WEAK COMPACTNESS IN AN OPERATOR SPACE

By Hisaharu Umegaki

1. Introduction. Many important theorems in measure theory have been extended to W^* -algebras by many authors, especially, Dixmier [2], Dye [3] and Segal [8]. Considered as non-commutative extensions, these extensions are interesting themselves and provide powerful tools in the further investigations of W^* -algebra. In the previous papers ([11] and [12]), we have discussed and extended the concepts of conditional expectations, which have been introduced by Dixmier in the operator theoretical term [2], and martingales in the probability theory into finite and semi-finite W^* -algebras. The concept of the former has been also discussed in a general situation by Nakamura-Turumaru [6].

The purpose of the present paper is to extend certain compactness theorems in L' on measure space to L' on W^* -algebra in the sense of [8] and [2]. Firstly, as a preliminary we shall prove the extension of Vitali-Hahn-Saks's Theorem for any W*-algebra A with a regular gage μ (cf. § 3) (that is, a regular gage space (A, μ) in the sense of [8]), which implies the equi-absolute continuities of weakly convergent sequence in $L'(A, \mu)$. Secondly, we shall extend the Lebesgue's compactness theorem to W^* -algebra with respect to a finite gage and give a sufficient condition for a subset in $(A_*)^+$ to be weakly compact (A_* being a Banach space in the notation of [2], cf. § 4 as below). The former characterizes the weakly conditional compactness of a subset in L'(A), and the latter is possible to extend a Kakutani's compactness theorem in L'(with respect to measure space) to the present L'(A) with respect to arbitrary gage (cf. \S 4). In the last part of \S 4, we shall also characterize the weakly sequential compactness of subset in $L'(A, \mu)^+$ by a uniform continuity of the set in the form of Bartle-Dunford-Schwartz [1], and further prove weakly sequential completeness of $L'(A, \mu)$ for A of finite type and any gage μ .

2. Preliminary and notations. Let " \mathfrak{P} " be the set of all projections in the W^* -algebra A acting on a Hilbert space H. For any $p \in \mathfrak{P}$ there corresponds uniquely a closed linear subspace $\mathfrak{M}_p \subset H$ such that the projection from H onto \mathfrak{M}_p coincides with p. For any $p, q \in \mathfrak{P}$, the meet $p \wedge q$ and the join $p \vee q$ are uniquely defined as the projections onto $\mathfrak{M}_p \cap \mathfrak{M}_q$ and $\mathfrak{M}_p \oplus \mathfrak{M}_q$ respectively. Whence \mathfrak{P} is a complete lattice with respect to the \wedge and \vee .

Let μ be a gage of A in the sense of [8], i.e. non-negative valued, unitary

Received November 1, 1956.

HISAHARU UMEGAKI

invariant and completely additive function on \mathfrak{P} satisfying that every $p \in \mathfrak{P}$ is l.u.b. of μ -finite projections $q \in \mathfrak{P}$ within $q \leq p$. Denote by P_{μ} (or merely P) the set of all μ -finite projections in \mathfrak{P} . A gage μ of A is called to be regular if it is faithful (cf. [8]), which coincides with the contraction onto \mathfrak{P} of the "normale, fidèle, éssentielle et maximale" trace in the sense of [2]. Let $L'(A, \mu)$ and $L^2(A, \mu)$ (or merely L'(A) and $L^2(A)$) be the space of all integrable or square integrable operators with respect to a fixed gage μ with the norms $||x||_1$ and $||x||_2$ respectively. The gage μ is uniquely extended to a positive linear functional on L'(A), which is also denoted by $\mu(x)$ $(x \in L'(A))$.

For any W*-subalgebra B_1 of A, let $I_0 = 1.$ u. b. $\{p; p \in P \cap B_1\}$ which belongs to the center of B_1 and $I_0B_1(=B, \text{ say})$ is considered as a W*-algebra on the Hilbert space I_0H . The contracted function of μ onto $\mathfrak{P} \cap B$ (denote it by the same notation μ) is also a gage of B and $L'(B, \mu)$ is a subspace of $L'(A, \mu)$, which is uniquely determined by (B_1, μ) . We denote it by $L'(B_1, \mu)$. If μ is regular on A, then it is also regular on B.

