THEOREMS ON SUBHARMONIC FUNCTIONS IN THE UNIT CIRCLE

By Yoshiro Kawakami

1. Let l_{φ} be a line through $e^{i\theta}$, making an angle φ $(-\pi/2 < \varphi < \pi/2)$ with the inner normal of z = 1 at $e^{i\theta}$. Then M. Tsuji [1] proved the following theorem.

THEOREM. Let

$$w(z) = \int_{|a|<1} \log \left| \frac{1-\bar{a}z}{z-a} \right| d\mu(a),$$

where

$$\mathcal{Q}(r) = \int_{|a| < r} d\mu(a) = O\left(\frac{1}{(1-r)^{\lambda}}\right), \qquad 0 < \lambda < 1.$$

Then there exists a set E of measure 2π on z = 1, such that if $e^{i\theta} \in E$, then for almost all ψ ,

$$\lim_{z\to e^{i\theta}}w(z)=0,$$

when $z \rightarrow e^{i\theta}$ along $l_{\psi}(e^{i\theta})$.

Let u(z) be a subharmonic function in |z| < 1 such that

$$\int_0^{2\pi} u(re^{i\theta}) d\theta = O(1), \qquad \qquad 0 \leq r < 1,$$

and put

$$L(u,r) = -\frac{1}{2\pi} \int_0^{2\pi} u(re^{i\theta}) d\theta,$$

then L(u, r) is an increasing convex function of $\log r$, and Tsuji proved the following theorem.

THEOREM. Let u(z) be a subharmonic function in |z| < 1, such that

$$\int_0^{2\pi} |u(re^{i\theta})| d\theta = O(1), \quad \frac{d}{dr} L(u,r) = O\left(\frac{1}{(1-r)^{\lambda}}\right), \quad 0 < \lambda < 1.$$

Then there exists a set E of measure 2π on z = 1, such that if $e^{i\theta} \in E$, then for almost all ψ ,

$$\lim_{z\to e^{i\theta}}u(z)=u(e^{i\theta})\neq\infty$$

exists, when $z \rightarrow e^{i\theta}$ along $l_{\Psi}(e^{i\theta})$.

Received December 10, 1956.

In this note we shall prove the following theorems using Hayman's method [2].

THEOREM 1. Let

$$w(z) = \int_{|a|<1} \log \left| \frac{1-\bar{a}z}{z-a} \right| d\mu(a),$$

where

$$\mathscr{Q}(r) = \int_{|a| < r} d\mu(a) = O\left(\frac{1}{(1-r)^{\lambda}}\right), \qquad 0 < \lambda < 1.$$

Then there exists a set E of measure 2π on |z| = 1, such that for $e^{i\theta} \in E$, there corresponds a ρ -set $\Delta_{\theta,\varphi_0}$ of finite logarithmic length, such that

$$\lim_{\rho\to 0} w(z) = w(e^{i\theta} - \rho e^{i(\theta - \varphi)}) = 0,$$

uniformly for $|\varphi| \leq \varphi_0$ as $\rho \to 0$ outside $\Delta_{\theta,\varphi_0}$, where $0 < \varphi_0 < \pi/2$.

THEOREM 2. Let u(z) be a subharmonic function in |z| < 1, such that

$$\int_0^{2\pi} |u(re^{i\theta})| d\theta = O(1), \quad \frac{d}{dr} L(u,r) = O\left(\frac{1}{(1-r)^{\lambda}}\right), \quad 0 < \lambda < 1.$$

Then there exists a set E of measure 2π on |z| = 1, such that for $e^{i\theta} \in E$, there corresponds a ρ -set $\Delta_{\theta,\varphi_0}$ of finite logarithmic length, such that

$$\lim_{\rho\to 0} u(z) = u(e^{i\theta} - \rho e^{i(\theta-\varphi)}) = u(e^{i\theta}),$$

uniformly for $|\varphi| \leq \varphi_0$ as $\rho \to 0$ outside $\Delta_{\theta,\varphi_0}$.

For the proof we use the following Lemma. We put

$$d\sigma(a) = (1 - |a|) d\mu(a),$$

and let \varDelta_t be the common part of |z| < 1 and $z - e^{i\theta} \leq t$, then

LEMMA 1. (TSUJI). If $\mathcal{Q}(r) = O(1/(1-r)^{\lambda})$, $0 < \lambda < 1$, then there exists a set E of measure 2π on |z| = 1, such that if $e^{i\theta} \in E$, then for some positive t_0 ,

$$u(t) \equiv \sigma(\varDelta_t) = O(t^{1+\delta}), \quad where \quad 0 < \delta < 1, \quad t \leq t_0.$$

Proof of this Lemma is contained in the proof of Theorem 3 of Tsuji's paper [1].

