(*, + *+ (2ft + l Wn) -in«iΛ
i 3 2 ~ M2 ώ Jo (t + (2k - l)Λ/ήM + 2kn/n)(t + (2k + \)«/n)

= —r\ f(xn + t + 3τt/n) sin «ί Λ
W Jo

L§i (ί + (2^ - l)π/n%t + 2kπ/n){t + (2* + l)?r/w) J

- -T- Σ \ [/(*» + * + (2* + !)»/») - / ( * • + * + (2k -

"(27-ί)*/»)(ί + 27*/«)(ί +"(27

I
7 +T.)»/Λ) J

Then we have

7 3 2 2 - n2 ^ jti (2i - 1)2/(2/ + 1)

U(xn + ί + (2* + l)zr/«) - / U n + ί + (2* - 1)ΛT/«)]Λ,

where 0 < ffc < *?fc < τt/n, 0 < θn^l and hence
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On the other hand

I*2i = —πr\ f(χn + t + 3τr/^) sin nt dt
n J o

. ys— n

G±\ (nt + (2k - l)π)(nt + 2kπ)(nt Jt(2kJtl)π)

t -f 3π/n)c(nt) sin nt dt

•\- t -f- 37t/n) sin ̂ ί Λ
σo -I

. yj ±
fc=iv+i (wί + (2k — l)τr)(w£ + 2kτt)(nt + (2ft + l)7r)

where the sum in the last term on the right is O(l/n2) and then the last
term is

θ[^-^}n\f(xn + t + 3π/n)\ sin «f Jί)

And then

782i = 2 ẑr\ /(AΓΛ + ί + 3τt/n)c(nt) sin^/ J ί + 6>(1)
Jo

f(xn + t)c(nt) sin nt dt -
Jo

Summing up the above estimations, we get

i = i l T i2 -*321 "Γ ^V1,/

Γ (T i+W) 0{1)

Similarly we get

-

If we denote the last term by /3, then

*' /(xra - f - 2kτt/n) sinntdt
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= -~Λ A** ~ t ~ 2τr/n) sin nt dt
Ύl J Q

' S l M - (2k ~ l)τt/nj(t +~2kπ/n)(t+ (2k

= - 2nπ[CJnf(xn - t - 2τr/n)c(nt) sin nt dt + o(l)
Jo

sin «ί dt
Jo

Thus we have

\iSniXn) + Sn(Xn + »

) s ί n

s i n n t d t

This is the required.

3. Proof of Theorem 3. We can suppose that ξ = 0 and /(f) = 0. If the
theorem does not hold, then there is a set E of positive outer measure such
that for any δ > 0, the set E Γi (— δ, δ) is of positive outer measure and f(t)
does not tend to /(0) as t tends to zero along E.

We can suppose that E is measurable. For, there is an m, for any n, such
that

en = m*En > 0

where

£„ = E Π ( ( - 1/w, - 1/m) U (1/w, 1/n)) - E Π /W>Λ.

By Lusin's theorem, /(/) is continuous in ImfU except a tmeasurable set En

with measure less than en/2. Hence

m*(En-E'n) >en/2.

For any x in En — E'n we put

En(x) = (ί; I/W - / ( * ) : < 1/n) Π /*,n,

Each l£n(#) is open in cE'n and hence F is also and then is measurable and
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is of measure > en/2, since F D En — E'n. Thus we may suppose that E is
measurable.

Further we can suppose that

f(x) > £ > 0 for all x in E.

Let x be a density point of E. Then, for any η (1 > η > 0) there is a ζ
such that

meas (E Π (x - ζ'9 x + ζ"))/(ζ' + t") > *7

for any ζ' < ζ, ζ» < ζ.
Let 27t/n < ζ and xn = #, and let

G = E Π (ΛΓM - 2τr/ ,̂ χn + 2τr/w).