Denote the set of all non-negative operators in L'(A) by $L'(A)^+$. Any $x \in L'(A)$ is uniquely expressed by $x = x^{(1)} - x^{(2)} + ix^{(3)} - ix^{(4)}$ with $x^{(j)} \in L'(A)^+$. Put $x' = x^{(1)} - x^{(2)}$ and $x'' = x^{(3)} - x^{(4)}$, which are real and imaginary parts of x respectively.

For any $x \in L'(A)$, W(x) denotes the W*-subalgebra generated by $\{e_{\lambda}(x'), e_{\lambda}(x'')\}_{\lambda}$ where $x' = \int \lambda de_{\lambda}(x')$ and $x'' = \int \lambda de_{\lambda}(x'')$. Further for any subset S in L'(A), "W(S)" denotes the W*-subalgebra generated by $\{W(x); x \in S\}$.

If E is a Banach space, E^{\wedge} denotes the conjugate space of E. The weak topology in E as point is merely called by weak topology or $\sigma(E, E^{\wedge})$ -topology, and the weak topology in E^{\wedge} as functional is called weak* topology or $\sigma(E^{\wedge}, E)$ -topology. The conjugate space of L'(A) is denoted by $L^{\infty}(A)$.

3. Equi-absolute continuity of a convergent sequence of functionals. Firstly, we give a fundamental definition:

DEFINITION 1. Let A be a W*-algebra with a gage μ . A set S of linear functionals on A is called to be *equi* μ -absolutely continuous, if for any real $\varepsilon > 0$ there exists a real $\delta > 0$ such that

(1)
$$\mu(p) < \delta \ (p \in \mathfrak{P}) \text{ implies } |f(p)| < \delta \text{ for all } f \in S.$$

Similarly if S is a subset of $L'(A, \mu)$ and $\{f_x; x \in S\}$ (where $f_x(y) = \mu(xy)$ for all $y \in A$) satisfies (1), then S is called to be *equi* μ -absolutely continuous.

For any given semi-finite W^* -algebra A acting on a Hilbert space H and a regular gage μ of A (it is known by Dixmier that such A has always regular gage), Vitali-Hahn-Saks's Theorem can be extended to this (A, μ) :

THEOREM 1. Let $\{f_n\}$ be a sequence of linear functionals on A which are strongly continuous on the unit sphere of A. If for every projection p in A $\lim_{n\to\infty} f_n(p)$ exists and is finite, then the set $\{f_n\}$ is equi μ -absolutely continuous.

146

LEMMA 1.1. For any pair $p, q \in P$, putting $\rho(p,q) = \sqrt{\mu(|p-q|^2)}$, ρ satisfies the metric conditions and (P, ρ) is a complete metric space.

Proof. It follows from [2] or [8] that ρ satisfies the metric conditions. Now let us prove the completeness of (P, ρ) . Taking $\{p_n\} \subset P$ such that $\rho(p_m, p_n) \to 0$ (as $m, n \to \infty$), by the completeness of $L^2(A, \mu)$, there exists an $x \in L^2(A, \mu)$ such that $\mu(|x - p_n|^2) \to 0$ (as $n \to \infty$). Since $0 \leq p_n \leq 1$, p_n converges strongly to x on the Hilbert space H and $0 \leq x \leq 1$ on H. Hence for any $\xi, \eta \in H$

$$(x\xi,\eta) = \lim_{n \to \infty} (p_n\xi,\eta) = \lim_{n \to \infty} (p_n\xi,p_n\eta) = (x\xi,x\eta) = (x^2\xi,\eta).$$

Since $x^* = x$ in $L^2(A, \mu)$, we get $\mu(x) < \infty$ and $x \in P$.

LEMMA 1.2. For any $\delta > 0$ and $p_0 \in P$, putting $U_{\delta}(p_0) = \{p \in P; \rho(p_0, p) < \sqrt{\delta}\}$ and $V_{\delta}(p_0) = \{p \in P; \mu(p) < \mu(p_0) + \delta, \mu(pp_0) > \mu(p_0) - \delta\}$, then $V_{\delta}(p_0) \subset U_{3\delta}(p_0)$.

Proof. If $p \in V_{\delta}(p_0)$, then

$$\begin{split} \rho \, (\not p_0, \not p)^2 &= \mu (|\not p_0 - \not p|^2) = \mu ((\not p_0 - \not p)^2) = \mu (\not p_0) + \mu (\not p) - 2\mu (\not p \not p_0) \\ &< 2\mu (\not p_0) + \delta - 2\mu (\not p_0) + 2\delta = 3\delta. \end{split}$$

Therefore $p \in U_{3\delta}(p_0)$.

