THEOREMS ON SUBHARMONIC FUNCTIONS
 IN THE UNIT CIRCLE

By Yoshiro Kawakami

1. Let l_{φ} be a line through $e^{i \theta}$, making an angle $\varphi(-\pi / 2<\boldsymbol{\rho}<\pi / 2)$ with the inner normal of ' $z=1$ at $e^{i \theta}$. Then M. Tsuji [1] proved the following theorem.

Theorem. Let

$$
w(z)=\int_{|a|<1} \log \left|\frac{1-\bar{a} z}{z-a}\right| d \mu(a),
$$

where

$$
\Omega(r)=\int_{|a|<r} d \mu(a)=O\left(\frac{1}{(1-r)^{\lambda}}\right), \quad 0<\lambda<1 .
$$

Then there exists a set E of measure 2π on $z \mid=1$, such that if $e^{i \theta} \in E$, then for almost all ψ,

$$
\lim _{z \rightarrow e^{i \theta}} w(z)=0,
$$

when $z \rightarrow e^{i \theta}$ along $l_{\psi}\left(e^{i \theta}\right)$.
Let $u(z)$ be a subharmonic function in $z^{\prime}<1$ such that

$$
\int_{0}^{2 \pi} u\left(r e^{i \theta}\right) d \theta=O(1), \quad 0 \leqq r<1,
$$

and put

$$
L(u, r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(r e^{\imath \theta}\right) d \theta
$$

then $L(u, r)$ is an increasing convex function of $\log r$, and Tsuji proved the following theorem.

Theorem. Let $u(z)$ be a subharmonic function in $z_{1}<1$, such that

$$
\int_{0}^{2 \pi}\left|u\left(r e^{i \theta}\right)\right| d \theta=O(1), \quad \frac{d}{d r} L(u, r)=O\left(\frac{1}{(1-r)^{\lambda}}\right), \quad 0<\lambda<1
$$

Then there exists a set E of measure 2π on ' $z=1$, such that if $e^{i \theta} \in E$, then for almost all ψ,

$$
\lim _{z \rightarrow e^{i \theta}} u(z)=u\left(e^{i \theta}\right) \neq \infty
$$

exists, when $z \rightarrow e^{i \theta}$ along $l_{\psi}\left(e^{i \theta}\right)$.

Received December 10, 1956.

In this note we shall prove the following theorems using Hayman's method [2].

Theorem 1. Let

$$
w(z)=\int_{|a|<1} \log \left|\frac{1-\bar{a} z}{z-a}\right| d \mu(a)
$$

where

$$
\Omega(r)=\int_{i a^{\prime}<r} d \mu(a)=O\left(\frac{1}{(1-r)^{\lambda}}\right), \quad 0<\lambda<1
$$

Then there exists a set E of measure 2π on $\mid z^{\prime}=1$, such that for $e^{i \theta} \in E$, there corresponds a ρ-set $\Delta_{\theta, \varphi_{0}}$ of finite logarithmic length, such that

$$
\lim _{\rho \rightarrow 0} w(z)=w\left(e^{\imath \theta}-\rho e^{i(\theta-\varphi)}\right)=0
$$

uniformly for $\mid \varphi \leqq \leqq \varphi_{0}$ as $\rho \rightarrow 0$ outside $\Delta_{\theta, \varphi_{0}}$, where $0<\varphi_{0}<\pi / 2$.
Theorem 2. Let $u(z)$ be a subharmonic function in $z,<1$, such that

$$
\int_{0}^{2 \pi}\left|u\left(r e^{i \theta}\right)\right| d \theta=O(1), \quad \stackrel{d}{d r} L(u, r)=O\left(\frac{1}{(1-r)^{\lambda}}\right), \quad 0<\lambda<1 .
$$

