THEOREMS ON SUBHARMONIC FUNCTIONS
IN THE UNIT CIRCLE

By YosHIRO KAwWAKAMI

1. Let [/, be a line through %%, making an angle @ (— z/2 < @ < 7/2) with
the inner normal of 'z. =1 at ¢®®. Then M. Tsuji [1] proved the following
theorem.

THEOREM. Let
_ 1—az
we) =, log|-L 7% |dua),
where

2 =| aw@=0( ;1) o<r<l

Then there exists a set E of measure 2w on z|=1, such that if e® € E,
then for almost all ¢,

lim w(z) =0,

z—elf

when z — e along ly(e'?).

Let #(z) be a subharmonic function in 'z° <1 such that

Szw'%(fe“’) dg = 0(1), 0=7r<1,
and put
I B \‘21: ( ) g
(u’r) —'27;‘)0 ul\rve ) 9,

then L(u,7) is an increasing convex function of log 7, and Tsuji proved the
following theorem,

THEOREM. Let u(z) be a subharmonic function in  z, <1, such that

dr

Then there exists a set E of measure 2w on 'z =1, such that if e'® € E,
then for almost all ¢,

[ luten a0 =00, &L =0(y ) 0<r<L

lim u(2) = u(e'?) F oo

exists, when z — e along ly(e?).
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In this note we shall prove the following theorems using Hayman’s method

[2].
TueoreM 1. Let

. |1 —az
w(z) = Slmlogf———z g 'du(a),

where

20r) = S dula) = 011 ), 0<r<l.

Then therve exists a set E of measure 2w on |z' =1, such that for e® € E,
there correstonds a p-set do,o, of finite logarithmic length, such that

ja' <r

lim w(z) = w(e® — pelto™9) =0,
p—>0
uniformly for |@ < @, as p —0 outside 4dq,4, wheve 0 < ¢, < 7/2.
THEOREM 2. Let u(z) be a subharmonic function in 'z <1, such that

[lueniag=0), -9 Lwn=0(-1s5) o0<r<L

dr 11—~
Then there exists a set E of measure 27 on 1z| =1, such that for e’ € E,

there corresponds a p-set do o, of finite logarithmic length, such that

limu(z) = u(e — pei®) = u(e"),
p—
uniformly for |@| < @, as p —0 outside 4o o,

For the proof we use the following Lemma. We put
do(a) = (1—'a))du(a),

and let 4, be the common part of (z| <1 and z— e <{, then

LemMma 1. (Tsun)., If 2(r) = O(1/(1 —r)), 0 <N <1, then there exists a
set E of measure 2w on  z| =1, such that if e*® € E, then for some positive t,,

v(t) =o(4) = O(**8), where 0<38 <1, tt,.

Proof of this Lemma is contained in the proof of Theorem 3 of Tsuji’s
paper [1].

2. Estimation of w(z).

We assume that z=1 belongs to Eand put 1 —ae=¢, 1—z=§&, z =7,
[1—z' =p,'1—a =¢ We suppose that z lies beween /_,, and /,, and if
we denote the complement of 4;, with respect to .z <1 by 4% and 4;,,, = 4,
— 4, (¢, > t;), then

~

w(z) =§A*10g? 12:3,2 ! ]di(f';] + 0+ Sdzp,%ﬂ‘%

s AtO:?P

=L+ L+ 1,4+ 1, say.
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For arbitrary ¢, we have evidently

(1) 1irr11[1=0.
Since
| 1—az | 11— ah)l—2)
logl z—a [gz lz—a? ’
we have
r=2f-171% 4o (),

Since z lies in the domain bounded by lo, and /_¢y, 1 — z =ip, and if @ € 4,0,
lz—a =1E~C. = § — &, we have, putting v, = [log (£,/p)],

1-—
I éZS — -do
2 = digrp 2 — d|2 (@)

< const. 31 ) . d

< co e

= cons 32}1 2-’p<l§l<21+‘p !Z - a (@)

const, ———'dO' a

+ 952v00<]§|<t0 g dola).