2. Estimation of w(z).

We assume that z = 1 belongs to E and put $1 - a = \zeta$, $1 - z = \xi$, z = r, $|1 - z| = \rho$, |1 - a| = t. We suppose that z lies between $l_{-\varphi_0}$ and l_{φ_0} , and if we denote the complement of Δ_{t_0} with respect to |z| < 1 by Δ^* and $\Delta_{t_1,t_2} = \Delta_{t_1} - \Delta_{t_2}(t_1 > t_2)$, then

$$w(z) = \int_{\mathcal{A}} \log \left| \frac{1 - \bar{a}z}{z - a} \right| \frac{d\sigma(a)}{1 - |a|} + \int_{\mathcal{A}_{t_{0}, 2\rho}} + \int_{\mathcal{A}_{2\rho}, \frac{\rho}{2}} + \int_{\mathcal{A}_{\frac{1}{2}\rho}} \\ = I_1 + I_2 + I_3 + I_4, \quad \text{say.}$$

For arbitrary t_0 we have evidently

$$(1) \qquad \qquad \lim_{z \to 1} I_1 = 0$$

Since

$$\log \left| \frac{1 - \bar{a}z}{z - a} \right| \le 2 \frac{(1 - a)(1 - z)}{|z - a|^2},$$

we have

$$I_2 \leq 2 \int \frac{1-|z|}{|z-a|^2} d\sigma(a).$$

Since z lies in the domain bounded by l_{φ_0} and $l_{-\varphi_0}$, $1 - z \leq \rho$, and if $a \in \mathcal{A}_{t_0,2\rho}$, $|z - a| = |\xi - \zeta| \geq |\zeta| - |\xi|$, we have, putting $\nu_0 = [\log(t_0/\rho)]$,

$$\begin{split} I_{2} &\leq 2 \int_{\mathcal{A}_{t_{0},2\rho}} \frac{1-|z|^{2}}{||z-a||^{2}} d\sigma(a) \\ &\leq \mathrm{const.} \sum_{j=1}^{\nu_{0}-1} \int_{2^{j}\rho \leq |\zeta| \leq 2^{j+1}\rho} \frac{1}{||z-a||^{2}} d\sigma(a) \\ &+ \mathrm{const.} \ \rho \int_{2^{\nu_{0}\rho \leq |\zeta| \leq t_{0}}} \frac{1}{||z-a||^{2}} d\sigma(a). \end{split}$$

Since in $2^{j}\rho \leq |\zeta| \leq 2^{j+1}\rho$, $|\xi - \zeta| \geq |\zeta| - |\xi| \geq 2^{j}\rho - [\rho \geq const 2^{j}\rho$,

$$\begin{split} I_{2} &\leq \text{const. } \rho \sum_{j=1}^{\nu_{0}-1} \frac{1}{2^{2_{j}} \rho^{2_{j}}} \nu \left(2^{j+1} \rho\right) + \text{const. } \rho \frac{\nu(t_{0})}{2^{2_{\nu}} 0 \rho^{2_{j}}} \\ &\leq \text{const. } \rho \sum_{j=1}^{\nu_{0}-1} \frac{1}{2^{2_{j}} \rho^{2_{j}}} 2^{(j+1)(1+\delta)} \rho^{1+\delta} + \text{const. } \rho \frac{\mathbb{F}t_{0}^{(1+\delta)}}{2^{2_{\nu}} 0 \rho^{2_{j}}} \\ &\leq \text{const. } \rho^{\delta} \sum_{j=1}^{\infty} \frac{1}{2^{j(1-\delta)}} \leq \text{const. } \rho^{\delta}, \end{split}$$

so that

$$(2) I_2 \leq \text{const. } \rho^{\delta}.$$

In I_4 , $|z-a| \ge |\xi| - |\zeta| \ge \text{const. } \rho$, so that similarly we have

$$I_4 \leq ext{const.} \int_{\mathcal{A}_2^1
ho} rac{1-|z|}{|z-a|^2} d\sigma(a)$$

 $\sim \leq ext{const.} rac{1}{
ho}
u \Big(rac{1}{2}
ho \Big) \leq ext{const.}
ho^{\delta},$

so that

 $(3) I_4 \leq \text{const. } \rho^{\delta}.$

3. Estimation of I_3 .

Let $\Delta'_{2\rho,\frac{1}{2}\rho}$ be the part of $\Delta_{\frac{1}{2}\rho,\rho}$ which is outside the circle $\Gamma_{\xi}: |z-a| \leq k\rho$, where $k = \min(1/2, \sin|\varphi - \varphi_0|)$ and φ_1 is a constant such that $\varphi_0 < \varphi_1 < \pi/2$, then Γ_{ξ} is contained in the common part of $\Delta_{2\rho,\frac{1}{2}\rho}$ and the domain which lies between $l_{-\varphi_1}, l_{\varphi_1}$. Then

160

SUBHARMONIC FUNCTIONS IN A CIRCLE

$$I_3 = \int_{\mathbf{A}_{2\rho,\frac{1}{2}\rho}} + \int_{\Gamma_{\xi}} = I'_3 + I''_3,$$
 say.