Then there exists a set E of measure 2π on $|z|=1$, such that for $e^{\imath \theta} \in E$, there corresponds a ρ-set $\Delta_{\theta, \varphi_{0}}$ of finite logarithmic length, such that

$$
\lim _{\rho \rightarrow 0} u(z)=u\left(e^{i \theta}-\rho e^{i(\theta-\varphi)}\right)=u\left(e^{i \theta}\right)
$$

uniformly for $|\boldsymbol{\varphi}| \leqq \varphi_{0}$ as $\rho \rightarrow 0$ outside $\Delta_{\theta, \varphi_{0}}$.
For the proof we use the following Lemma. We put

$$
d \sigma(a)=(1-a \mid) d \mu(a)
$$

and let Δ_{t} be the common part of $|z|<1$ and $z-e^{i \theta} \leqq t$, then
Lemma 1. (Tsuji). If $\Omega(r)=O\left(1 /(1-r)^{\lambda}\right), 0<\lambda<1$, then there exists a set E of measure 2π on $\boldsymbol{z}=1$, such that if $e^{2 \theta} \in E$, then for some positive t_{0},

$$
\nu(t) \equiv \sigma\left(\Delta_{t}\right)=O\left(t^{1+\delta}\right), \quad \text { where } \quad 0<\delta<1, \quad t \leqq t_{0}
$$

Proof of this Lemma is contained in the proof of Theorem 3 of Tsuji's paper [1].
2. Estimation of $w(z)$.

We assume that $z=1$ belongs to E and put $1-a=\zeta, 1-z=\xi, z=r$, $11-z=\rho, 1-a_{i}=t$. We suppose that z lies beween $l_{-\varphi_{0}}$ and $l_{\varphi_{0}}$, and if we denote the complement of $\Delta_{t_{0}}$ with respect to $z<1$ by Δ^{*} and $\Delta_{t_{1}, t_{2}}=\Delta_{t_{1}}$ $-\Delta_{t_{2}}\left(t_{1}>t_{2}\right)$, then

$$
\begin{aligned}
w(z) & =\int_{\Delta^{*}} \log \left|\frac{1-\bar{a} z}{z-a}\right| \frac{d \sigma(a)}{1-|a|}+\int_{\Delta_{t_{0,2} \rho}}+\int_{\Delta_{2 \rho}, \frac{\rho}{2}}+\int_{\Delta_{\frac{1}{2} \rho}} \\
& =I_{1}+I_{2}+I_{3}+I_{4}, \quad \text { say. }
\end{aligned}
$$

For arbitrary t_{0} we have evidently

$$
\begin{equation*}
\lim _{z \rightarrow 1} I_{1}=0 \tag{1}
\end{equation*}
$$

Since

$$
\log \left|\frac{1-\bar{a} z}{z-a}\right| \leqq 2 \frac{(1-a \mid)(1-z)}{\mid z-a^{2}},
$$

we have

$$
I_{2} \leqq 2 \int \frac{1-|z|}{|z-\boldsymbol{a}|^{2}} d \sigma(\boldsymbol{a}) .
$$

Since z lies in the domain bounded by $l_{\varphi_{0}}$ and $l_{-\varphi_{0}}, 1-z \leqq \rho$, and if $a \in \Delta_{t_{0}, 2 \rho}$, $|z-a=| \xi-\zeta \geqq \zeta-\xi$, we have, putting $\nu_{0}=\left[\log \left(t_{0} / \rho\right)\right]$,

$$
\begin{aligned}
I_{2} \leqq & 2 \int_{\Delta_{0}, 2 \rho} \frac{1-z^{\prime}}{z-\left.a\right|^{2}} d \sigma(a) \\
\leqq & \text { const. } \sum_{j=1}^{\nu_{0}-1} \int_{2 j_{\rho} \leqq|5| \leq 2 \nu+1_{\rho}} \frac{1}{\mid z-a^{2}} d \sigma(a) \\
& + \text { const. } \rho \int_{2^{2} \nu_{0 \rho} \leq|5| \leq t_{0}} \frac{1}{|z-a|^{2}} d \sigma(a) .
\end{aligned}
$$