Proof of Theorem 1. Since each f_n is a continuous function on (P, ρ) , for any fixed integer $n_0 > 0$ and any fixed $\varepsilon > 0$ putting

$$E_{n_0}=\{p\in P; \ \sup_{m,n\geq n_0}|f_m(p)-f_n(p)|\leq {\mathcal E}/4\},$$

each E_{n_0} is closed in (P, ρ) and $\bigcup_{n_0=1}^{\infty} E_{n_0} = P$ by the assumption of $\{f_n\}$. By Lemma 1.1 and Baire's category theorem, for some $n_0 E_{n_0}$ has a non-empty interior in (P, ρ) . Therefore there exist $p \ (\neq 0) \in P$ and $\delta > 0$ such that $U_{\mathfrak{s}\mathfrak{b}}(p)$ is non-empty and contained in E_{n_0} . Let q be any fixed projection in P with $\mu(q) < \delta_1 = \min(\delta, \mu(p))$. Putting $r = p \lor q$, we have

$$\mu(\mathbf{r} - \mathbf{p}) \leq \mu(\mathbf{p}) + \mu(q) - \mu(\mathbf{p}) = \mu(q) < \delta$$

and $\mu(rp) = \mu(p) > \mu(p) - \delta$, i. e. $r \in V_{\delta}(p)$. Furthermore, since $\mu(q) < \mu(p)$, we get r > q, $\mu(r-q) \le \mu(p) < \mu(p) + \delta$ and

$$\mu((r-q)p) = \mu(p) - \mu(qp) > \mu(p) - \delta,$$

i.e. $r-q \in V_{\delta}(p)$. Hence we deduce that $r, r-q \in E_{n_0}$. Since q = r - (r - q),

$$egin{aligned} & \|f_m(q)-f_n(q)\| \leq \|f_m(r)-f_n(r)\| + \|f_m(r-q)-f_n(r-q)\| \ & < \mathcal{E}/2 & ext{for all } m,n \geq n_0. \end{aligned}$$

For $n = 1, 2, ..., n_0$, we can find a $\delta_2 > 0$ $(\delta_2 < \delta_1)$ such that (2) $f_n(q) \mid < \mathcal{E}/2$ for any $q \in P$ with $\mu(q) < \delta_2$

HISAHARU UMEGAKI

and $n = 1, 2, \dots, n_0$. Consequently we obtain that $\mu(q) < \delta_2$ implies

$$|f_n(q)| \leq |f_n(q)| - f_{n_0}(q)| + |f_{n_0}(q)| < \varepsilon \quad \text{for all} \quad n \geq n_0.$$

(2) and (3) imply the equi μ -absolute continuity of $\{f_n\}$.

REMARK 1. The above proof has done under the Lemmas 1.1 and 1.2 by a similar proof of classical Vitali-Hahn-Saks's Theorem¹⁾, in which the metric ρ is defined (denote it ρ_1 as the following) by the L'-norm, i.e. $\rho_1(p,q) = \mu(p - q)$ for $p,q \in P$. If the gage μ is finite, then the metrics ρ and ρ_1 are equivalent, and the neighborhood topologies in P defined by $\{U_{\delta}(p)\}$ and $\{V_{\delta}(p)\}$ (cf. Lemma 1.2) are also equivalent to the metric topology.

4. Weak compactness of subset in $L'(A, \mu)$. A subset K of a Banach space E is called to be weakly (or equally $\sigma(E, E^{\Lambda})$ -)conditionally compact, if the weak $(\sigma(E, E^{\Lambda}))$ -)closure of K is weakly $(\sigma(E, E^{\Lambda}))$ -)compact subset of E^{2} . Firstly we shall extend Lebesgue's compactness theorem to a W^* -algebra A.

THEOREM 2. Let μ be a gage of A with $\mu(I) < \infty$. Then, for a subset K of $L'(A, \mu)$ to be weakly conditionally compact it is necessary and sufficient that K is equi μ -absolutely continuous and K', K'' are bounded in the L'-norm where $K' = \{x'; x \in K\}$ and $K'' = \{x''; x \in K\}$.

