NOTES ON CONFORMAL MAPPINGS OF A RIEMANN SURFACE ONTO ITSELF

By Kôtaro Oikawa

It is well-known that a closed Riemann surface of genus $g \ge 2$ admits only a finite number of conformal mappings onto itself. More precisely, A. Hurwitz [2] has shown that this number does not exceed 84(g-1)and this estimation is exact for $g = 3^{1}$. On the other hand, a plane region of finite (≥ 3) connectivity admits only a finite number of conformal mappings onto itself, and the estimation of this number has been determined completely by M. Heins [1]. In this paper, we shall treat a bordered Riemann surface and a closed Riemann surface with a finite number of distinguished points.

§ 1. General estimations.

1.1. Let W be a bordered Riemann surface (i. e. a compact subregion of a Riemann surface, the relative boundary of which consists of a finite number of closed analytic curves) and \mathfrak{G} be the group of all conformal mappings of W onto itself. For given integers $g (\geq 0)$ and $k (\geq 1)$, we take the maximum of order of \mathfrak{G} with respect to all W having genus g and k boundary components, and set

$$N(g, k) = \max(\text{ord. } \mathbb{G}).$$

Next, on a closed Riemann surface W of genus g, we take k points p_1 , p_2 , \cdots , p_k and consider the group \mathfrak{G} of all conformal mappings of the region $W - \{p_1, \dots, p_k\}$ onto itself. For given integers g and k, we take the maximum of order of \mathfrak{G} with respect to all W of genus g and all sets of k points $p_1, \dots, p_k \in W$, and set

$$N'(g, k) = \max(\text{ord. } \mathbb{G}).$$

Concerning these numbers, we shall prove the following double inequality:

THEOREM 1. For $2g + k - 1 \ge 2$ $(g \ge 0, k \ge 1)$,

$$N'(g, k) \leq N(g, k) \leq 12(g-1) + 6k^{*}$$
.

Obviously, for $g \ge 2$, if k is large enough (i. e., $k \ge 12(g-1)$), the esti-

Received March 16, 1956.

¹⁾ For g = 2, however, it is not exact. In this case, the surface is always hyperelliptic and this fact yields immediately that this number does not exceed 48. For $g \ge 4$, it seems to remain still open.

^{*)} Added in proof. We can really show that N'(g, k) = N(g, k); the detail will be written elsewhere.

mation $N'(g, k) \leq 12(g-1) + 6k$ is worse than that of Hurwitz: $N'(g, k) \leq 84(g-1)$.

1.2. In order to prove this theorem, we require a lemma:

LEMMA 1. Let W be a closed Riemann surface of genus $g \ge 2$, and $p' = \varphi(p)$ be a conformal mapping of W onto itself which is not an identity mapping and has a fixed point p_0 . If this mapping is represented as $z' = \varphi(z)$ by a local parameter z about $p_0 (z = 0 \leftrightarrow p_0)$, then

$$\frac{d\varphi(0)}{dz} = e^{2\pi i \frac{m}{n}},$$

where m and n are integers and m/n is not an integer.

Proof. The Taylor expansion $\varphi(z) = \alpha z + \alpha' z^2 + \cdots$ yields the expansions $\varphi^2(z) \equiv \varphi \circ \varphi(z) = \alpha^2 z + \cdots$, $\varphi^3(z) \equiv \varphi \circ \varphi \circ \varphi(z) = \alpha^3 z + \cdots$, etc. Since \mathfrak{G} is a finite group, there exists a number *n* such that $\varphi^n(z) = z$, so that $\alpha^n = 1$ and $\alpha = e^{2\pi i m/n}$. If m/n is an integer, the expansion is $\varphi(z) = z + \beta z^h + \cdots + (\beta \pm 0, h \ge 2)$, since $\varphi(z) \pm z$. This implies $\varphi^2(z) = z + 2\beta z^h + \cdots$, $\varphi^3(z) = z + 3\beta z^h + \cdots$, etc. However, from $\varphi^n(z) = z$, we obtain $n \beta = 0$, which is a contradiction, so that m/n is not an integer.

