ON A NON-NEGATIVE SUBHARMONIC FUNCTION IN A HALF-PLANE

By Masatsugu Tsuji

1. We shall prove

Theorem 1. Let $u(z)=u(x+i y) \equiv 0$ be a non-negative subharmonic function in a half-plane $x>0$, which vanishes continuously on the imaginary axis.

Let

$$
m(r)=m(r, u)=\int_{-\pi / 2}^{\pi / 2} u\left(r e^{i \theta}\right) \cos \theta d \theta, \quad 0<r<\infty,
$$

then
(i) $m(r) / r$ is a continuous non-decreasing function of r and is a convex function of $1 / r^{2}$. Hence

$$
\lim _{r \rightarrow \infty} \frac{m(r)}{r}=c, \quad 0<c \leqq \infty,
$$

exists.
If $0<c<\infty$, then

$$
\begin{equation*}
u(z)=k x-\int_{\Re(a)>0} \log \left|\frac{z+\bar{a}}{z-a}\right| d \mu(a), \quad k=\frac{2 c}{\pi} \tag{ii}
\end{equation*}
$$

where μ is a positive mass distribution in $x>0$, such that

$$
\int_{\Re(a)>0} \frac{\Re(a)}{|a|^{2}} d \mu(a)<\infty .
$$

(iii) Except a set of θ of logarithmic capacity zero,

$$
\lim _{r \rightarrow \infty} \frac{u\left(r e^{i \theta}\right)}{r}=k \cos \theta
$$

exists.
That $m(r) / r$ is a non-decreasing function of r is proved by Ahlfors [1] and the proof is simplified by Dinghas [2]. (iii) is proved by Ahlfors and Heins [3].

As a special case, we have
Theorem 2. Let $f(z)$ be regular in $x>0$ and continuous and $|f(z)| \leqq 1$ on the imaginary axis. Suppose that $\log ^{+}|f(z)| \neq 0$ and let

Received October 20, 1956.

$$
m(r)=\int_{-\pi / 2}^{\pi / 2} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| \cos \theta d \theta, \quad 0<r<\infty
$$

then $m(r) / r$ is a continuous non-decreasing function of r and is a convex function of $1 / r^{2}$.
2. First we shall prove some lemmas.

Lemma 1. Let $u(z)$ be subharmonic in a domain D_{0} and D be a subdomain of D_{0}, such that $\bar{D} \subset D_{0}$, whose boundary Γ consists of a finite number of analytic Jordan curves and $G(z, a)$ be the Green's function of D. Then

$$
u(z)=\frac{1}{2 \pi} \int_{\Gamma} u(\zeta) \frac{\partial G(\zeta, z)}{\partial \nu}|d \zeta|-\int_{D} G(z, a) d \mu(a), \quad z \in D
$$

where ν is the inner normal of Γ at ζ and μ is a positive mass distribution in D_{0}.

Proof. By F. Riesz' theorem, there exists a positive mass distribution μ in D_{0}, such that for any subdomain D_{1} of D_{0}, such that $\bar{D}_{1} \subset D_{0}$,

$$
u(z)=v_{1}(z)-\int_{D_{1}} G_{1}(z, a) d \mu(a), \quad z \in D_{1}
$$

where $v_{1}(z)$ is harmonic in D_{1} and $G_{1}(z, a)$ is the Green's function of D_{1}. If we choose D_{1}, such that $\bar{D} \subset D_{1} \subset D_{0}$, then if $z \in D$,

$$
\begin{aligned}
\frac{1}{2 \pi} & \int_{\Gamma} u(\zeta) \frac{\partial G(\zeta, z)}{\partial \nu}|d \zeta| \\
& =\frac{1}{2 \pi} \int_{\Gamma} v_{1}(\zeta) \frac{\partial G(\zeta, z)}{\partial \nu}|d \zeta|-\frac{1}{2 \pi} \int_{D_{1}} d \mu(a) \int_{\Gamma} G_{1}(\zeta, a) \frac{\partial G(\zeta, z)}{\partial \nu}|d \zeta| \\
& =v_{1}(z)-\frac{1}{2 \pi} \int_{D_{1}} d \mu(a) \int_{\Gamma} G_{1}(\zeta, a) \frac{\partial G(\zeta, z)}{\partial \nu}|d \zeta| \\
& =u(z)+\int_{D_{1}} G_{1}(z, a) d \mu(a)-\frac{1}{2 \pi} \int_{D_{1}} d \mu(a) \int_{\Gamma} G_{1}(\zeta, a) \frac{\partial G(\zeta, z)}{\partial \nu}|d \zeta| .
\end{aligned}
$$

