A SUPPLEMENT TO "NOTES ON CONFORMAL MAPPINGS OF A RIEMANN SURFACE ONTO ITSELF"

By Kôtaro Oikawa

We prove here the following equality in order to supplement the results in our paper "Notes on conformal mappings of a Riemann surface onto istelf" (these Seminar Reports 8 (1956), 23-30):

For
$$2g + k - 1 \ge 2$$
 $(g \ge 0, k \ge 1)$,
 $N(g, k) = N'(g, k)$.

It suffices to show the inequality $N(g,k) \leq N'(g,k)$, since the opposite direction has been known already (Theorem 1).

Let W be a bordered Riemann surface with genus g, having k boundary curves C_1, C_2, \dots, C_k , and the order of the group \mathfrak{G} , which consists of all conformal mappings of W onto itself, is equal to N(g, k). In the following lines we shall show that W can be imbedded in a closed Riemann surface W^* with the same genus g in such a way that any element of \mathfrak{G} is continuable to a conformal mapping of W^* onto itself.

Since the doubled Riemann surface \hat{W} of W is a closed Riemann surface with genus $2g + k - 1 \ge 2$, we can introduce the non-Euclidean metric on \hat{W} in the well-known manner: It is defined by the projection of the non-Euclidean metric

$$ds = \frac{|dt|}{1 - |t|^2}$$

of the universal covering surface |t| < 1 of \hat{W} . The non-Euclidean distance of two points $p, q \in \hat{W}$ is, of course, the greatest lower bound of the lengths $\int ds$ of curves connecting p and q. We know that any conformal mapping of \hat{W} onto itself does not change this metric.

On \hat{W} , we consider the sets

$$D_{\nu} = \{p; \ 0 < \text{dist.} (p, C_{\nu}) < r, \ p \in W\}, \quad \nu = 1, 2, \dots, k.$$

It is not difficult to see that, if r is taken sufficiently small, they are doubly connected subregions of W and mutually disjoint. For any $\varphi \in \mathfrak{G}$, we have $\varphi(D_{\nu}) = D_{\mu}$ provided that $\varphi(C_{\nu}) = C_{\mu}$, because φ can be considered, by reflec-

Received August 13, 1956.

tion, as a conformal mapping of \hat{W} onto itself, which preserves the non-Euclidean distance on \hat{W} . We map D_{ν} conformally onto the concentric annulus

$$A_{\nu}: \qquad 1 < |z_{\nu}| < \rho_{\nu}$$

on z_{ν} -plane in such a way that C_{ν} corresponds to $|z_{\nu}| = 1$ ($\nu = 1, 2, \dots, k$). Then, any $\varphi \in \mathbb{G}$ satisfying a condition that $\varphi(C_{\nu}) = C_{\mu}$ can be considered as a conformal mapping of A_{ν} onto A_{μ} (hence $\rho_{\nu} = \rho_{\mu}$) such that $|z_{\nu}| = 1$ corresponds to $|z_{\mu}| = 1$. As is known, it must be of the form

$$z_{\mu}=e^{i\theta}z_{\nu},$$

which is evidently continuable to a conformal mapping of $|z_{\nu}| < \rho_{\nu}$ onto $|z_{\mu}| < \rho_{\mu}$, satisfying a condition that $z_{\nu} = 0$ corresponds to $z_{\mu} = 0$.

The Riemann surface W^* that we want to construct is the union of sets W and $|z_{\nu}| \leq 1$ ($\nu = 1, ..., k$), where corresponding points on $|z_{\nu}| = 1$ and C_{ν} are identified; local parameters are, as in usual, taken z_{ν} in the region $D_{\nu} \cup (|z_{\nu}| \leq 1) = (|z_{\nu}| < \rho_{\nu})$ ($\nu = 1, ..., k$) and original parameters in W. It is not difficult to see that W^* is a closed Riemann surface with genus g and contains W. Furthermore, denoting by p_{ν} the point on W^* corresponding to $z_{\nu} = 0$ ($\nu = 1, ..., k$), we see immediately that any $\varphi \in \mathfrak{G}$ is continuable to a conformal mapping of the region $W^* - \{p_1, ..., p_k\}$ onto itself. This fact implies that $N(g, k) \leq N'(g, k)$.

MATHEMATICAL INSTITUTE, TOKYO UNIVERSITY.

116