1.3. The proof of THEOREM 1. It is not difficult to prove the first inequality $N'(g, k) \leq N(g, k)$. Let W be a closed Riemann surface with distinguished points p_1, \dots, p_k . If $g \geq 2$, we take off from W sufficiently small k non-Euclidean discs with the same radius and having centers at p_1, \dots, p_k respectively. Then, any conformal mapping of the region $W - \{p_1, \dots, p_k\}$ onto itself can be considered as a conformal mapping of the resulting bordered Riemann surface onto itself. For g = 1, we take off Euclidean discs and consider analogously. For g = 0 (then $k \geq 3$), the above reduction is performed with the aid of elementary facts of linear transformations.

The proof of the second inequality $N(g, k) \leq 12(g-1) + 6k$ is essentially a mere modification of Hurwitz's one [2]. Consider the doubled Riemann surface \hat{W} of the given bordered Riemann surface W. It is a closed Riemann surface of genus $\hat{g} = 2g + k - 1$, and any element of \mathfrak{G} can be considered as a conformal mapping of \hat{W} onto itself. Since $\hat{g} \geq 2$, ord. \mathfrak{G} = N is finite. What we want to show in the sequel is $N \leq 6(\hat{g} - 1)$.

When we identify the points of \hat{W} which are congruent by the transformation group \mathfrak{G} , we obtain a closed Riemann surface W_0 , and \hat{W} is an *N*-sheeted unbounded (but possibly ramified) covering surface of W_0 ; it is not difficult to verify this fact, because ramifying points are fixed points of the elements of \mathfrak{G} (cf. LEMMA 1) and the number of them is finite. Denoting by g_0 the genus of W_0 , we have the following equality from the well-known Hurwitz's formula:

$$2\hat{g} - 2 = N(2g_0 - 2) + \sum$$
 (ramification index).

24

Now, with respect to a point $p \in W$, we collect all elements of \mathfrak{G} which have a fixed point p, and denote this set by $\mathfrak{G}(p)$. This is a cyclic subgroup of \mathfrak{G} . For $p' = \varphi_0(p)$ ($\varphi_0 \in \mathfrak{G}$), we get immediately

$$\mathfrak{G}(p') = \varphi_0 \cdot \mathfrak{G}(p) \cdot \varphi_0^{-1},$$

which implies

ord.
$$\mathfrak{G}(p) = \text{ord. } \mathfrak{G}(p')$$
.

Obviously, ord. $\mathfrak{S}(p) - 1$ is the ramification index of p with respect to W_0 , so that, for any point $p^0 \in W_0$, the ramification indices of all points over p^0 are the same.

From the symmetricity of \hat{W} and \mathfrak{G} , ramifying points are situated symmetrically on \hat{W} ; furthermore LEMMA 1 shows that there is no such a point on the boundary of W. We project all ramifying points of \hat{W} on W_0 and denote them symmetrically by p_1^0 , \tilde{p}_1^0 , \cdots , p_r^0 , \tilde{p}_r^0 and the corresponding ramification indices by $\nu_1 - 1$, \cdots , $\nu_r - 1$, respectively. Then, since the numbers of points over p_1^0 , \tilde{p}_1^0 , \cdots , p_r^0 , \tilde{p}_r^0 are equal to N/ν_1 , \cdots , N/ν_r respectively, we have

$$\sum$$
 (ramification index) = $2\sum_{\iota=1}^{r} \frac{N}{\nu_{\iota}} (\nu_{\iota} - 1)$,

consequently we get

(1)
$$\frac{\hat{g}-1}{N} = g_0 - 1 + \sum_{\nu=1}^r \left(1 - \frac{1}{\nu_{\nu}}\right).$$

(If W is an unramified covering surface of W_0 , the \sum term of (1) is absent.)