If $a \in D_{1}-D$, then since $G_{1}(z, a)$ is harmonic in D,

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{\Gamma} G_{1}(\zeta, a) \frac{\partial G(\zeta, z)}{\partial \nu}|d \zeta|=G_{1}(z, a), \quad a \in D_{1}-D . \tag{2}
\end{equation*}
$$

If $a \in D$, let $\Gamma(a):|\zeta-a|=r$ be a circle about a and $\Gamma(z):|\zeta-z|=r$ be that about z, such that $\Gamma(a)$ and $\Gamma(z)$ are contained in D. By the Green's formula,

$$
\begin{aligned}
& \int_{\Gamma}\left(G_{1}(\zeta, a) \frac{\partial G(\zeta, z)}{\partial \nu}-G(\zeta, z) \frac{\partial G_{1}(\zeta, a)}{\partial \nu}\right)|d \zeta| \\
& \quad+\int_{\Gamma(z)}\left(G_{1}(\zeta, a) \frac{\partial G(\zeta, z)}{\partial \nu}-G(\zeta, z) \frac{\partial G_{1}(\zeta, a)}{\partial \nu}\right)|d \zeta| \\
& \quad+\int_{\Gamma(a)}\left(G_{1}(\zeta, a) \frac{\partial G(\zeta, z)}{\partial \nu}-G(\zeta, z) \frac{\partial G_{1}(\zeta, a)}{\partial \nu}\right)|d \zeta|=0 .
\end{aligned}
$$

If we make $r \rightarrow 0$, then since $G(\zeta, z)=0$ on Γ, we have

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{\Gamma} G_{1}(\zeta, a) \frac{\partial G(\zeta, z)}{\partial \nu}|d \zeta|=G_{1}(z, a)-G(z, a), \quad a \in D \tag{3}
\end{equation*}
$$

Hence

$$
\begin{aligned}
& \int_{D_{1}} G_{1}(z, a) d \mu(a)-\frac{1}{2 \pi} \int_{D_{1}} d \mu(a) \int_{\Gamma} G_{1}(\zeta, a) \frac{\partial G(\zeta, z)}{\partial \nu}|d \zeta| \\
& =\int_{D_{1}} G_{1}(z, a) d \mu(a)-\int_{D_{1}-D} G_{1}(z, a) d \mu(a)-\int_{D} G_{1}(z, a) d \mu(a)+\int_{D} G(z, a) d \mu(a) \\
& =\int_{D} G(z, a) d \mu(a)
\end{aligned}
$$

so that by (1),

$$
u(z)=\frac{1}{2 \pi} \int_{\Gamma} u(\zeta) \frac{\partial G(\zeta, z)}{\partial \nu}|d \zeta|-\int_{D} G(z, a) d \mu(a), \quad z \in D
$$

Lemma 2. Let $\Delta_{\rho}:|z|<\rho, \mathfrak{R}(z)>0$ be a half-disc and $C_{\rho}:|z|=\rho, \mathfrak{R}(z)$ $\geqq 0$ be a semi-circle and

$$
G_{\rho}(z, a)=\log \left|\frac{z+\bar{a}}{z-a} \cdot \frac{\rho^{2}-z \bar{a}}{\rho^{2}+z a}\right|
$$

be the Green's function of Δ_{ρ}. Then if $r<\rho$,
(i) $\rho \frac{\partial G_{\rho}\left(\rho e^{i \varphi}, r e^{i \theta}\right)}{\partial \nu}=4\left(\lambda \cos \varphi \cos \theta+\lambda^{2} \sin 2 \varphi \sin 2 \theta\right.$

$$
\left.+\lambda^{3} \cos 3 \varphi \cos 3 \theta+\cdots\right), \quad \lambda=r / \rho<1,
$$

where ν is the inner normal of C_{ρ} at $z=\rho e^{i \varphi}$.
(ii)

$$
\int_{-\pi / 2}^{\pi / 2} \frac{\partial G_{\rho}\left(\rho e^{i \varphi}, r e^{i \theta}\right)}{\partial \nu} \rho \cos \theta d \theta=\frac{2 \pi r}{\rho} \cos \varphi .
$$