Since in $2^{3} \rho \leqq \zeta \leqq 2^{j+1} \rho, \mid \xi-\zeta \geqq \zeta-\xi \geqq 2^{J} \rho-\rho \geqq$ const $2^{J} \rho$,

$$
\begin{aligned}
I_{2} & \leqq \text { const. } \rho \sum_{j=1}^{\nu_{0}-1} \frac{1}{2^{2} \rho^{2}} \nu\left(2^{j+1} \rho\right)+\text { const. } \rho \frac{\nu\left(t_{0}\right)}{2^{2 \nu_{0}} \rho^{2}} \\
& \leqq \text { const. } \rho \sum_{j=1}^{\nu_{0}-1}-\frac{1}{2^{2} \rho^{2}} 2^{(j+1)(1+\delta)} \rho^{1+\delta}+\text { const. } \rho \frac{T t_{0}^{(1+\delta)}}{2^{2 \nu} \rho^{2}} \\
& \leqq \text { const. } \rho \delta \sum_{j=1}^{\infty} \frac{1}{2^{j(1-\delta)}} \leqq \text { const. } \rho^{\delta},
\end{aligned}
$$

so that

$$
\begin{equation*}
I_{2} \leqq \text { const. } \rho^{\delta} . \tag{2}
\end{equation*}
$$

In $I_{4},|z-a| \geqq|\boldsymbol{\xi}|-\zeta \mid \geqq$ const. ρ, so that similarly we have

$$
\begin{aligned}
I_{4} & \leqq \text { const. } \int_{L_{2} \rho} \frac{1-z}{|z-a|^{2}} d \sigma(a) \\
& \leqq \text { const. }-\frac{1}{\rho} \nu\left(\frac{1}{2} \rho\right) \leqq \text { const. } \rho^{\delta},
\end{aligned}
$$

so that

$$
\begin{equation*}
I_{4} \leqq \text { const. } \rho^{\delta} . \tag{3}
\end{equation*}
$$

3. Estimation of I_{3}.

Let $\Delta_{2 \rho, \frac{1}{2} \rho}^{\prime}$ be the part of $\Delta_{\frac{1}{2} \rho, \rho}$ which is outside the circle $\Gamma_{\xi}: z-a \mid \leqq k \rho$, where $k=\min \left(1 / 2, \sin \left|\varphi-\varphi_{0}\right|\right)$ and φ_{1} is a constant such that $\varphi_{0}<\varphi_{1}<\pi / 2$, then Γ_{ξ} is contained in the common part of $\Delta_{2 \rho, \frac{1}{2} \rho}$ and the domain which lies between $l_{-\varphi_{1}}, l_{\varphi_{1}}$. Then

$$
I_{3}=\int_{\Lambda_{2 \rho, \frac{1}{2} \rho}^{\prime}}+\int_{\Gamma_{\xi}}=I_{3}^{\prime}+I_{3}^{\prime \prime}, \quad \text { say }
$$

For $I_{3}{ }^{\prime}$,

$$
\begin{aligned}
I_{3}^{\prime} & \leqq \text { const. } \int_{L_{2 \rho, \frac{1}{2} \rho}^{\prime}} \frac{1-\mid z^{2}}{z-a^{2}} d \sigma(a) \\
& \leqq \text { const. } \int_{L_{2 \rho, \frac{1}{2} \rho}^{\prime}} \frac{\rho}{\rho^{2}} d \sigma(a) \\
& \leqq \text { const. } \quad_{\rho}^{1} \nu(2 \rho) \leqq \text { const. } \rho^{\delta} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
I_{3}^{\prime} \leqq \text { const. } \rho^{\delta} . \tag{4}
\end{equation*}
$$

Since in $\Gamma_{\xi}, 1-a \geqq$ const. $1-a=$ const. t, we have

$$
I_{3}^{\prime \prime} \leqq \text { const. } \int_{\Gamma_{\xi}} \log \left|\frac{1-\bar{a} z}{z-a}\right| \frac{d \sigma(a)}{t}
$$

To prove theorem 1 we need further to estimate $I_{3}{ }^{\prime \prime}$. For this purpose we use the following Lemmas, which are similar to Hayman's Lemmas [2].