LEMMA 2.1. For any equi μ -absolutely continuous subset K of $L'(A, \mu), K_j$ $(j = 1, \dots, 4)$ are also equi μ -absolutely continuous, where $K_j = \{x^{(j)}; x \in K\}$.

Proof.³⁾ Since for every projection p

$$|\mu(xp)|^2 = |\mu(x'p)|^2 + |\mu(x''p)|^2,$$

K' and K" are equi μ -absolutely continuous. For fixed x', there exists $q \in \mathfrak{P}$ such that $x^{(1)} = qx' = x'q$ and $x^{(2)} = (1-q)x' = x'(1-q)$. For any $\mathfrak{E} > 0$ and K', take $\delta > 0$ as in (1). Since $\mu(p) < \delta$ ($p \in \mathfrak{P}$) implies $\mu(qpq) < \delta$ and $\mu((1-q)p(1-q)) < \delta$,

$$0 \leq \mu(px^{(1)}) = \mu(pqx') = \mu(qpqx') < \varepsilon$$

and similarly $0 \leq \mu(px^{(2)}) < \varepsilon$. Hence K_1 and K_2 are equi μ -absolutely continuous, and also similarly for K_3 and K_4 .

Proof of Theorem 2. (Sufficiency). Let $\overline{K}_i (j = 1, \dots, 4)$ be $\sigma(L^{\infty}, L^{\infty \wedge})$ -closures of K_j respectively which are $\sigma(L^{\infty}, L^{\infty \wedge})$ -compact in $L^{\infty \wedge}$. For any $p \in \mathfrak{P}$ with $\mu(p) < \delta$ and for any fixed $f \in \overline{K}_1$ there exists $x \in K$ such that

$$|f(p) - \mu(x^{(1)}p)| < \varepsilon.$$

¹⁾ See Saks [7] for finite measure space and also see e.g. Sunouchi [10] for σ -finite measure space.

²⁾ Further, a subset K of E is called to be *weakly* (or equally $\sigma(E, E^{\wedge})$ -)sequentially conditionally compact, if any countable subset C of K contains always a sequence $\{x_n\}$ which converges weakly to some $x \in E$.

³⁾ This proof also holds for any gage without finiteness $\mu(I) < \infty$.

Since $0 \leq \mu(x^{(1)}p) < \varepsilon$ for every such p,

$$0 \leq f(p) \leq |f(p) - \mu(x^{(1)}p)| + \mu(x^{(1)}p) < 2\mathcal{E},$$

i.e. $0 \leq f(p) < 2\varepsilon$ for every $p \in \mathfrak{P}$ with $\mu(p) < \delta$. Therefore by Radon-Nikodym's Theorem of Dye [3] there exists $z \in L'(A)$ such that $f(y) = \mu(zy)$ for every $y \in A$. This means that K_1 is weakly conditionally compact in $L'(A, \mu)$. Similarly we get $K_j(j = 2, 3, 4)$. Consequently K is weakly conditionally compact in $L'(A, \mu)$.

(Necessity). For this purpose we can assume μ to be regular without loss of generality, and hence A is countably decomposable and of finite type, because $\mu(I) < \infty$. Since K' and K'' are weakly sequentially conditionally compact (cf. [9]), they are bounded in the L'-norm. Assuming the contrary of the equi μ -absolute continuity of K, there exist $\{p_n\} \subset \mathfrak{P}$ and a weakly convergent sequence $\{x_n\} \subset K$ such that

(4)
$$\mu(p_n) < \frac{1}{n} \text{ and } |\mu(x_np_n)| > \varepsilon$$

for some $\varepsilon > 0$ and for all $n = 1, 2, \dots$. Putting $f_n(y) = \mu(x_n y)$ for $y \in A$, $\lim_{n \to \infty} f_n(y)$ exists for every $y \in A$ which contradicts (4) by Theorem 1.

In a general situation, we can give a sufficient condition for weak compactness: Let A be a W*-algebra and A_* be the Banach space of all linear functionals on A which are strongly continuous on the unit sphere of A. Then $(A_*)^{\wedge} = A$ (cf. [2]). Denote the set of all non-negative functionals in A_* by $(A_*)^+$, then

COROLLARY 2.1. If a subset K of $(A_*)^+$ is bounded in the norm of A_* and satisfies

(5) for any decreasing directed set $\{p_a\}$ of projections in A with $p_a \downarrow 0$, $f(p_a)$ converges to 0 uniformly for every $f \in K$,

then K is $\sigma(A_*, A)$ -conditionally compact.