Now, if $g_0 \ge 2$, (1) shows $(\hat{g}-1)/N \ge g_0 - \ge 1$ and we have $N \le \hat{g} - 1$. If $g_0 = 1$, then $r \ge 1$ since $\hat{g} \ge 2$, and from (1), we get $(\hat{g}-1)/N \ge 1 - 1/\nu_1 \ge 1 - 1/2 = 1/2$ and $N \le 2(\hat{g}-1)$. If $g_0 = 0$, then $r \ge 2$ by the same reason as above. In the case of $g_0 = 0$, $r \ge 3$, (1) implies $(\hat{g}-1)/N \ge r/2 - 1 \ge 1/2$ and $N \le 2(\hat{g}-1)$. In the case of $g_0 = 0$, r = 2, the equality (1) is

$$\frac{\hat{g}-1}{N} = 1 - \left(\frac{1}{\nu_1} + \frac{1}{\nu_2}\right).$$

If $\nu_1 \ge 3$, $\nu_2 \ge 3$, we get $(\hat{g} - 1)/N \ge 1 - 2/3 = 1/3$ and $N \le 3(\hat{g} - 1)$. If $\nu_1 \ge 3$, $\nu_2 = 2$, we get $(\hat{g} - 1)/N \ge 1 - 1/2 - 1/3 = 1/6$ and $N \le 6(\hat{g} - 1)$. The case $\nu_1 = \nu_2 = 2$ does not occur. Consequently, in any case, we have $N \le 6(\hat{g} - 1) = 12(g - 1) + 6k$.

§ 2. A special case.

2.1. Naturally we ask whether the estimation of THEOREM 1 is exact or not. For the case of g = 0, M. Heins [1] has determined numbers N and N', namely he has proved

$$N(0, k) = N'(0, k)$$
 for $k \ge 3$

and

N'(0, k) = 2k for $k \neq 4$, 6, 8, 12, 20, $k \ge 3$,

$$N'(0, 4) = 12, N'(0, 6) = N'(0, 8) = 24, N'(0, 12) = N'(0, 20) = 60.$$

We shall determine the number N' for g = 1.

THEOREM 2. For
$$k \ge 1$$
,
 $N'(1, k) = \begin{cases} 6k & \text{for } k = m^2 + 3n^2 \\ 4k & \text{for } k = m^2 + n^2, \text{ but not be representable} \\ & as \ k = m^2 + 3n^2, \\ 3k & \text{for } k = 2(m^2 + 3n^2), \text{ but not be representable} \\ & as \ k = m^2 + n^2,^{2)} \\ 2k & \text{for other } k, \end{cases}$

where $m, n = 0, 1, 2, \cdots$.

The conditions for representability of k in above types are obtained by the prime number decompositions: An integer k is representable in the form $k = m^2 + n^2$, if and only if the prime number decomposition of k is $2^{\gamma} \prod_i p_i^{\alpha_i} \prod_j q_j^{2\beta_j}$, where α , β and γ are non-negative integers, p and q are prime numbers such that $p \equiv 1 \pmod{4}$ and $q \equiv 3 \pmod{4}$; similarly, the condition for $k = m^2 + 3n^2$ is $k = 2^{2\gamma} 3^{\delta} \prod_i p_i^{\alpha_i} \prod_j q_j^{2\beta_i}$ where $p \equiv 1 \pmod{3}$ and $q \equiv 2 \pmod{3}$ and $q \neq 2$.

Using them, we can compute N'(1, k), for instance, as follows:

$$N'(1, 1) = 6k = 6,$$
 $N'(1, 2) = 4k = 8,$
 $N'(1, 6) = 3k = 18,$ $N'(1, 11) = 2k = 22.$

2.2 In order to prove THEOREM 2 we use the elementary properties of lattices. We consider a lattice in the complex ζ -plane and denote the principal lattice points by ω , ω' . In order that the lattice may be determined uniquely by ω , ω' , we must assume that they satisfy the following conditions:

(2)
$$\left|\frac{1}{2} \leq \Re \frac{\omega'}{\omega} < \frac{1}{2}, \qquad \Im \frac{\omega'}{\omega} > 0,$$
$$\left|\frac{\omega'}{\omega}\right| \geq 1 \quad \text{if} \quad -\frac{1}{2} \leq \Re \frac{\omega'}{\omega} \leq 0,$$
$$\left|\frac{\omega'}{\omega}\right| > 1 \quad \text{if} \quad 0 < \Re \frac{\omega'}{\omega} < \frac{1}{2}.$$

26

²⁾ In this case, the prime number decomposition shows that k can not be represented as $k = m^2 + 3n^2$.