Proof. If $z=\rho e^{i \varphi}, \quad a=r e^{i \theta}$, then

$$
\begin{align*}
\rho & \frac{\partial G(z, a)}{\partial \nu}=-\Re\left(z \frac{d}{d z} \log \left(\frac{z+\bar{a}}{z-a} \cdot \frac{\rho^{2}-z \bar{a}}{\rho^{2}+z a}\right)\right) \\
& =\Re\left(\frac{-z}{z+\bar{a}}+\frac{z}{z-a}+\frac{z \bar{a}}{\rho^{2}-z \bar{a}}+\frac{z a}{\rho^{2}+z a}\right) \\
& =\Re\left(\frac{-z}{z+\bar{a}}+\frac{z}{z-a}+\frac{\rho^{2}}{\rho^{2}-z \bar{a}}-\frac{\rho^{2}}{\rho^{2}+z a}\right) \tag{1}\\
& =2 \Re\left(\frac{1}{1-\lambda e^{i(\theta-\varphi)}}-\frac{1}{1+\lambda e^{i(\theta+\varphi)}}\right) \\
& =4\left(\lambda \cos \varphi \cos \theta+\lambda^{2} \sin 2 \varphi \sin 2 \theta+\lambda^{3} \cos 3 \varphi \cos 3 \theta+\cdots\right)
\end{align*}
$$

Since

$$
\begin{aligned}
& \int_{-\pi / 2}^{\pi / 2} \cos ^{2} \theta d \theta=\frac{\pi}{2}, \quad \int_{-\pi / 2}^{\pi / 2} \sin 2 n \theta \cos \theta d \theta=0, \\
& \int_{-\pi / 2}^{\pi / 2} \cos (2 n+1) \theta \cos \theta d \theta=0, \quad(n=1,2, \cdots),
\end{aligned}
$$

$$
\begin{equation*}
\int_{-\pi / 2}^{\pi / 2} \frac{\partial G_{\rho}\left(\rho e^{i \varphi}, r e^{i \theta}\right)}{\partial \nu} \rho \cos \theta d \theta=\frac{2 \pi r}{\rho} \cos \varphi \tag{2}
\end{equation*}
$$

Lemma 3 [3]. Let

$$
G(z, a)=\log \left|\frac{z+\bar{a}}{z-a}\right|, \quad z=r e^{i \theta}, \quad a=\tau e^{i \varphi}
$$

be the Green's function of $x>0$, then

$$
\begin{equation*}
G(z, a) \leqq G\left(e^{i \theta}, e^{i \varphi}\right), \tag{i}
\end{equation*}
$$

(ii) If $|\theta| \leqq \theta_{0}<\pi / 2$, then

$$
G(z, a) \leqq K\left(\theta_{0}\right) \frac{r \Re(a)}{|a|^{2}}\left(G\left(e^{i \theta}, e^{i \varphi}\right)+1\right), \quad K\left(\theta_{0}\right)=\frac{8}{\cos ^{2} \theta_{0}}
$$

Proof. Since (i) can be proved easily, we shall prove (ii). Let $\Re(z)=x$, $\Re(a)=\xi$, then $x \geqq r \cos \theta_{0}$.

$$
\begin{equation*}
G(z, a)=\frac{1}{2} \log \left(1+\frac{4 x \xi}{|z-a|^{2}}\right) \leqq \frac{2 x \xi}{|z-a|^{2}} \leqq \frac{2 r \xi}{|z-\bar{a}|^{2}} \tag{1}
\end{equation*}
$$

If $|z-a| \geqq \frac{|a| \cos \theta_{0}}{2}$, then

$$
\begin{equation*}
G(z, a) \leqq \frac{8 r \Re(a)}{\cos ^{2} \theta_{0}|a|^{2}} \leqq \frac{8 r \Re(a)}{\cos ^{2} \theta_{0}|a|^{2}}\left(G\left(e^{i \theta}, e^{i \varphi}\right)+1\right) \tag{2}
\end{equation*}
$$