For $I_{3'}$,

$$egin{aligned} &I_3' \leq \operatorname{const.} \int_{A_{2\rho, \frac{1}{2}\rho}} rac{1 - |z|}{|z - a|^2} d\sigma(a) \ &\leq \operatorname{const.} \int_{A_{2\rho, \frac{1}{2}\rho}} -rac{
ho}{
ho^2} - d\sigma(a) \ &\leq \operatorname{const.} -rac{1}{
ho} -
u(2
ho) \leq \operatorname{const.}
ho^{\,\delta}. \end{aligned}$$

Hence

$$(4) I'_3 \leq \text{const. } \rho^{\delta}.$$

Since in Γ_{ξ} , $1 - a \ge \text{const.} \ 1 - a = \text{const.} t$, we have

$$I_3^{\prime\prime} \leq ext{const.} \int_{\Gamma_{\xi}} \log \left| rac{1-ar{a}z}{z-a} \right| rac{d\sigma(a)}{t}.$$

To prove theorem 1 we need further to estimate I_3'' . For this purpose we use the following Lemmas, which are similar to Hayman's Lemmas [2].

DEFINITION. Let \mathcal{E} be a fixed number. We shall say that a number $\rho < t_0$ is normal (\mathcal{E}), if for $0 < h < \rho/2$ we have

$$\int_{\rho_{-h}\leq |\zeta|\leq \rho+h} \frac{d\sigma\left(a\right)}{t} = \int_{\rho_{-h}\leq t\leq \rho+h} \frac{d\nu\left(t\right)}{t} < \varepsilon \frac{h}{\rho}.$$

LEMMA 2. The set of all values $\rho < t_0$, which are not normal (\mathcal{E}), has finite logarithmic length.

Proof. We put $d\omega(t) = d\nu(t)/t$, then since $\nu(t) = O(t^{1+\delta})$, for $t \leq t_0$, $\int_{t_0}^1 d\omega(t) < \infty$. Suppose that the Lemma is false for some positive \mathcal{E} , then for any given constant G > 0, we can find a closed set F of values ρ not normal (\mathcal{E}) , which is contained in the open interval (0, 1), and such that

$$\int_{F} \frac{d\rho}{\rho} > G.$$

For each ρ in F, there exists an open interval $I(\rho - h, \rho + h)$ with $0 < h < \rho/2$, such that

(5)
$$\int_{\rho-h<|\zeta|<\rho+h} d\omega(t) \geq \frac{\varepsilon h}{\rho} > \frac{\varepsilon}{4} \int_{\rho-h}^{\rho+h} \frac{dt}{t}.$$

By the Heine-Borel theorem there exists a finite set I_1, I_2, \dots, I_n of such intervals covering F. We may assume that none of these intervals is entirely contained in the union of the others. Let I_{ν} be $(\rho'_{\nu}, \rho_{\nu})$ where $1/\rho_{\nu}$ increases with ν . Then if $\mu > \nu$, $\rho'_{\mu} < \rho'_{\nu}$ since otherwise I_{μ} would be contained in $I_{\nu+1}$. Also $\rho_{\nu+2} \leq \rho'_{\nu}$, since otherwise $I_{\nu+1}$ would be contained in the union

161

of I_{ν} and $I_{\nu+2}$. Thus each of the set F_1 of intervals I_1, I_3, \dots , and F_2 of intervals I_2, I_4, \dots are non-overlapping, and since they together cover F, at least one, F_1 say, has the logarithmic length at least G/2. From (5) we have

$$\int_{t \in F_1} d\omega(t) > \frac{\varepsilon}{4} \int_{F_1} \frac{dt}{t} \ge \frac{G}{8},$$

which is a contradiction.

LEMMA 3. Let $\rho < t_0$ and ρ be normal (ε), then we have

$$\int_{\Gamma_{\xi}} \log \left| rac{1-ar{a}z}{z-a}
ight| rac{d
ho(a)}{1-|a|} \leq \varepsilon A,$$

where A is an absolute constant.