A point ζ which is representable in the form $\zeta = m\omega + n\omega'$ (*m* and *n* are integers) is called a lattice point, and the set of all of them is denoted by

$$L(\omega, \omega') = \{m\omega + n\omega'; m, n = 0, \pm 1, \pm 2, \cdots\}.$$

LEMMA 2. Let $P = \{s\Omega + t\Omega'; 0 \leq s < 1, 0 \leq t < 1\}$ be a parallelogram, four vertices of which are lattice points (i.e. Ω , $\Omega' \in L(\omega, \omega')$). Then, the number of lattice points which belong to P is equal to the ratio of areas, namely it is equal to

$$\Im \Omega' \overline{\Omega} / \Im \omega' \overline{\omega}$$
.

This is a famous property of lattice and we omit the proof. The following lemma also seems to be well-known, and it can be proved very easily:

LEMMA 3. Suppose there exists a linear transformation $\zeta' = \alpha \zeta + \beta$ which gives a one-to-one mapping of $L(\omega, \omega')$ onto itself.

(i) If $\omega' = i\omega$, then α must be one among the numbers $\pm 1, \pm i$.

(ii) If $\omega' = \mathcal{E}^2 \omega(\mathcal{E} = e^{i\pi/3})$, then α must be one among the numbers ± 1 , $\pm \mathcal{E}$, $\pm \mathcal{E}^2$.

(iii) In the other cases, α must be either of ± 1 .

Conversely, in each case, there exist transformations $\zeta' = \alpha \zeta$ with such α .

2.3 For the purpose of preparation, let us consider the group \mathfrak{G}^* of all conformal mappings of a closed Riemann surface W of genus 1 onto itself.

As is known, the group Γ of covering transformations of the universal covering surface $z' < \infty$ of W consists of linear transformations

 $z' = z + \zeta, \qquad \zeta \in L(\omega, \omega').$

We may assume that ω'/ω satisfies the condition (2). Then the surface W is determined uniquely by ω'/ω ; the surface W with $\omega' = i\omega$ will be denoted by W_i with $\omega' = \epsilon^2 \omega$ ($\epsilon = e^{i\pi/3}$) will be denoted by W_{ϵ} .

An element of \mathfrak{G}^* induces in the well-known manner a linear transformation S(z) = az + b of the universal covering surface $|z| < \infty$ onto itself. It satisfies a relation

$$(3) z' = z + \zeta \leftrightarrow S(z') = S(z) + \zeta', |z| < \infty,$$

where ζ , $\zeta' \in L(\omega, \omega')$ and the correspondence $\zeta \longleftrightarrow \zeta'$ does not depend on the choice of z; in other words, S determines an automorphism of Γ . Conversely, any S(z) = az + b satisfying the relation (3) determines an element of \mathfrak{G}^* . So that, denoting by G^* the group of all S(z) = az + bwith the condition (3), we get immediately

$$G^*/\Gamma \cong \mathfrak{G}^*.$$

For any W, linear transformations z' = z + b and z' = -z + b are con-

tained in G^* for arbitrary b. As regards $S(z) = az \ (a \neq \pm 1)$, however, LEMMA 3 shows that $S(z) \notin G^*$ for $W \neq W_i$, $W_{\mathcal{E}}$; for W_i , G^* contains $z' = \pm iz$ and only them; for W_{ε} , G^* contains $z' = \pm \varepsilon z$, $z' = \pm \varepsilon^2 z$ and only them. Now, let G_0^* be a set of all linear transformations S(z) = z + b. It is evidently a normal subgroup of G^* , and the above consideration shows

