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It is well-known that a closed Riemann surface of genus g ^ 2 admits
only a finite number of conformal mappings onto itself. More precisely,
A. Hurwitz [2] has shown that this number does not exceed 84 (g— I)
and this estimation is exact for g = 3l:>. On the other hand, a plane
region of finite (^ 3) connectivity admits only a finite number of conformal
mappings onto itself, and the estimation of this number has been deter-
mined completely by M. Heins [1]. In this paper, we shall treat a bor-
dered Riemann surface and a closed Riemann surface with a finite number
of distinguished points.

§ 1. General estimations.

1.1. Let W be a bordered Riemann surface (i. e. a compact subregion
of a Riemann surface, the relative boundary of which consists of a finite
number of closed analytic curves) and © be the group of all conformal
mappings of W onto itself. For given integers g (^ 0) and^(^l), we take
the maximum of order of © with respect to all W having genus g and k
boundary components, and set

N(g, k) = max (ord. ®).

Next, on a closed Riemann surface W of genus g, we take k points plf

Pz, — , PK and consider the group (S of all conformal mappings of the
region W — {pi, , pjc} onto itself. For given integers g and k, we take
the maximum of order of (S with respect to all W of genus g and all sets
of k points pi, •••, pkcW, and set

N'(g, k) = max (ord. ®).

Concerning these numbers, we shall prove the following double in-
equality :

THEOREM 1. For 2g + k-I^2 (g^Q, *i>l),

ff'(g, k) ̂  N(g, k} ̂  12 (g - 1) + 6k*\

Obviously, for gl^2, if k is large enough (i. e., k ̂  12(g — 1)), the esti-

Received March 16, 1956.
1) For g = 2, however, it is not exact. In this case, the surface is always

hyperelliptic and this fact yields immediately that this number does not exceed
48. For g^.4, it seems to remain still open.

*) Added in proof. We can really show that N' (g, k) = N(g, k); the detail will be
written elsewhere.
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mation N'(g, k)^* 12 (g — 1) 4- 6k is worse than that of Hurwitz: N'(g, K)

1.2. In order to prove this theorem, we require a lemma:

LEMMA 1. Let W be a closed Riemann surface of genus g^2, and p' = φ(p)
be a conformal mapping of W onto itself which is not an identity mapping
and has a fixed point pϋ. If this mapping is represented as zr = φ (z) by a local
parameter z about po (z = 0 4 — > po) , then

dz
= e*

where m and n are integers and m/n is not an integer.

Proof. The Taylor expansion φ(z) = az + u'zr + yields the expan-
sions <ffl(z) == φ φ(z] ^ cPz Λ- , 9>8(*) =Ξ φ ° φ ° φ(z) = a?z -}- , etc.
Since © is a finite group, there exists a number ^ such that φn(z) = 2,
so that #w = 1 and # = ez*imin. If w/w is an integer, the expansion is
φ(z) = 2 + /βz74 + (/8ΦO, A ̂  2), since 9>U) Φ 2. This implies <p*(z) = 2
4- 2/SzΛ + , ^3U) = z + 3/927i + , etc. However, from 9^(2) = z, we
obtain ^ /3 = 0, which is a contradiction, so that m/n is not an integer.

1.3. The proof of THEOREM 1. It is not difficult to prove the first in-
equality N'(g, K)^N(g, k). Let W be a closed Riemann surface with
distinguished points plt • - - , p^. If g^2, we take off from ^sufficiently
small k non-Euclidean discs with the same radius and having centers at
Pi, ' ' •> Pis respectively. Then, any conformal mapping of the region
W— {piy •••, PK} onto itself can be considered as a conformal mapping
of the resulting bordered Riemann surface onto itself. For g — 1, we
take off Euclidean discs and consider analogously. For g = 0 (then k ̂  3),
the above reduction is performed with the aid of elementary facts of
linear transformations.

The proof of the second inequality N(g, k) ̂  I2(g — 1) + 6k is essentially
a mere modification of Hurwitz's one [2]. Consider the doubled Riemann

Λ
surface W of the given bordered Riemann surface W. It is a closed
Riemann surface of genus g = 2g 4- k — 1, and any element of © can be

considered as a conformal mapping of W onto itself. Since g ^ 2, ord. ©
— N is finite. What we want to show in the sequel is N^6(g — 1).