If $|z-a| \leqq \frac{|a| \cos \theta_{0}}{2}$, then $\left|\frac{1}{a}-\frac{1}{z}\right| \leqq \frac{\cos \theta_{0}}{2|z|}$, so that

$$
\begin{gathered}
\frac{\xi}{|\boldsymbol{a}|^{2}} \geqq \frac{x}{\mid z_{1}{ }^{2}}-\frac{\cos \theta_{0}}{2|z|} \geqq \frac{\cos \theta_{0}}{|z|}-\frac{\cos \theta_{0}}{2|z|}=\frac{\cos \theta_{0}}{2|z|}, \\
\frac{2 r \Re(a)}{\cos \theta_{0}|\boldsymbol{a}|^{2}} \geqq 1,
\end{gathered}
$$

hence

$$
\begin{equation*}
G(z, a) \leqq G\left(e^{i \theta}, e^{i \varphi}\right) \leqq \frac{2 r \Re(a)}{\cos \theta_{0}|a|^{2}}\left(G\left(e^{i \theta}, e^{i \varphi}\right)+1\right) \tag{3}
\end{equation*}
$$

Hence by (2), (3),

$$
G(z, a) \leqq K\left(\theta_{0}\right) \frac{r \Re(a)}{|a|^{2}}\left(G\left(e^{i \theta}, e^{i \varphi}\right)+1\right), \quad K\left(\theta_{0}\right)=\frac{8}{\cos ^{2} \theta_{0}}
$$

3. Now we shall prove the theorem. We extend the definition of u for $x<0$ by putting $u=0$ for $x<0$, then since $u=0$ on the imaginary axis, u becomes a non-nagative subharmonic function for $|z|<\infty$. Let μ be the positive mass distribution, defined by u, then since $u=0$ for $x<0, \mu=0$
for $x<0$. Let $\Delta_{\rho}:|z|<\rho, \Re(z)>0$ be a half-disc and $C_{\rho}:|z|=\rho, \Re(z) \geqq 0$ be a semi-circle and $L_{\rho}: z=i y(-\rho \leqq y \leqq \rho)$ be a segment on the imaginary axis, then $\Gamma_{\rho}=C_{\rho}+L_{\rho}$ is the bou ndary of Δ_{ρ} and

$$
\begin{equation*}
G_{\rho}(z, a)=\log \left|\frac{z+\bar{a}}{z-a} \cdot \frac{\rho^{2}-z \bar{a}}{\rho^{2}+z a}\right| \tag{1}
\end{equation*}
$$

is the Green's function of Δ_{ρ}. Since $u=0$ on L_{ρ}, we have by Lemma 1 ,

$$
\begin{equation*}
u(z)=v_{\rho}(z)-w_{\rho}(z) \text { in } \Delta_{\rho} \tag{2}
\end{equation*}
$$

where

$$
\begin{gather*}
v_{\rho}(z)=\frac{1}{2 \pi} \int_{-2 / \pi}^{\pi / 2} u\left(\rho e^{i \varphi}\right) \frac{\partial G_{\rho}\left(\rho e^{i \varphi}, z\right)}{\partial \nu} \rho d \varphi, \tag{3}\\
w_{\rho}(z)=\int_{\Lambda_{\rho}} G_{\rho}(z, a) d \mu(a) . \tag{4}
\end{gather*}
$$

Let

$$
m\left(r, v_{\rho}\right)=\int_{-\pi / 2}^{\pi / 2} v_{\rho}\left(r e^{i \theta}\right) \cos \theta d \theta, \quad m\left(r, w_{\rho}\right)=\int_{-\pi / 2}^{\pi / 2} w_{\rho}\left(r e^{i \theta}\right) \cos \theta d \theta,
$$

then

$$
\begin{equation*}
m(r, u)=m\left(r, v_{\rho}\right)-m\left(r, w_{\rho}\right) \tag{5}
\end{equation*}
$$