We consider the integral in (3) and write

I = p 7 " / ( ^ + *)!?„(*) sin «ί Λ = f + f = Λ + /2

where the kernel Rn{t) sin nt is non-negative. Then we get

/i > ^ Λ ί GI > 86̂ 7, I 72 ί ̂  M n | E, ^ 4τr (1 - η)M,

M being the bound of \f(t) . If we take η > M/(M+ 1/τr), then we have,
by (3),

\{Sn{Xn) + SW(ΛΓW + Tt/fl)} > ^ I + θ(l)

(12) > - ^ ( Λ - [ h I) + o(l) ̂  f (^ - -|-M(1 - vή +

Since ΛΓ = xn may be taken as near as we please to 0, (12) contradicts (1).
Thus the theorem is proved.

4. Proof of Theorem 4. If the Fourier series of f(x) converges uniformly
at x = ξ, then sn(xn) converges to f{ξ) for all (χn), tending to ξ. Hence (1)
holds, and then the assumption of Theorem 2 is satisfied. Thus f(t) is es-
sentially continuous at t = ξ.

5. Proof of Theorem 5. We can suppose that ξ = 0. Then

and, by the condition (6),

G(t) =

Now
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\-{Sn(π/n,f) +Sn{2τr/n,f))

= \(sn{7t/nt ψ) + sn(2π/n, ψ)) + ~(sn(τr/n,g) + sn(2π/n,g)).

As is well known,

sn(π/n, ψ) -> Γ - ^ 5 J _ Λ = 1.851 ••-,

Jo I

-^ψ-dt = 1.418 - ,
0 t

and hence

\ (sn (π/n, ψ) + sn (2τr/n, ψ)) -* 1.637 . > 1.57 = τt/2.

Since there is an xn (τr/n ^ xn ^ 2π/ri) such that

-|-(s»(ar/Λ,/) + sn(2τr/n,f)) = s» (*„,/)

by the Darboux theorem, if we prove that

(13) Sn(7r/n, g) + sn(2τr/n, g) ->0,

then ί = 1.637 belongs to the Gibbs set, and hence the Gibbs phenomenon
appears.

We have

sn(τr/n, g) + sn{27t/n, g)

-If ff(() sin nt ,,

We write

^ /r-jiln rZτtJ2n r2τc in rd Λ Jn rit \

Ẑ \Jθ Jτr/w J3τr/2W J2τt/n JZit/nJ

= /i + Λ + Λ + Λ + Λ,

where

and similarly /2 + / 3 + / 4 = o(l). By integration by parts,
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S/ n J n 8 /

Since 7 may be estimated similarly (13) is proved thus the theorem is proved,
except the last sentence.

6. Proof of Theorem 6. From the proof of Theorem 5, we can see that
it is sufficient to prove that

where

g{u)du = o(l), and \ (g(x -f u) — g(x — u))du
Jo Jo

uniformly in x. We write

By the second mean value theorem

where 0 < f < TT/TZ < 7̂ < 3τr/2^, ξ <ξf <η. Hence /i = o(l). Similarly J2

Jo (ί + (ft - l)ίr/Λ)(ί + (ft - 2)a0ι) α '

_ J_c»^>/2pinr ff(t+ (2k + l)π/n) g{t^r(2k±2)n/n) 1

» *-i J0 L (* + 2kτΐ/n){t + (2ft - 1)ΛT/Λ) (ί + (2ft + Ί)τr/ή)(i + 2fcr/«) J

• sin ntdt

X c»^>/2Γ*/» g(f + (2ft + l)gr/yg) - g(/ + (2ft + 2)π/n)
n ή i Jo (ί + 2kτr/n)(t + (2ft - l)τr/^) s m Λ r ^ f

= /SI /32>

where

Jn g(t+ (2k + 2)τr/n) .
o .(* + (2ft - l)ίr/Λ)(V + 2kτt/n){t + (2ft + l)τt/n) ~sm

(2k7t/ή)((2k-l)τr/n)

(2ft + l)n/n) - ^(ί + (2k + 2)π/n)]dt

(0 < θn < 1, 0 < £» < % < π/n),
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and /3 2 = o(l) by the estimation similar to that of J32 in the proof of Theorem
2. Thus / = 0(1). Similarly we get 1 = o{l). Proof of the theorem is now
completed.