Λ
When we identify the points of W which are congruent by the trans-

formation group (§, we obtain a closed Riemann surface WQ, and W is an
JV-sheeted unbounded (but possibly ramified) covering surface of WQ; it
is not difficult to verify this fact, because ramifying points are fixed
points of the elements of © (cf. LEMMA 1) and the number of them is
finite. Denoting by g0 the genus of W0, we have the following equality
from the well-known Hurwitz's formula:

2g - 2 = N(2g0 - 2) + Σ (ramification index).
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Now, with respect to a point p £ W, we collect all elements of (3 which
have a fixed point p, and denote this set by (§(J>). This is a cyclic sub-
group of ©. For p' = φQ(p) (<Po£:®)> we get immediately

which implies

ord.®(/>) - ord. ©(/>')•

Obviously, ord. ®(/>) — 1 is the ramification index of £ with respect to
WQ, so that, for any point p° G W o > the ramification indices of all points
over pQ are the same,

From the symmetricity of W and ©, ramifying points are situated

symmetrically on W] furthermore LEMMA 1 shows that there is no such

a point on the boundary of W. We project all ramifying points of W on
WQ and denote them symmetrically by pι°, 'pi0, , pr°, pr° and the cor-
responding ramification indices by IΊ — 1, - , vr — 1, respectively. Then,
since the numbers of points over p f , pι°, , pr°, ~prQ are equal to N/VI,
•••, A7/z> r respectively, we have

r N
]>] (ramification index) = 2Σ - (ZΊ — 1),

4 = 1 ^t

consequently we get

(If W is an unramified covering surface of WQ, the 2 term of (1) is
absent.)

Now, if gϋ ^ 2, (1) shows (g — ϊ)/N^g0— ^ 1 and we have N^g — 1.
If g 0 = l, then r ^ 1 since g ^ 2, and from (1), we get (Is - ΐ)/N ^ 1 - l/ι/ι
^ 1 - 1/2 = 1/2 and N^>2(g — I). If ^0 = 0, then r ^ 2 by the same reason
as above. In the case of g0 = 0, r ^ 3, (1) implies (g -l)/N^r/2-l^ 1/2
and N^2(g — l). In the case of gQ =0, r = 2, the equalily (1) is

If i/i ^3, z^2 ^ 3, we get (g - Y)/N ^ 1 - 2/3 = 1/3 and Λf^3(£ - 1). If *Ί
^3, z^2 - 2, we get (g - 1)/JV^ 1 - 1/2 - 1/3 = 1/6 and Λ^6(£ - 1). The
case PI = z^2 = 2 does not occur. Consequently, in any case, we have
ΛΓ^6(£-l) = 12te-l) + 6*.

§ 2. A special case.

2.1. Naturally we ask whether the estimation of THEOREM 1 is exact
or not. For the case of g = 0, M. Heins [1] has determined numbers
N and Nf, namely he has proved
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, k) = ΛΓ'(0, ft) for

ΛΓ'(0, K) = 2k for ftψ4, 6, 8, 12, 20, ft ̂ 3,

N'(0, 4) - 12, W(0, 6) = N'(0, 8) - 24, #'(0, 12) - ΛP(0, 20) - 60.

We shall determine the number Nf for g =1.

THEOREM 2. For ft ^ 1,

6ft fc

N'(l, ft) -

4ft

3ft

2ft

where m, n = 0, 1, 2,

for

ft = mλ + 3riλ

ft = m2 + w2, teί
as ft = mz +3n2,
ft = 2(mz + 3n2),

as k = m- + w2,2)

*,

00 representable

noί be representable

The conditions for representability of ft in above types are obtained
by the prime number decompositions: An integer ft is representable in
the form ft = m2 + ri2, if and only if the prime number decomposition of
ft is 2 7Π£/>£

α ιΠj#/ 2Pj, where a, β and 7 are non-negative integers, p and
# are prime numbers such that p = l (mod. 4) and q^3 (mod. 4); similar-
ly, the condition for ft = m2+3w2 is ft = 2273δΠ i/> ί

α^Π^J

 2^z where />==!
(mod. 3) and #Ξ=2 (mod. 3) and #Ψ2.

Using them, we can compute N'Q., ft), for instance, as follows:

N'(l, 1) - 6ft = 6, #'(1,2) - 4ft -8,

ΛΓ'(1, 6) = 3* = 18, N'(l, 11) - 2ft - 22.