Proof. Since any completely additive positive linear functional on A belongs to A_* by Dixmier (cf. Théorème 1 and footnote 6 of [2]), the proof will be obtained by the method almost similar with the proof of suficiency of Theorem 2, that is, let \overline{K} being $\sigma(A, A^{\wedge})$ -closure of K, then every $f \in \overline{K}$ is non-negative linear functional on A, and by (5) f is completely additive. Hence by the theorem of Dixmier f belongs to $(A_*)^+$, and K is $\sigma(A_*, A)$ -conditionally compact.

By Corollary 2.1, Kakutani's compactness Theorem (cf. Theorem 10 of [5]) will be extended to the following:

COROLLARY 2.2. Let A be a W*-algebra with gage μ . Let $x_1, x_2 \in L'(A, \mu)^+$ with $x_1 < x_2$. Then $\{x; x_1 \leq x \leq x_2\}$ is weakly conditionally compact in $L'(A, \mu)^+$.

Uuder the same notation of the above Corollary 2.2, we prove the following:

HISAHARU UMEGAKI

THEOREM 3. For a subset $K \subset L'(A, \mu)^+$ to be weakly sequentially conditionally compact, it is necessary and sufficient that K is bounded in L'-norm and satisfies

(5') for any sequence of projections $\{p_n\}$ in A with $p_n \downarrow 0$, $\mu(xp_n)$ converges to 0 uniformly for every $x \in K$.

Proof of sufficiency. In this case we can also assume μ to be regular without loss of generality. Let $\{x_n\} \subset K$. Putting $B_1 = W(\{x_n\})$ and B = weak closure of $B_1 \cap L'(A, \mu)$, B is a countably decomposable W^* -algebra on a closed linear subspace of $L^2(A, \mu)$. Further $\{x_n\}$ is contained in $L'(B_1, \mu)$ and satisfies (5') on (B, μ) . Therefore by Corollary 2.1, $\{x_n\}$ is weakly conditionally compact in $L'(B_1, \mu)$, and there exists a subsequence $\{x_{nk}\} \subset \{x_n\}$ which converges weakly to an $x \in L'(B_1, \mu)$, i.e. $\mu(xy) = \lim_k \mu(x_{nk}y)$ for all $y \in B$. Let y^e be the conditional expectation of $y \in A$ relative to $B_1, 4^{\circ}$ then $\mu(zy^e) = \mu(zy)$ for all $z \in B_1 \cap L'(A, \mu)$ (cf. [2] or [12]). Since $L'(B_1, \mu)$ coincides with the $L'(\mu)$ -closure of $B_1 \cap L'(A, \mu)$, $\mu(zy^e) = \mu(zy)$ for all $z \in L'(B_1, \mu)$.

(6)
$$\mu(xy) = \mu(xy^e) = \lim_{k \to \infty} \mu(x_{n_k}y^e) = \lim_{k \to \infty} \mu(x_{n_k}y)$$

that is, x_{n_k} converges weakly to x in $L'(A, \mu)$ and K is weakly sequentially conditionally compact.

Proof of necessity. The boundedness of K in the L'-norm is obvious. Assuming the contrary of (5'), there exist $\varepsilon_1 > 0$, $\{p_n\} \subset \mathfrak{P}$ and weakly convergent sequence $\{x_n\} \subset K$ such that

(7)
$$p_n \downarrow 0 \text{ and } \mu(x_n p_n) > \mathcal{E}_1 \text{ for all } n = 1, 2, \cdots$$

Putting $f_n(y) = \mu(x_n y)$ (n = 1, 2, ...) and $\nu(y) = \sum_{n=1}^{\infty} f_n(y)/c \cdot 2^n$ $(c = \sup \{|x_{-1}; x \in K\})$, f_n are absolutely continuous with respect to ν . Let C be W^* -subalgebra generated by $\{p_n\}$ which is commutative. Hence by Vitali-Hahn-Saks's Theorem on commutative case of Theorem 1 or on usual measure space, for any $\varepsilon > 0$ there exists $\delta > 0$ such that $|f_n(p)| < \varepsilon$ for every $p \in \mathfrak{P} \cap C$ with $\nu(p) < \delta$. Since $\nu(p_n) \to 0$ (as $n \to \infty$), $\mu(x_n p_n) = f_n(p_n) \to 0$, (7) yields a contradiction.