7. Proof of Theorem 8. Without loss of generality we can suppose that
ξ = 0. As usual, we denote by sn(x,f) the n th partial sum of the Fourier
series of f(t) at t = x. Then it is sufficient to prove that sn(π/n,g) tends
to zero as ^->oo, that is

(14) /

We write

ί
-2τc in c2tt in Cic

+ \ +\ = /,
-ic J-2τtfn J27t/n

Then, by the condition (9), we have

and, since g(t) is odd,

T a. T Γ n(*\\ *inn(t — 7c/n) sinn(t + τr/ή)

? l f //\

c o s nt d

ί TC—rcjn r-rc 0 (u)

cosntdt\ 2 ) t \2 du
-rein Jt+*ln U - (π/n)2

J 2it m r-rt Q

cos nt dt \ —2

Q (u)

t/n)

t+Ttin (7 (u)ί
it—itjn

COS ^ J ί \ 2 / 7-γγ-

it-tin h u2 - (π/n)2

= /l + / . + /β.

Now

ί
it-TtJn ΓtΛ TC In

ί it-TtJn ΓtΛ

2*ln h

-TCln
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and

it In U

Thus we get (14), which is the required.

8. Proof of Theorem 7. It is sufficient to prove the case that g(t) is even
at t — x. As in §7, we decompose / into Il9 I2 and 73, then 72 = o{l). But

When the condition (7) is satisfied, then the theorem is evident. If the con-
dition (8) is satisfied, we have

^
ίy (ί)

7Γ

S7ί /(7(/)

= Λ + Λ + /..
Now

and /i + /3 - o(l) as in the estimation in §7. Thus the theorem is proved.

9. Proof of Theorem 9. Let us define a sequence of integers (njc) and a
sequence of functions fk(x) by induction. Let nt = 2, and /I(ΛΓ) be a trian-
gular function in (0, π) such that

A (0) = /x (Λ-/2 - π/2*) - /, (τr/2 + τr/22) - /, (TΓ) - 0,

Λ(*/2) = 1 .

If Wi, •••,«»_! and /I(ΛΓ), •••,/»_!(AT) are determined, then we define ^
as follows. Let ^fc be an integer ^ #Li such that

Further, setting
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we define /*(#) such that

/*(*) =-^-(*-β») in (at,

= j L { b k _ x ) i n (rr/n^h),

7ΐ

= 0 otherwise in (0, n).

We write now

/ W - Σ Λ W in (O,τr),

= - / ( - * ) in (-τr,O),

and we shall show that Fourier series of f(x) does not represent the Gibbs
phenomenon at x = 0, that is,

lim sup sn(xn) ^ 1, lim inf sn(xn) ^ — 1

for any sequence (xn), tending to zero. We can here suppose that xn > 0 for
all n.

For any n, there is a k such that

We distinguish two cases.
( i ) 0 < xn < τt/n.

/(ί) j^--—^-dt + 0(1)

7Γ \J_itln Jain J . ^

= /i + h

We have easily

^Jt-Γ \f(t)\dt + o(
71 J_τr/ίi

by the construction of f(t). Moreover

where / may be taken sufficiently large but fixed.

fc-l fc-1



ROGOSINSKl'S LEMMA 177

and

Similarly I3 = o(l).
Thus we have

I Sn(Xn) \ < I h ) + 0(1) ^ 1 + Γ1 + 0(1),

where / is a sufficiently large constant.

J = l J = A; + 1

If Xn^Tt/m-!, then J ' ^ l + Γ1, /" = o(l) and

dt = ^Γ -^Γ"

If 7t/n^ Xn^rt/nje-ι, then we get also

Σ U « , J + ΣJ I*,j = o(i).
.7 = 1 J=k-2

We have

_ ^ + {Xn _
— Xn

n
7ΐ

s i n Λ (* ~ ^n) ̂ ^ — 1 sin n (t — xn) dt)

7t \ Jajc t — Xn J-πlnjc t — Xn

= -*2,fc,l + /2,*,2

Now

4/j2

~ Λ») + cos n(τr/nic - xn))

4- (— cosn(7t/njc — xn) — cosn{bjc — xn))}
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2n2

- k - (sin n (π/nic — a*) /2 sin n (a* + τr/njc — 2xn) /2

— sin n (fa — π/njc) /2 sin n (fa + τr/wfc — 2xn) /2)

2ŵ
sin (nπ/2nl) (— sin w(δfc + τr/nfc — 2ΛΓ̂ ) /2

— sin

44 . nπ . nπ ( n \
= -o— s i n -vr-9— s m -7—9— cos n[ xn),

πn2 2n\ An\ V fi* /

If we take

then

,*,! - - ~2 sin ^ sin-J- = - ^ £ - - - 0.285

sin t . , r̂ Γ* sin ̂

= _2_Γ_sinί_ Λ = _2_# L 8 5 1 . . . = 1.179.

and then

/2>* = 1.179 0 .285- = 0 . 8 9 4 - < 1.