Definition. Let ε be a fixed number. We shall say that a number $\rho<t_{0}$ is normal (ε), if for $0<h<\rho / 2$ we have

$$
\int_{\rho_{-h \leq \mid \zeta \leq \rho+h}} \frac{d \sigma(a)}{t}=\int_{\rho_{-h \leq t \leq \rho+h}} \frac{d \nu(t)}{t}<\varepsilon \frac{h}{\rho} .
$$

Lemma 2. The set of all values $\rho<t_{0}$, which are not normal (ε), has finite logarithmic length.

Proof. We put $d \omega(t)=d \nu(t) / t$, then since $\nu(t)=O\left(t^{1+\delta}\right)$, for $t \leqq t_{0}, \int_{t_{0}}^{1} d \omega(t)$ $<\infty$. Suppose that the Lemma is false for some positive ε, then for any given constant $G>0$, we can find a closed set F of values ρ not normal (ε), which is contained in the open interval $(0,1)$, and such that

$$
\int_{F} \frac{d \rho}{\rho}>G .
$$

For each ρ in F, there exists an open interval $I(\rho-h, \rho+h)$ with $0<h$ $<\rho / 2$, such that

$$
\begin{equation*}
\int_{\rho_{-h}<\mid \zeta_{j}<\rho_{+h}} d \omega(t) \geqq \frac{\varepsilon h}{\rho}>\frac{\varepsilon}{4} \int_{\rho_{-h}}^{\rho_{+h}} \frac{d t}{t} . \tag{5}
\end{equation*}
$$

By the Heine-Borel theorem there exists a finite set $I_{1}, I_{2}, \cdots, I_{n}$ of such intervals covering F. We may assume that none of these intervals is entirely contained in the union of the others. Let I_{ν} be ($\rho_{\nu}^{\prime}, \rho_{\nu}$) where $1 / \rho_{\nu}$ increases with ν. Then if $\mu>\nu, \rho_{\mu}^{\prime}<\rho_{\nu}^{\prime}$ since otherwise I_{μ} would be contained in $I_{\nu+1}$. Also $\rho_{\nu+2} \leqq \rho_{\nu}^{\prime}$, since otherwise $I_{\nu+1}$ would be contained in the union
of I_{ν} and $I_{\nu+2}$. Thus each of the set F_{1} of intervals I_{1}, I_{3}, \cdots, and F_{2} of intervals I_{2}, I_{4}, \cdots are non-overlapping, and since they together cover F, at least one, F_{1} say, has the logarithmic length at least $G / 2$. From (5) we have

$$
\int_{t \in F_{1}} d \omega(t)>\frac{\varepsilon}{4} \int_{F_{1}} \frac{d t}{t} \geqq \frac{G}{8}
$$

which is a contradiction.
Lemma 3. Let $\rho<t_{0}$ and ρ be normal (ε), then we have

$$
\int_{\Gamma \xi} \log \left|\frac{1-\bar{a} z}{z-a}\right| \frac{d \rho(a)}{1-|a|} \leqq \varepsilon A,
$$

where A is an absolute constant.
Proof. Let C_{n} be the ring $\rho / 2^{n+1} \leqq|\xi-\zeta| \leqq \rho / 2^{n}$. We suppose that $; \xi \mid$ is normal (ε), so that $\sigma(\xi)=0$. Then putting $C_{n}^{\prime}=C_{n} \cap\{z<1\}$,

$$
I_{3}^{\prime \prime} \leqq \sum_{n=1}^{\infty} \int_{\sigma_{n}^{\prime}} \log \left|\frac{1-\bar{a} z}{z-a}\right| \cdot \frac{d \sigma(a)}{t}
$$

Since in C_{n}^{\prime}

$$
\begin{gathered}
\log \left|\frac{1-\bar{a} z}{z-a}\right| \leqq \log \left|\frac{\bar{\zeta}+\xi-\bar{\zeta} \xi}{\zeta-\xi}\right| \leqq \log \frac{\rho+t+\rho t}{\mid \zeta-\xi} \\
\leqq \log \frac{4 \rho 2^{n+1}}{\rho}=\log 2^{n+3}, \\
\int_{c_{n}^{\prime}} \frac{d \sigma(a)}{t} \leqq \int_{\rho_{-} / 2^{n}\left\langle t \leqq \rho+\rho / 2^{n}\right.} \frac{d \nu(t)}{t} \leqq \frac{\varepsilon}{\rho} \cdot 2_{2^{n}}^{\rho}=\varepsilon \frac{1}{2^{n}},
\end{gathered}
$$