Since in 2/p < |{ £2/'p, [E—~-C = {1 — & =2p —'p ="const 27p,

vo—
COnSt P 02 2 le (2j+lp) + const. p%

w1 g Gana s B+
- - +1)(A+8) p 1+ L
< const. p ng 9037 26 p'+d + const. p o

< const, p?® JE‘IW{T = const. p?,

so that
(2) I, < const, p3,
In I, z—al=&]|— ¢ |=const. p, so that siniéilarly we have
Lzconst| 172 4o
41p 1R — Q]
211 5
- = const. o v(z p) < const, p?,

so that
(3) I, =< const. p3,

3. Estimation of I.

Let 4, 1, be the part of 43, which is outside the circle I't: 'z — a| < kp,
where k= min(1/2, sin|® — ®,!) and @, is a constant such that @, < @, < 7/2,
then I's is contained in the common part of 40,3, and the domain which
lies between I_q,, lp;. Then
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Ia=§, +S =I;+I;/’ say.
\/42‘7’%0 I‘g
For I,
, 11—z
= const.Lép’%p Z—a® do (a)
< const.S , Pzdcr(a)
Y030 P
=< const, fl) v(2p) < const. p3,
Hence
(4) I; < const. p3,

Since in I't, 1 — a =const. 1 —a = const. {, we have

1—az ; do(a)
z—a | t

I < const.j log
Tg

To prove theorem 1 we need further to estimate I;”. For this purpose we
use the following Lemmas, which are similar to Hayman’s Lemmas [2].

DerINITION. Let € be a fixed number, We shall say that a number p < ¢,
is normal (&), if for 0 < h < p/2 we have
dv(t) h

do (a) S
e T < €
gp—nsls’ <P+n t P_n<t<P4n t P

LEMMA 2. The set of all values p < t,, which are not normal (E), has finite
logarithmic length.
1
Proof. We put de(t) = dv (1)/t, then since »(t) = O(£*%), for t = 4,, | do(®
0
< oo, Suppose that the Lemma is false for some positive &, then for any
given constant G > 0, we can find a closed set F of values p not normal (&),
which is contained in the open interval (0,1), and such that

jF—dp”— > G.

For each p in F, there exists an open interval I(p — &, p + k) with 0 <
< p/2, such that
do(t) = —— >

(5) Sp-h<l§{<9+h ) P 4

By the Heine-Borel theorem there exists a finite set I, I, --+, I, of such inter-
vals covering F. We may assume that none of these intervals is entirely
contained in the union of the others. Let I, be (ps, p,) where 1/p, increases
with ». Then if u > », p,. < py since otherwise I, would be contained in
I,.,,. Also p, =< p,, since otherwise I,,, would be contained in the union

Eh 85"’*" dt
P~h t
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of I, and I,.,. Thus each of the set F, of intervals I, I;,---, and F, of
intervals I,, I,,--- are non-overlapping, and since they together cover F, at
least one, F, say, has the logarithmic length at least G/2. From (5) we have

& dt G
Stsmdw<t) z 45;'14tvg 8’

which is a contradiction.

LemmA 3. Let p <t, and p be normal (€), then we have

gf‘s log

wheve A is an absolute constant.

1—dz | dpla) _ ¢4
z—a 1—|al = ’

Proof. Let C, be the ring p/2""* <[ & — | < p/2%. We suppose that | &!
is normal (&), so that o(£) =0. Then putting C, =C, N{z <1},
do (a)

Ié/é,ggc;,log! 1z——fzz l t

Since in C;,
1—az | T+&-CF p+t+pt
tog| [ = g S e P

n+1
< log-4—P§— = log 2"*3,

do(a) dv(t) & P 1
Lara) @ =S . P e
Sc;, ¢ _SP—P12”<t§P+PI2n t T p 2r 2>
hence

I <e3 5y log2ms < €4,

n=1

so that
(6) Iy < EA.

5. Proof of the theorem 1.
Let 4(&) be the set of all p <¢, which are not normal (&), then by
Lemma 2,

Hence if 4(p, &) denotes the part of 4(&) in (0, p), we can choose sufficiently
small p, such that

dp 1
— < .
Sd(@n,lln) P ar

Let 4, be the union of all the set 4(p,, 1/x), then
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4P < dap 51

Sdo P <7§1S4(Pn’l/n) P <n2=1 2” - 1'

On the other hand if p lies outside 4, and | &= p > p,, Lemma 3 gives
2 oo 20 £l 4

so that from (1), (2), (3), and (7) theorem 1 follows.
6. Proof of theorem 2.
27
Since 50 lu(re*®) |dg = O(1), by Littlewood’s theorem [3], «#(z) can be repre-
sented as
u(z) =v(z) —w(z),

where »(z) is harmonic in z' <1, such that
27,

(8) |7 vire) a0 = 0(v),

and

wta =, e 122 Lant

where du(a) is a positive mass distribution in [z <1, such that
— gl
|, .0 —la)du@ <.

By (8), for almost all e,
(9) lim v(z) = v(e*®)

2eld

exists, when z — ¢'® from the inside of any Stolz domain, whose vertex is
at ¢*%. Since

d _ 1
r & Liwr) = 00) = Smd,b(a) - O(W), 0<n <1,

w(z) satisfies the condition of theorem 1, whence theorem 2 follows,
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