Let xn be a point in a neighbourhood of π/njc. Then

where ΛΓ« = Λ;W — τr/«. If we prove that J ^ 0, then I2jlc < 1. We suppose
Λ4 > 0 and put

hjc(t) =/fc(ί) - / ( ί - O ,

then we distinguish three cases.
If zr/fZfc — τr/Wfc ^ xn ^ τr/^fc, t h e n

//^(/'i = — Λ - (/ — a-kί i n (̂ fc» f̂c + x'n) ,

— — * _ ^ i n (tffc + ΛΓ ,̂ 7r/^ f c),
7t
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in

in {fa, fa + x'n),

otherwise.

7t

= 0

Let us prove that

(15) -

The integral, being considered as a function of 0,

-dt ̂  0.

is maximum when θ = 0, for any positive number 4̂. Hence the sum of the
integral of (15) on the intervals (a* + xn, ft/tin) and (Tt/nm + ΛΓw, fe) is non-
ίiegative. Further, by the second mean value theorem, the sum of the in-
tegral of (15) on the intervals (a*, ctjc + x'n) and (bjc, b* + x'n) is also non-negative.
In order to prove that the integral in the remaining interval (π/nt, Tr/n* + x'n)
is non-negative, it is sufficient to show that

for # = (x'n + π/njβ)/2. The left side integral is

ί w α sin £ ,, 1 — cos 2tf/ί
—7—dt

n

which is non-negative for larg n and small a.
In the case n/n-k ̂ xn^ nln^Λ- τr/nl, we h a v e

in {ak,

in + x'n),

n
in (at 4- x'n, fa),

n2

7ΐ

m
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7t

in

In this case the estimation is similar and
we get /2,fc < 1.

Finally, in the case x'n > n/n^ + 7t/n\, hjc(t)
becomes the function as in the graph.
The estimation of 72,fc becomes easier.
Thus in the case x'n > 0, we get also the
inequality

/,,» < 1.

If xn lies in a neighbourhood of τr/ f̂c,
then we can easily see that

If xn lies in a neighbourhood of 7t/njc-i or

/2,fc-i < 1, /*,* + /S,fc-i = 0(1)

jc+u t h e n we get

or

respectively.
We have proved that 72 < 1. Since we can easily see that I3 = 0(1), we

have thus proved that

limSUp Sn(Xn) ^ 1.
n—τ°°

Similarly

liminf sn{xn) ^ — 1.

This completes the proof of our theorem.

REFERENCES

[ 1 ] G. H. HARDY AND W. W. ROGOSINSKI, Fourier series. 1943.
[ 2 ] S. IZUMI AND G. SUNOUOHI, Notes on Fourier analysis (XLVIII): Uniform convergence

of Fourier series. Tόhoku Math. Journ. 3 (1951), 298—305.
[ 3 ] M. SATO,* Uniform convergence of Fourier series I—VI. Proc. Japan Acad. 30—32

(1954—1956), 528—531, 698—701, 809—813; 261—263, 600—605; 99—104.
[ 4 ] W. W. ROGOSINSKI, Schriften der Kόnigsberger gelehrten Gesellschaft 3 (1926).
[ 5 ] G. H. HARDY AND W. W. ROGOSINSKI, Notes on Fourier series (H) : On the Gibbs

phenomenon. Journ. London Math. Soc. 18 (1943),
[ 6 ] O. SZASZ, On some trigonometric summability methods and Gibbs' phenomenon.

Trans. Amer. Math. Soc. 54 (1943), 483—497.

DEPARTMENT OF MATHEMATICS,

HOKKAIDO UNIVERSITY.