2.2 In order to prove THEOREM 2 we use the elementary properties of
lattices. We consider a lattice in the complex f-plane and denote the
principal lattice points by ω, ω'. In order that the lattice may be deter-
mined uniquely by ω, ωf, we must assume that they satisfy the follow-
ing conditions:

J - <:
2 -

_
2'

(2)

^ >1if 0 <

2) In this case, the prime number decomposition shows that k can not be repre-
sented as k = m2 -\-3n2.
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A point ζ which is representable in the form ζ — mω -f nω' (m and n are
integers) is called a lattice point, and the set of all of them is denoted
by

L(ω, ω') = {mω + nω'; m, n = 0, it 1, ±2, •}.

LEMMA 2. Let P - {s£ + fcβ'; Ogs < 1, 0^ f < 1} be a parallelogram, four
vertices of which are lattice points (i.e. Ω, j2'£L(ω, ω')). Then, the number
of lattice points which belong to P is equal to the ratio of areas, namely it is
equal to

This is a famous property of lattice and we omit the proof. The follow-
ing lemma also seems to be well-known, and it can be proved very
easily:

LEMMA 3. Suppose there exists a linear transformation ζ' = cίζ 4- β which
gives a one-to-one mapping of L(ω, ω'*) onto itself.

(i) // ωf — ΐω, then a must be one among the numbers ± 1, ±t.
(ii) // ωf = £2ω(θ = £ί7r/3), then a must be one among the numbers ± 1,

±s, ± ε2.
(iii) In the other cases, a must be either of ± 1.

Conversely, in each case, there exist transformations ζ' — aζ with such a.

2.3 For the purpose of preparation, let us consider the group ©* of
all conformal mappings of a closed Riemann surface W of genus 1 onto
itself.

As is known, the group Γ of covering transformations of the universal
covering surface z ' < co of W consists of linear transformations

We may assume that ω'/ω satisfies the condition (2). Then the surface
W is determined uniquely by ω'/ω; the surface W with ω' = iω will be
denoted by Wί with ω' = εaω (8 = ££7C/3) will be denoted by Wε.

An element of ©* induces in the well-known manner a linear trans-
formation S(z) = az + b of the universal covering surface \z\ < co onto
itself. It satisfies a relation

(3) z' = z+ζ +-> SGeO = S(z) + Γ, 1 * 1 < oo,

where ζ, ζ'^,L(ω, ω') and the correspondence ζ •*. — > ζ' does not depend
on the choice of 2; in other words, S determines an automorphism of Γ.
Conversely, any S(z) = az + b satisfying the relation (3) determines an
element of (S*. So that, denoting by G* the group of all S(z) = <zz + b
with the condition (3), we get immediately

G*/Γ ̂  ®*.

For any W, linear transformations 2' = 2 + b and 2' = — z 4- 6 are con-
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tained in G* for arbitrary b. As regards S(z) = az (<zφ±l), however,
LEMMA 3 shows that S(z) Φ G* for WΦW^, We; for T7ί, G* contains 2'
= ± iz and only them; for We, G* contains zr — ± 82, 2' — ± 8*2 and only them.
Now, let GO* be a set of all linear transformations S(z) — z -\ b. It is
evidently a normal subgroup of G*, and the above consideration shows

'{/, U} for TPφTFί, Wε,

( 4 ) G*/G0* = J where I(z) = z, U(z) = - 2,
{I, V, V2, V3} for Wι, where V(z) = iz,

. {/, T, T\ T\ T*, T°} for Wε, where T(z) = 82.

On the basic surface W, denoting by @0* the set of all elements of ®*
which have no fixed point on W, we see immediately that G0*/T = @0*.
So that ©o* is a normal subgroup of ®* and ®*/®o* = G*/G0, and we can
see the structure of ®*/®o* immediately from (4).

2.4. Proof of THEOREM 2. Let W be a closed Riemann surface of genus
1 with distinguished points pίt , pΊc, and © be the group of all conformal
mappings of the region W— {pi, ••-, pk} onto itself. All elements of
© are considered as conformal mappings of W onto itself, i. e. © C ©*.
We denote by ©0 the set of all elements of © which have no fixed point
on W. Since ©0 = © Γ) ®o*, ®o is a normal subgroup of © and

( 5 ) ®/®o C ®*/®o* = G*/G0*.

It is now not difficult to construct an example such that ord. ©0 = k,
ord. (®/®0) =2, concerning any feS^l; hence we have

N'(l, k)^2k, for k^l.