By Lemma 2,

$$
\begin{aligned}
m\left(r, v_{\rho}\right) & =\frac{1}{2 \pi} \int_{-\pi / 2}^{\pi / 2} u\left(\rho e^{i \varphi}\right) d \varphi \int_{-\pi / 2}^{\pi / 2} \frac{\partial G_{\rho}\left(\rho e^{i \varphi}, r e^{i \theta}\right)}{\partial \nu} \rho \cos \theta d \theta \\
& =\frac{r}{\rho} \int_{-\pi / 2}^{\pi / 2} u\left(\rho e^{i \varphi}\right) \cos \varphi d \varphi=\frac{r m(\rho, u)}{\rho},
\end{aligned}
$$

so that

$$
\begin{equation*}
\frac{m\left(r, v_{\rho}\right)}{r}=\frac{m(\rho, u)}{\rho}, \quad(0<r \leqq \rho) . \tag{6}
\end{equation*}
$$

Now

$$
w_{\rho}(z)=\int_{\Delta_{\rho}} \log \left|\frac{z+\bar{a}}{z-a}\right| d \mu(a)-\int_{\Delta_{\rho}} \log \left|\frac{\rho^{2}+z a}{\rho^{2}-z \bar{a}}\right| d \mu(a)=w_{\rho}^{\prime}(z)-w_{\rho}^{\prime \prime}(z)
$$

If $z=r e^{i \theta}, a=\tau e^{i \varphi}$, then we can prove similarly as Lemma 2 , that if $\tau \leqq r \leqq \rho$,

$$
\int_{-\pi / 2}^{\pi / 2} \log \left|\frac{z+\bar{a}}{z-a}\right| \cos \theta d \theta=\frac{\pi \tau \cos \varphi}{r}=\frac{\pi \Re(a)}{r},
$$

and if $r \leqq \tau \leqq \rho$,

$$
\int_{-\pi / 2}^{\pi / 2} \log \left|\frac{z+\bar{a}}{z-a}\right| \cos \theta d \theta=\frac{\pi r \cos \varphi}{\tau}=\frac{\pi r \Re(a)}{|a|^{2}},
$$

hence

$$
\begin{equation*}
\frac{m\left(r, w_{\rho}^{\prime}\right)}{r}=\frac{\pi}{r^{2}} \int_{\mid a_{i}<r} \Re(a) d \mu(a)+\pi \int_{r \leqq a_{i}<\rho} \frac{\Re(a) d \mu(a)}{|a|^{2}} . \tag{7}
\end{equation*}
$$

Since

$$
\int_{-\pi / 2}^{\pi / 2} \log \left|\frac{1+\left(r \tau / \rho^{2}\right) e^{i(\theta+\varphi)}}{1-\left(r \tau / \rho^{2}\right) e^{i(\theta-\varphi)}}\right| \cos \theta d \theta=\frac{\pi r \tau}{\rho^{2}} \cos \varphi=\frac{\pi r \Re(a)}{\rho^{2}},
$$

we have
(8)

$$
\frac{m\left(r, w_{\rho}^{\prime \prime}\right)}{r}=\frac{\pi}{\rho^{2}} \int_{a<\rho} \Re(a) d \mu(a)
$$

so that

$$
\begin{aligned}
\frac{m\left(r, w_{\rho}\right)}{r}=\frac{\pi}{r^{2}} \int_{|a|<r} \Re(a) d \mu(a) & +\pi \int_{r \leq|a|<\rho} \frac{\Re(a) d \mu(a)}{|a|^{2}} \\
& -\frac{\pi}{\rho^{2}} \int_{|a|<\rho} \Re(a) d \mu(a) .
\end{aligned}
$$

Hence if we put

$$
\begin{equation*}
\Omega(r)=\int_{|a|<r} \Re(a) d \mu(a), \tag{9}
\end{equation*}
$$

then by the partial integration, we have easily

$$
\begin{equation*}
\frac{m\left(r, w_{\rho}\right)}{r}=2 \pi \int_{r}^{\rho} \frac{\Omega(t) d t}{t^{3}} \tag{10}
\end{equation*}
$$

so that by (5), (6), (10),

$$
\begin{equation*}
\frac{m(r, u)}{r}=\frac{m(\rho, u)}{\rho}-2 \pi \int_{r}^{\rho} \frac{\Omega(t) d t}{t^{3}}, \quad 0<r \leqq \rho \tag{11}
\end{equation*}
$$