hence

$$
I_{3}^{\prime \prime} \leqq \varepsilon \sum_{n=1}^{\infty} \frac{1}{2^{n}} \log 2^{n+3}<\varepsilon A
$$

so that

$$
\begin{equation*}
I_{3}^{\prime \prime}<\varepsilon A \tag{6}
\end{equation*}
$$

5. Proof of the theorem 1.

Let $\Delta(\varepsilon)$ be the set of all $\rho<t_{0}$, which are not normal (ε), then by Lemma 2,

$$
\int_{\Delta(\varepsilon)} \frac{d \rho}{\rho}<\infty
$$

Hence if $\Delta(\rho, \varepsilon)$ denotes the part of $\Delta(\varepsilon)$ in $(0, \rho)$, we can choose sufficiently small ρ_{n} such that

$$
\int_{\Delta\left(\rho_{n}, 1 / n\right)} \frac{d \rho}{\rho}<\frac{1}{2^{n}} .
$$

Let Δ_{0} be the union of all the set $\Delta\left(\rho_{n}, 1 / n\right)$, then

$$
\int_{\Delta_{0}} \frac{d \rho}{\rho}<\sum_{n=1}^{\infty} \int_{\Delta\left(\rho_{n}, 1 / n\right)} \frac{d \rho}{\rho}<\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1
$$

On the other hand if ρ lies outside Δ_{0} and $\xi=\rho>\rho_{n}$, Lemma 3 gives

$$
\begin{equation*}
\int_{\Gamma_{\xi}} \log \left|\frac{1-\tilde{a} z}{z-a}\right| \frac{d \sigma(\zeta)}{1-\mid a_{\mid}} \leqq \frac{A}{n} \tag{7}
\end{equation*}
$$

so that from (1), (2), (3), and (7) theorem 1 follows.
6. Proof of theorem 2.

Since $\int_{0}^{2 \pi} \mid u\left(r e^{i \theta}\right) d \theta=O(1)$, by Littlewood's theorem [3], $u(z)$ can be represented as

$$
u(z)=v(z)-w(z)
$$

where $v(z)$ is harmonic in $z^{\prime}<1$, such that

$$
\begin{equation*}
\int_{0}^{2 \pi} v\left(r e^{i \theta}\right) d \theta=O(1) \tag{8}
\end{equation*}
$$

and

$$
w(z)=\int_{\mid a<1} \log \left|\frac{1-\bar{a} z}{z-a}\right| d \mu(a)
$$

where $d \mu(a)$ is a positive mass distribution in $z<1$, such that

$$
\int_{|a|<1}(1-|a|) d \mu(a)<\infty
$$

By (8), for almost all $e^{i \theta}$,

$$
\begin{equation*}
\lim _{z \rightarrow e^{i \theta}} v(z)=v\left(e^{i \theta}\right) \tag{9}
\end{equation*}
$$

exists, when $z \rightarrow e^{i \theta}$ from the inside of any Stolz domain, whose vertex is at $e^{i \theta}$. Since

$$
r \frac{d}{d r} L(u, r)=\Omega(r) \equiv \int_{\mid a^{i}<1} d \mu(a)=O\left(\frac{1}{(1-r)^{\lambda}}\right), \quad 0<\lambda<1
$$

$w(z)$ satisfies the condition of theorem 1 , whence theorem 2 follows.

References

[1] M. Tsusi, Littlewood's theorem on subharmonic functions in a unit circle. Comm. Math. Univ. St. Paul 5 (1956), 3-16.
[2] W. K. Hayman, Questions of regularity connected with the Phragmén-Lindelöf principle. Journ. de Math. 35 (1956), 115-126.
[3] J. E. Littlewood, On functions subharmonic in a circle (11), Proc. London Math. Soc. 28 (1929), 383-394.

Seikei University, Tokyo.