REMARK 2. This theorem has been proved by Bartle-Dunford-Schwartz (cf. Theorem 1 of [1]) for subset of space of measures on abstract set and the proof of necessity is done by a method similar with that. If A is commutative, then we get a similar fact with [1], i.e. taking a gage μ of A, for subset K of $L'(A, \mu)$ without the restriction that $K \subset L'(A, \mu)^+$, Theorem 3 will be obtained by our proof, because any countably additive linear functional on the W*-algebra B (cf. proof of Theorem 3) is strongly continuous on its unit sphere. We have also the same fact for subset K in A_* , because A_* is isometrically isomorphic to $L'(A, \mu)$ with respect to a regular gage μ on A.

⁴⁾ The notion of the conditional expectation refers to [12].

REMARK 3. In Theorem 3, applying the Eberlein's Theorem (cf. [4]), if K is weakly closed, then the condition is necessary and sufficient for K to be weakly compact.

Applying Theorem 2 and the proof of Theorem 3, we have

COROLLARY 3.1. Let A be a finite W*-algebra and let μ be any fixed gage. Then $L'(A, \mu)$ is weakly sequentially complete.

Proof. Again we can assume μ to be regular. Let $\{x_n\} \subset L'(A, \mu)$ be a sequence with finite $\lim \mu(x_n y)$ for all $y \in A$. For this $\{x_n\}$, we take the W^* -algebras B_1 and B as in the proof of Theorem 3. Then B has a finite regular gage τ . Putting $f_n(y) = \mu(x_n y)$ for $y \in A$, f_n are strongly continuous on the unit sphere of B and there exists $z_n \in L'(B, \tau)$ such that $f_n(y) = \tau(z_n y)$ for all $y \in B$ and $n = 1, 2, \cdots$. Since $\lim f_n(y) (= f(y)$ say) exists and is finite for every $y \in A$, $\{z_n'\}$ and $\{z_n''\}$ are bounded in $L'(\tau)$ -norm and by Theorem 1 $\{z_n\}$ is equit τ -absolutely continuous, and by Theorem 2 $\{z_n\}$ is weakly conditionally compact in $L'(B, \tau)$. Consequently f(y) is strongly continuons on the unit sphere of B, and there exists $x \in L'(B_1, \mu)$ such that $f(y) = \mu(xy)$ for all $y \in B$. Let y^e be the conditional expectation of $y \in A$ relative to B_1 , then by the same computation of the proof of Theorem 3, we get the equation (6) for $\{x_n\}$ in the place of $\{x_{n_k}\}$.

References

- R. G. BARTLE, N. DUNFORD AND J. SCHWARTZ, Weak compactness and vector measures. Canadian Journ. Math. 8 (1955), 289-305.
- [2] J. DIXMIER, Formes linéaires sur un anneau d'opérateurs. Bull. Soc. Math. France 81 (1953), 6—39.
- [3] H.A. Dye, The Radon-Nikodym theorem for finite rings of operator. Trans. Amer. Math. Soc. 72 (1952), 234-280.
- [4] W.F. EBERLEIN, Weak compactness in Banach space. Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 51-53.
- [5] S. KAKUTANI, Concrete representation of abstract (L)-spaces and the mean ergodic theorem. Ann. of Math. 42 (1941), 523-537.
- [6] M. NAKAMURA and T. TURUMARU, Expectations in an operator algebra. Tôhoku Math. Journ. 6 (1954), 182-188.
- [7] S. SAKS, Addition to the note on some functionals. Trans. Amer. Math. Soc. 35 (1931), 965-970.
- [8] I.E. SEGAL, A non-commutative extension of abstract integration. Ann. of Math. 57 (1953), 401-457.
- [9] V. SUMLIAN, Über lineare topologische Räume. Recueil Math. 49 (1940).
- [10] G. SUNOUCHI, On the sequence of additive set functions. Journ. Math. Soc. Japan 3 (1951), 290-295.
- [11] H. UMEGAKI, Conditional expectation in an operator algebra. Tôhoku Math. Journ. 6 (1954), 177—181.
- [12] H. UMEGAKI, Conditional expectation in an operator algebra Π. Tôhoku Math. Journ. 8 (1956), 86—100.

DEPARTMENT OF MATHEMATICS, Tokyo Insititute of Technology.