On the basic surface W, denoting by \mathfrak{G}_0^* the set of all elements of \mathfrak{G}^* which have no fixed point on W, we see immediately that $G_0^*/\Gamma \cong \mathfrak{G}_0^*$. So that \mathfrak{G}_0^* is a normal subgroup of \mathfrak{G}^* and $\mathfrak{G}^*/\mathfrak{G}_0^* \cong G^*/G_0$, and we can see the structure of $\mathfrak{G}^*/\mathfrak{G}_0^*$ immediately from (4).

2.4. Proof of THEOREM 2. Let W be a closed Riemann surface of genus 1 with distinguished points p_1, \dots, p_k , and \mathfrak{G} be the group of all conformal mappings of the region $W - \{p_1, \dots, p_k\}$ onto itself. All elements of \mathfrak{G} are considered as conformal mappings of W onto itself, i.e. $\mathfrak{G} \subset \mathfrak{G}^*$. We denote by \mathfrak{G}_0 the set of all elements of \mathfrak{G} which have no fixed point on W. Since $\mathfrak{G}_0 = \mathfrak{G} \cap \mathfrak{G}_0^*$, \mathfrak{G}_0 is a normal subgroup of \mathfrak{G} and

$$(5) \qquad \qquad \Im/\Im_0 \subset \Im^*/\Im_0^* \cong G^*/G_0^*.$$

It is now not difficult to construct an example such that ord. $\mathfrak{G}_0 = k$, ord. $(\mathfrak{G}/\mathfrak{G}_0) = 2$, concerning any $k \ge 1$; hence we have

$$N'(1, k) \ge 2k$$
, for $k \ge 1$.

From the definition of the group \mathfrak{G}_0 , we can easily see that ord. \mathfrak{G}_0 is equal to one of the numbers $k, k/2, k/3, \cdots$. So that we conclude from (4) and (5) that the possibility ord. $\mathfrak{G} > 2k$ occurs only in the following cases: For W_i , ord. $\mathfrak{G}_0 = k$ and ord. $(\mathfrak{G}/\mathfrak{G}_0) = 4$; for $W_{\mathcal{E}}$, ord. $\mathfrak{G}_0 = k$ or k/2and ord. $(\mathfrak{G}/\mathfrak{G}_0) = 3$ or 6; for $\neq W_i$, $W_{\mathcal{E}}$, it is impossible. Consequently, for the purpose of determining N'(1, k), it suffices to consider the following four cases:

Case I: On W_i , the distinguished points p_1, \dots, p_k are congruent to each other by \mathfrak{G}_0 and \mathfrak{G} contains an element which corresponds to V(z) = iz + b. In this case, ord. $\mathfrak{G} = 4k$.

Case II: On $W_{\mathcal{E}}$, p_1 , \cdots , p_k are congruent to each other by \mathfrak{G}_0 , and \mathfrak{G} contains an element corresponding to $T(z) = \mathfrak{E}z + b$. In this case, ord. $\mathfrak{G} = 6k$.

Case III: On $W_{\mathcal{E}}$, p_1 , \cdots , p_k are congruent to each other by \mathfrak{G}_0 and \mathfrak{G} contains an element corresponding to $T_1(z) = \mathfrak{E}^2 z + b$. In this case, ord. $\mathfrak{G} = 3k$.

Case IV: k is even. On $W_{\mathcal{E}}$, only $p_1, \dots, p_{k/2}$ are congruent to each other by \mathfrak{G}_0 , and \mathfrak{G} contains an element corresponding to $T(z) = \mathfrak{E}z + b$. In this case, ord. $\mathfrak{G} = 3k$.