Proof. Let C_n be the ring $\rho/2^{n+1} \leq |\xi - \zeta| \leq \rho/2^n$. We suppose that $|\xi|$ is normal (\mathcal{E}) , so that $\sigma(\xi) = 0$. Then putting $C'_n = C_n \cap \{|z| < 1\}$,

$$I_3^{\prime\prime} \leq \sum_{n=1}^{\infty} \int_{c_n^{\prime}} \log \left| \frac{1-\bar{a}z}{z-a} \right| \cdot \frac{d\sigma(a)}{t}.$$

Since in C'_n

$$\log \left| \frac{1 - \bar{a}z}{z - a} \right| \leq \log \left| \frac{\bar{\xi} + \bar{\xi} - \bar{\xi}\bar{\xi}}{\zeta - \bar{\xi}} \right| \leq \log \frac{\rho + t + \rho t}{|\zeta - \bar{\xi}|}$$
$$\leq \log \frac{4\rho 2^{n+1}}{\rho} = \log 2^{n+3},$$
$$\int_{\sigma'_n} \frac{d\sigma(a)}{t} \leq \int_{\rho - \rho/2^n < t \leq \rho + \rho/2^n} \frac{d\nu(t)}{t} \leq \frac{\varepsilon}{\rho} \cdot \frac{\rho}{2^n} = \varepsilon \frac{1}{2^n},$$

hence

$$I_3'' \leq \varepsilon \sum_{n=1}^{\infty} \frac{1}{2^n} \log 2^{n+3} < \varepsilon A,$$

so that

 $(6) I_3'' < \mathcal{E}A.$

5. Proof of the theorem 1.

Let $\mathcal{A}(\mathcal{E})$ be the set of all $\rho < t_0$, which are not normal (\mathcal{E}) , then by Lemma 2,

$$\int_{\Delta(\mathcal{E})}\frac{d\rho}{\rho}<\infty.$$

Hence if $\Delta(\rho, \mathcal{E})$ denotes the part of $\Delta(\mathcal{E})$ in $(0, \rho)$, we can choose sufficiently small ρ_n such that

$$\int_{\mathcal{A}(\rho_n,1/n)} \frac{d\rho}{\rho} < \frac{1}{2^n}.$$

Let Δ_0 be the union of all the set $\Delta(\rho_n, 1/n)$, then

SUBHARMONIC FUNCTIONS IN A CIRCLE

$$\int_{\mathcal{A}_0} \frac{d\rho}{\rho} < \sum_{n=1}^{\infty} \int_{\mathcal{A}(\rho_n, 1/n)} \frac{d\rho}{\rho} < \sum_{n=1}^{\infty} \frac{1}{2^n} = 1.$$

On the other hand if ρ lies outside A_0 and $|\xi| = \rho > \rho_n$, Lemma 3 gives

(7)
$$\int_{\Gamma_{\xi}} \log \left| \frac{1 - \bar{a}z}{z - a} \right| \frac{d\sigma(\zeta)}{1 - |a|} \leq \frac{A}{n},$$

so that from (1), (2), (3), and (7) theorem 1 follows.

6. Proof of theorem 2.

Since $\int_{0}^{2\pi} |u(re^{i\theta})| d\theta = O(1)$, by Littlewood's theorem [3], u(z) can be represented as

$$u(z) = v(z) - w(z),$$

where v(z) is harmonic in $z^+ < 1$, such that

(8)
$$\int_{0}^{2\pi} v(re^{i\theta}) \, d\theta = O(1),$$

and

$$w(z) = \int_{|a|<1} \log \left| \frac{1-\bar{a}z}{z-a} \right| d\mu(a),$$

where $d\mu(a)$ is a positive mass distribution in |z| < 1, such that

$$\int_{|a|<1}(1-|a|)d\mu(a)<\infty.$$

By (8), for almost all $e^{i\theta}$,

$$(9) \qquad \qquad \lim_{z \to e^{i\theta}} v(z) = v(e^{i\theta})$$

exists, when $z \to e^{i\theta}$ from the inside of any Stolz domain, whose vertex is at $e^{i\theta}$. Since

$$rrac{d}{dr}L(u,r)=arDelta(r)\equiv\int_{|a|<1}d\mu(a)=O\Bigl(rac{1}{(1-r)^{\lambda}}\Bigr),\quad 0<\lambda<1,$$

w(z) satisfies the condition of theorem 1, whence theorem 2 follows.

References

- M. TSUJI, Littlewood's theorem on subharmonic functions in a unit circle. Comm. Math. Univ. St. Paul 5 (1956), 3-16.
- [2] W. K. HAYMAN, Questions of regularity connected with the Phragmén-Lindelöf principle. Journ. de Math. 35 (1956), 115-126.
- [3] J.E. LITTLEWOOD, On functions subharmonic in a circle (11), Proc. London Math. Soc. 28 (1929), 383-394.

SEIKEI UNIVERSITY, TOKYO.

163