Hence $m(r, u) / r$ is a continuous non-decreasing function of r and since

$$
\frac{d(m(r, u) / r)}{d\left(1 / r^{2}\right)}=-\pi \Omega(r)
$$

$m(r, u) / r$ is a convex function of $1 / r^{2}$. From (11),

$$
2 \pi \int_{r}^{\rho} \frac{\Omega(t) d t}{t^{3}} \leqq \frac{m(\rho, u)}{\rho}
$$

so that

$$
\begin{equation*}
2 \pi \int_{0}^{\rho} \frac{\Omega(t) d t}{t^{3}} \leqq \frac{m(\rho, u)}{\rho} \tag{12}
\end{equation*}
$$

Since $m(r, u) / r$ is a non-decreasing function of r,

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{m(r, u)}{r}=c, \quad 0<c \leqq \infty, \tag{13}
\end{equation*}
$$

exists.
If $0<c<\infty$, then by (11),

$$
\begin{equation*}
\frac{m(r, u)}{r}=c-2 \pi \int_{r}^{\infty} \frac{\Omega(t) d t}{t^{3}}, \tag{14}
\end{equation*}
$$

and from (12),

$$
\begin{equation*}
2 \pi \int_{0}^{\infty} \frac{\Omega(t) d t}{t^{3}} \leqq c \tag{15}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{\Omega(r)}{r^{2}}=0, \quad \lim _{r \rightarrow \infty} \frac{\Omega(r)}{r^{2}}=0, \tag{16}
\end{equation*}
$$

and from this, we have

$$
\begin{equation*}
\int_{|a|<\infty} \frac{\Re(a)}{|a|^{2}} d \mu(a)=2 \int_{0}^{\infty} \frac{\Omega(t) d t}{t^{3}} \leqq-\frac{c}{\pi}<\infty \tag{17}
\end{equation*}
$$

By Lemma 2, if $z=r e^{i \theta}, \lambda=r / \rho<1$, then

$$
\begin{aligned}
v_{\rho}(z) & =\frac{1}{2 \pi} \int_{-\pi / 2}^{\pi / 2} u\left(\rho e^{i \varphi}\right) \frac{\partial G_{\rho}\left(\rho e^{i \varphi}, r e^{i \theta}\right)}{\partial \nu} \rho d \varphi \\
& =\frac{2}{\pi} \int_{-\pi / 2}^{\pi / 2} u\left(\rho e^{i \varphi}\right)\left(\frac{r}{\rho} \cos \varphi \cos \theta+O\left(\frac{r}{\rho}\right)^{2}\right) d \varphi
\end{aligned}
$$

so that
(18) $\lim _{\rho \rightarrow \infty} v_{\rho}(z)=\frac{2 r \cos \theta}{\pi} \lim _{\rho \rightarrow \infty} \int_{-\pi / 2}^{\pi / 2} \frac{u\left(\rho e^{i \varphi}\right)}{\rho} \cos \varphi d \varphi=k x, \quad k=\frac{2 c}{\pi}$.

Since

$$
\begin{aligned}
\log \left|\frac{\rho^{2}+z a}{\rho^{2}-z a}\right|=\frac{1}{2} \log \left(1+\frac{4 \rho^{2} x \xi}{\left|\rho^{2}-z a\right|^{2}}\right) \leqq & \frac{2 \rho^{2} x \xi}{\left|\rho^{2}-z a\right|^{2}} \leqq \frac{2|z| \xi}{(\rho-|z|)^{2}} \\
& x=\Re(z), \quad \xi=\Re(a) \\
w_{\rho}^{\prime \prime}(z) \leqq \frac{2|z|}{(\rho-|z|)^{2}} \int_{(a \mid<\rho} \Re(a) d \mu(a)= & \frac{2|z| \rho^{2}}{(\rho-|z|)^{2}} \cdot \frac{\Omega(\rho)}{\rho^{2}},
\end{aligned}
$$

hence by (16),

$$
\lim _{\rho \rightarrow \infty} w_{\rho}^{\prime \prime}(z)=0,
$$

so that in $x>0$,

$$
\begin{equation*}
u(z)=k x-w(z) \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
w(z)=\int_{|a|<\infty} \log \left|\frac{z+\bar{a}}{z-a}\right| d \mu(a) \tag{20}
\end{equation*}
$$

