
ON SOME LIMIT THEOREMS FOR THE SUMS OF
IDENTICALLY DISTRIBUTED INDEPENDENT

RANDOM VARIABLES

BY MASATOMO UDAGAWA

The contents of this note contain two different parts. In § 1, we are
concerned with the renewal theory, and in § 2 a limit theorem for probability
densities.

1. Some extensions of the result of Levy for the coin-tossing game.

In this section, we are concerned with the distributions of the number of
zeros of the partial sums of the independent and identically lattice distributed
random variables. Let Xlf X29 -9 Xn, m be identically lattice distributed
independent random variables. We assume, without loss of generality, that
Xl9 X2,~

m, Xn,~- are integral valued random variables with span 1. In the
coin-tossing game,

xV\Xi = IT = Pr\^Lj, = — 1/ — -7̂ -.
Δ

Let SJC = X1 + X2 ••• + XJC, k = 1, 2, •••, and let Nn denote the number of S^s,
1 <̂  k ^ n, which are zero. In the coin-tossing game, the following result is
known [1, p. 253].

{ Nn ) l~o Cx

 2

—7=- < x} = 1/ — \ e~* /2dt for x > 0,
= 0 for x <0.

For a fixed integer j , even if we denote by Nn the number of SK'S, 1 ^ k ^ n,
Sfc = j , the above result is also obviously true.

Now it seems to me that the following extension of this result was not
yet given in references explicitly.

THEOREM 1. Let Xl9 X2t •••, Xn, ••• be identically lattice distributed inde-
pendent random variables taking only integral values, and let its span be 1.1)

We assume also that

Then
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1) That is, the greatest common divisor of all differences k—j for which

>0, Pr{Xi=j} is equal to unity.
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L™ P r{VSΠΓ^*} = / ί ί0

> / 2

= 0 for

Vw fs £/*£ number of Σ$-ιXt = Sfc, 1 ^ & ̂  ^, sẑ /z ίteί Sfc = j ,
fixed integer j.

THEOREM 2. // the assumptions of Theorem 1 are valid, except the condition
(*), dm/ if for some a, 1 < <# < 2,

where Va(x) is a symmetric stable distribution with exponent a, then
(i) for 1 < α < 2, we to«

Gβ(z) is the stable distribution defined by the characteristic function

jβ(z) = expj— \z\β{cos-Fγ- f sin-^-sgn2jΓ(l — β)\,

(ii) for a = 1, zi;

= 0 for x < 0,

(iii) /or <# < 1, {Nny is bounded with probability 1.

To prove Theorem 1 and Theorem 2, we shall use the following lemmas.

LEMMA 1. Under the assumptions of Theorem 1, we have

= k} = -f=

for any fixed integer k, where cn,τc = o{n~112).

LEMMA 2. Under the assumptions of Theorem 2, we have

Pr{Sfc = k} = cri7t-icr1Γ(l/*)tr1ia + cn,*,

for any fixed integer k, where cΛ,» = o(n~~lla).

These lemmas are easy consequences of the local limit theorems of Gne-
denko-Kolmogorov [3, p. 233, 236].

Now the proofs of Theorem 1 and Theorem 2, are the same as in G. Kal-
lianpur and H. Robbins's proof [4, Theorem 3.1]. For example, the proof
of (i) in Theorem 2 is as follows.
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Let

= 0 otherwise.
Then

We have
n n

ENn = Σ Eξ3 = Σ FrtSj = k}

Since
n

by Lemma 2, we have

( 5 )

For any positive integer r (r ^ 2),

( 6 )

= ΊiEξ'}1 + r Σ £f;,?;, + - + r! Σ ^ ^ ^

Now

Eξhξj,-ξjr = Pr{SΛ = *, S,a = *, - , S i r = k}

= Pr{SΛ = k, Sh - S,x = 0, - , SJr - Sj^ = 0}

= Pr{Sh - k}Pr{SJ2 - Sh - 0} - Pr{SJr - S^.! = 0}

= («rα)-T( l/α) ' IJiUi-Ji) - (ir -ir-x)]-1/" + ^

say. Then, as in the proof of Kallianpur and Robbins, since

Σ {cπa)-T(l/a) U1U2 - ji) - 0", - Λ-i)]-1"

Σ

we have

Since



88 MASATOMO UDAGAWA

the other terms of (6) except the last one are, by (7),

Thus we have

C7tCί I * '

from which, by the same arguments as in the Kallianpur and Robbins's, we
can complete the proof of (i) in Theorem 2.

Theorem 1 and (ii) of Theorem 2 can be proved in the similar manner.
The result of (iii) of Theorem 2 is an easy consequence of Borel-Catelli's
lemma.