Now, on the universal covering surface $|z| < \infty$ of W, the groups G, G_0 of linear transformations correspond to $\mathfrak{G}, \mathfrak{G}_0$ respectively. Since $G_0/\Gamma \cong \mathfrak{G}_0$ and ord. $\mathfrak{G}_0 \leq k < \infty$, the group G_0 consists of the transformations of the following forms:

$$z' = z + m\mu + n\mu'$$
, $m, n = 0, \pm 1, \pm 2, \cdots$

where we may assume that μ'/μ satisfies the condition (2). The fact $G_0 \supset \Gamma$ implies $L(\mu, \mu') \supset L(\omega, \omega')$.

Case I: Take the point z = 0 over a distinguished point p_1 . Then the set of all points z that are congruent to z = 0 by G_0 , namely the set $L(\mu, \mu')$, coincides with the set of all points z situated over p_1, \dots, p_k . Consequently, the principal parallelogram of the lattice (ω, ω') , which is a fundamental region of the group Γ , contains k points of $L(\mu, \mu')$. Then LEMMA 2 shows that k is equal to the ratio of areas of principal parallelograms of lattices (ω, ω') and (μ, μ') .

On the other hand, G contains an element V(z) = iz + b, which gives a one-to-one transformation of $L(\mu, \mu')$ onto itself, since any element of \mathfrak{G} preserves the set $\{p_1, \dots, p_k\}$. So that, when we apply LEMMA 3 to $L(\mu, \mu')$, we have $i\mu = \mu'$, which means that lattices (ω, ω') and (μ, μ') are similar. Supposing now $\omega = m\mu + n\mu'$, the side of principal parallelogram of (ω, ω') is $\sqrt{m^2 + n^2}$. μ , and then the ratio of areas is equal to $m^2 + n^2$. Consequently we obtain

$$k=m^2+n^2.$$

Conversely, if $k = m^2 + n^2$, the above consideration shows that we can easily find points p_1, \dots, p_k on W_i so that Case I may occur.

Case II, Case III are analogous to the above case. We can see $\mu' = \varepsilon^2 \mu$. If $\omega = m\mu + n\mu'$, the side of principal parallelogram of lattice (ω, ω') is $\sqrt{m_2 + n^2 - mn} |\mu|$, and consequently we have $k = m^2 + n^2 - mn$. It is not difficult to see that k is representable as $k = m^2 + n^2 - mn$ if and only if k is representable as $k = m^2 + 3n^2$.

Case IV: Take z = 0 over p_1 . Since only $p_1, \dots, p_{k/2}$ are congruent to each other by \mathfrak{G}_0 , the number of lattice points of $L(\mu, \mu')$ that are contained in the principal parallelogram of the lattice (ω, ω') is equal to k/2. By the assumption of Case IV, G contains a linear transformation of the form $T(z) = \varepsilon z + b$, to which corresponds an element $p' = \varphi(p)$ in \mathfrak{G} .

If $\varphi(\{p_1, \dots, p_{k/2}\}) = \{p_1, \dots, p_{k/2}\}$, the situation is similar to the case II. We obtain analogously $k/2 = m^2 + n^2 - mn$. (To tell the truth, this case does not occur. We omit the proof of it, since it has no effect on the proof of our theorem.)

If φ does not satisfy the condition above, we can show easily

$$\varphi(\{p_1, \dots, p_{k/2}\}) = \{p_{k/2+1}, \dots, p_k\},\$$

$$\varphi \circ \varphi(\{p_1, \dots, p_{k/2}\}) = \{p_1, \dots, p_{k/2}\}.$$

So that, repeating the same argument as in Case III with respect to $\varphi \circ \varphi$, we get $k/2 = m^2 + n^2 - mn$. Conversely, if $k = 2(m^2 + n^2 - mn)$, we can easily find points p_1, \dots, p_k on $W_{\mathcal{E}}$ so that Case IV may occur.

References

- [1] M. HEINS, On the number of 1-1 directly conformal maps which a multiplyconnected plane region of finite connectivity p (>2) admits onto itself. Bull. Amer. Math. Soc. 52(1946), 454-457.
- [2] A. HURWITZ, Über algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann. 41 (1893), 403-442.

MATHEMATICAL INSTITUTE, TOKYO UNIVERSITY.