Next we shall prove that, except a set of θ of logarithmic capacity zero,

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{w\left(r e^{i \theta}\right)}{r}=0 . \tag{21}
\end{equation*}
$$

By Lemma 3, if $|\theta| \leqq \theta_{0}<\pi / 2$ and $\arg a=\varphi$, we have for any $r_{0}>0$,

$$
\begin{align*}
& \frac{w\left(r e^{i \theta}\right)}{r}=\frac{1}{r} \int_{|a|<r_{0}} G\left(r e^{i \theta}, a\right) d \mu(a)+\frac{1}{r} \int_{r_{0} \leqq|a|<\infty} G\left(r e^{i \theta}, a\right) d \mu(a) \tag{22}\\
& \leqq \frac{1}{r} \int_{|a|<r_{0}} G\left(r e^{i \theta}, a\right) d \mu(a)+K\left(\theta_{0}\right) \int_{r_{0} \leqq|a|<\infty} \frac{\Re(a)}{|a|^{2}}\left(G\left(e^{i \theta}, e^{i \varphi}\right)+1\right) d \mu(a) .
\end{align*}
$$

Hence if we put

$$
\begin{equation*}
\chi(\theta)=\varlimsup_{r \rightarrow \infty} \frac{w\left(r e^{i \theta}\right)}{r} \tag{23}
\end{equation*}
$$

then if $|\theta| \leqq \theta_{0}<\pi / 2$,

$$
\begin{equation*}
\chi(\theta) \leqq K\left(\theta_{0}\right) \int_{r_{0} \leqq|a|<\infty} \frac{\Re(a)}{|\boldsymbol{a}|^{2}}\left(G\left(e^{i \theta}, e^{i \varphi}\right)+1\right) d \mu(a) \tag{24}
\end{equation*}
$$

Suppose that $\chi(\theta)>0$ on a set E of positive logarithmic capacity on $|z|=1$, then by taking a suitable closed subset, we may assume that E is a closed set, contained in $|\arg z| \leqq \theta_{0}<\pi / 2$. Let ν be the mass of equilibrium distribution of E and

$$
U(z)=\int_{B} \log \left|\frac{z+e^{-i \theta}}{z-e^{i \theta}}\right| d \nu(\theta), \quad \nu(E)=1
$$

be the conductor potential of E, such that $U(z) \leqq V<\infty$ for any z. Then

$$
\int_{F} \chi(\theta) d \nu(\theta) \leqq K\left(\theta_{0}\right)(V+1) \int_{r_{0} \leqq|a|<\infty} \frac{\Re(a) d \mu(a)}{\mid a^{2}}
$$

Since $\int_{|a|<\infty} \frac{\Re(\boldsymbol{a}) d \mu(\boldsymbol{a})}{|\boldsymbol{a}|^{2}}<\infty$, the right hand side tends to zero, if $r_{0} \rightarrow \infty$, hence

$$
\int_{B} \chi(\theta) d \nu(\theta)=0
$$

which is absurd. Hence $\chi(\theta)=0$, except a set of θ of logarithmic capacity zero, which is equivalent to (21). Hence

$$
\lim _{r \rightarrow \infty} \frac{u\left(r e^{i \theta}\right)}{r}=k \cos \theta
$$

except a set of θ of logarithmic capacity zero.

References

[1] L. Ahlfors, On Phragmén-Lindelöf principle. Trans. Amer. Math. Soc. 41 (1933),
[2] A. Dinghas, Über das Phragmén-Lindelöfsche Prinzip und den Julia-Carathéodryschen Satz. Sitzungsber. preuss. Akad. Wiss. (1938), 32-48.
[3] L. Ahlfors and M. Heins, Questions of regularity connected with the PhragménLindelöf principle. Ann. Math. 50 (1949), 341-346.
Mathematical Institute,
Rikkyo University, Tokyo.