2. A frequency function from of central limit theorem.

W. L. Smith [5] proved the following theorem:
Let Xu X2> -, Xny- ' be identically distributed independent random variables

with a distribution function F(x) and let its characteristic function be φ(t).
If

(A) EX, = 0, ΌλX% - 1

(B) | φ ( 0 | ^ A / | ί | β , for \t\>R,

for some positive A, R, a, then, for sufficiently large n, the random vari-
ables Snls/~n have always probability densities hn(x) and it holds

lim x \ιhn(x) = -^Γ-έr" 2 ' 2 for 0 ^ / ̂  2,

uniformly with respect to x in the interval (— oo < x < oo).

On the other hand, Gnedenko-Kolmogorov [3] proved the following theo-
rem: If

(A) EXt = 0, Ό*X% = 1,

(BO if the probability density pm(x) of the sum Sm exists for some m ^ 1
and pm(x) belongs to the class Lr {— oo, oo) for some r, 1 < r ^ 2, then

lim hn(x) = - 4 r - β " β 3 / 2

uniformly with respect to x in the interval (— oo < x < oo).

Obviously the Gnedenko-Kolmogorov's conclusion is implied in Smith's.
But for their assumptions, Smith's are contained in Gnedenko-Kolmogorov's.
Because, under the assumptions of Smith's theorem, φm(t)ξ£L(— oo, oo) for
m > I/a, and so by the inversion formula, the density function pm(x) of Sm

^xists, and

2?tpm(χ) = Γ er**φ



LIMIT THEOREMS FOR SUMS OF RANDOM VARIABLES 89

Thus pm(x) is bounded in the whole interval (— oo < x < oo), from which,
with pm(x) G L, it holds that pm(x) belongs to Lr for all r ^ 1.

Now we shall prove that the conclusion of Smith is also true under the
assumptions of Gnedenko-Kolmogorov. That is:

THEOREM 3. Under the assumptions of (A), (BO,

lim! x \ιhn(x) = ',*--' g-*2'2 for 0 ^ / ̂  2,
w->oo v2τr

uniformiy with respect to x in the interval {—oo<χ< oo).

Proof. Since pm(x) belongs to the class Lr, by a theorem of Titchmarsh,
we have

φm(t) = f°° eitxpm(x)dx for rr =
r - 1 *

Thus

(1) Pn(s)^L

for all n ^ mr/(r — 1).
Let

then we have

( 2 ) *„«(,) = ( » -

Since, by assumptions

by (1),

(3) i , "( t)Gi.

Clearly, we have

&.(*) =4°° eίtxhn(x)dx, θn"(t) = - Γ ett*x*hn(x)dx,

and hence from a theorem on Fourier transform, using (3),

(4) 2τrhn(x) = f°° euκθn(f)dt, 2πx*hn(x) == - Γ eitxθn"(t)dt.
J -oo J -oo

Thus we have

(5 ) ***„(*) -&er"*ι* = - - 2
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To prove the theorem, it is sufficient to show that

Rn = Γ e~u*(θn"{t) - (P - l)e-**h)dt -> 0, as n -> oo
J-oo

uniformly with respect to x (— oo < # < oo).
Following after Kolmogorov-Gnedenko's arguments, we represent Rn as

the sum of four integrals:

'fn(t) - (t2 - l)e~t2l2)dt, I2 = f er*<»(t2

Jitj>Λ

e~u*θn"(t)dt, h = ( e-u*θ

where the number A > 0 depends on 6 arbitrarily given and will be chosen
later.

By Lemma 2 of [5], it follows that

uniformly with respect to t in every finite interval and hence for any con-
stant A

Ix —> 0 as n-t co

uniformly with respect to x (— oo < # < oo). Choosing A sufficiently large,
we have, obviously I2 < 8.

say.
Since, in the neighbourhood of the point t = 0,

we have

(6)

and

y/n)

that is,

(7) n

~φ'( ) = ^ + 8 f ε ^ 0 a s

2

ί2 + a/2
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for large n. Thus we have

(»-l)

91

^ 2 1 (t

ί
for sufficiently large A > 0. Thus we have

Since /?m(0 G L, φm(t) -> 0 as 11 -> oo, by the theorem of Riemann-Lebesgue,

that is φ(t)-+O as j £ ί —»• oo. Hence there exists a constant c >0 such that

\φ(f)\<erc for all t ^ 8 .

Let /3 > mr/{r — 1) be a constant. Then

θn"(t)\dt

- A Λ I • J \Vn
dt

-Lλ ΐ dt
\ίn)\

c Γ

as

The above estimations complete the proof.
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