From the definition of the group ©0, we can easily see that ord. ©0 is
equal to one of the numbers k, k/2, k/3, . So that we conclude from
(4) and (5) that the possibility ord. © > 2k occurs only in the following
cases: For Wt, ord. ©0 = * and ord.(®/®0) = 4; for Wε, ord. ©0 = * or k/2
and ord. (@/©o) = 3 or 6; forφTF £ , Wε, it is impossible. Consequently,
for the purpose of determining Λ^Cl, k), it suffices to consider the follow-
ing four cases:

Case I: On Wlf the distinguished points plt , pϊc are congruent to each
other by ©0 and © contains an element which corresponds to V(z) = iz
+ b. In this case, ord. © = 4k.

Case II: On Wε, Pi, •••, PK are congruent to each other by ©0, and
© contains an element corresponding to T(z) = 82 + 6. In this case,
ord. © = 6k.

Case III: On Wε, Pi, •—, PK are congruent to each other by ©0 and
© contains an element corresponding to TI(Z) = 822 + b. In this case,
ord. © = 3k.

Case IV: k is even. On Wε, only pl9 , ^ fc/2 are congruent to each other
by ©o, and © contains an element corresponding to T(z) = Bz + b. In
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this case, ord. © = 3k.
Now, on the universal covering surface \ z \ < oo of W, the groups G, G0

of linear transformations correspond to (S, ®0 respectively. Since G0/T
= ©o and ord. ©o^^^ °°, the group G0 consists of the transformations
of the following forms:

zf = 2 4- wμ 4- Tzμ/, m, w = 0, ± 1, it 2, ,

where we may assume thet μ'/μ satisfies the condition (2). The fact
GoDΓ" implies L(μ, μf)"DL(ω, ω').

Case I: Take the point 2 = 0 over a distinguished point pi. Then the
set of all points z that are congruent to z = 0 by G0, namely the set
L(μ, μf), coincides with the set of all points z situated over plf ••-, pk.
Consequently, the principal parallelogram of the lattice (ω, ωf), which is
a fundamental region of the group Γ, contains k points of L(μ, μ'). Then
LEMMA 2 shows that k is equal to the ratio of areas of principal parallelo-
grams of lattices (ω, ω') and (μ, μ'}.

On the other hand, G contains an element V(z) = iz 4- b, which gives a
one-to-one transformation of L(μ, μf) onto itself, since any element of
© preserves the set {plf ••-, pk}. So that, when we apply LEMMA 3 to
L(μ, μ'), we have iμ = μf, which means that lattices (ω, ω') and (μ, μf) are
similar. Supposing now ω = m/^ -f W/A', the side of principal parallelogram
of (ω, ω') is */m2 Ί- ri~- μ\, and then the ratio of areas is equal to mλ 4- n2.
Consequently we obtain

k = m2 + ̂ 2.

Conversely, if & = m2 + riλ, the above consideration shows that we can
easily find points plf •••, px on Wι so that Case I may occur.

Case //, Case III are analogous to the above case. We can see μf = 8-μ.
If ω = mμ + fzμ/, the side of principal parallelogram of lattice (ω, ω') is

4- n- — mn \ μ !, and consequently we have ft = m~ 4- n2 — mn. It is
not difficult to see that k is representable as k = m2 4- n2 — m^ if and
only if k is representable as k = m2 4- 3^2.

Cβŝ  IF: Take z = 0 over .̂ Since only ^i, • - - , ^/a are congruent to
each other by ©0> the number of lattice points of L(μ, μf) that are con-
tained in the principal parallelogram of the lattice (ω, ωr) is equal to
k/2. By the assumption of Case IV, G contains a linear transformation
of the form T(z) = 82 4- δ, to which corresponds an element p' = φ(p)
in ®.

If φ({pι, •••, ί»/2}) — {Piy •••, ^fc/2}, the situation is similar to the case
II. We obtain analogously &/2 = m2 4- ^2 — mw. (To tell the truth, this
case does not occur. We omit the proof of it, since it has no effect on
the proof of our theorem.)

If φ does not satisfy the condition above, we can show easily
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<P <P({Pι, - , ί*/2» - {pi, , /fc/a}.

So that, repeating the same argument as in Case III with respect to φ ° φ,
we get k/2 = m2 4- wa — mn. Conversely, if k = 20w2 + w2 — mw), we can
easily find points pl9 •••, ^fc on We so that Case IV may occur.
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