NOTES ON CONFORMAL MAPPINGS OF A RIEMANN SURFACE ONTO ITSELF

By Kotaro Oikawa

It is well-known that a closed Riemann surface of genus $g \geqq 2$ admits only a finite number of conformal mappings onto itself. More precisely, A. Hurwitz [2] has shown that this number does not exceed $84(g-1)$ and this estimation is exact for $g=3^{1}$. On the other hand, a plane region of finite ($\geqq 3$) connectivity admits only a finite number of conformal mappings onto itself, and the estimation of this number has been determined completely by M. Heins [1]. In this paper, we shall treat a bordered Riemann surface and a closed Riemann surface with a finite number of distinguished points.

§ 1. General estimations.

1.1. Let W be a bordered Riemann surface (i. e. a compact subregion of a Riemann surface, the relative boundary of which consists of a finite number of closed analytic curves) and (S) be the group of all conformal mappings of W onto itself. For given integers $g(\geqq 0)$ and $k(\geqq 1)$, we take the maximum of order of (S) with respect to all W having genus g and k boundary components, and set

$$
N(g, k)=\max (\text { ord. (S) })
$$

Next, on a closed Riemann surface W of genus g, we take k points p_{1}, p_{2}, \cdots, p_{k} and consider the group (3) of all conformal mappings of the region $W-\left\{p_{1}, \cdots, p_{k}\right\}$ onto itself. For given integers g and k, we take the maximum of order of (3) with respect to all W of genus g and all sets of k points $p_{1}, \cdots, p_{k} \in W$, and set

$$
N^{\prime}(g, k)=\max (\text { ord. (S) })
$$

Concerning these numbers, we shall prove the following double inequality:

Theorem 1. For $2 g+k-1 \geqq 2 \quad(g \geqq 0, k \geqq 1)$,

$$
\left.N^{\prime}(g, k) \leqq N(g, k) \leqq 12(g-1)+6 k^{*}\right)
$$

Obviously, for $g \geqq 2$, if k is large enough (i. e., $k \geqq 12(g-1)$), the esti-

[^0]mation $N^{\prime}(g, k) \leqq 12(g-1)+6 k$ is worse than that of Hurwitz: $N^{\prime}(g, k)$ $\leqq 84(g-1)$.
1.2. In order to prove this theorem, we require a lemma:

Lemma 1. Let W be a closed Riemann surface of genus $g \geqq 2$, and $p^{\prime}=\varphi(p)$ be a conformal mapping of W onto itself which is not an identity mapping and has a fixed point p_{0}. If this mapping is represented as $z^{\prime}=\varphi(z)$ by a local parameter z about $p_{0}\left(z=0 \longleftrightarrow p_{0}\right)$, then

$$
\frac{d \varphi(0)}{d z}=e^{2 \pi i \frac{m}{n}},
$$

where m and n are integers and m / n is not an integer.
Proof. The Taylor expansion $\varphi(z)=\alpha z+\alpha^{\prime} z^{2}+\cdots$ yields the expansions $\varphi^{2}(z) \equiv \varphi \circ \varphi(z)=\alpha^{2} z+\cdots, \varphi^{3}(z) \equiv \varphi \circ \varphi \circ \varphi(z)=\alpha^{3} z+\cdots$, etc. Since \mathscr{B} is a finite group, there exists a number n such that $\varphi^{n}(z)=z$, so that $\alpha^{n}=1$ and $\alpha=e^{2 \pi i m / n}$. If m / n is an integer, the expansion is $\varphi(z)=z+\beta z^{h}+\cdots(\beta \neq 0, h \geqq 2)$, since $\varphi(z) \neq z$. This implies $\varphi^{2}(z)=z$ $+2 \beta z^{h}+\cdots, \varphi^{3}(z)=z+3 \beta z^{h}+\cdots$, etc. However, from $\varphi^{n}(z)=z$, we obtain $n \beta=0$, which is a contradiction, so that m / n is not an integer.
1.3. The proof of Theorem 1. It is not difficult to prove the first inequality $N^{\prime}(g, k) \leqq N(g, k)$. Let W be a closed Riemann surface with distinguished points p_{1}, \cdots, p_{k}. If $g \geqq 2$, we take off from W sufficiently small k non-Euclidean discs with the same radius and having centers at p_{1}, \cdots, p_{k} respectively. Then, any conformal mapping of the region $W-\left\{p_{1}, \cdots, p_{k}\right\}$ onto itself can be considered as a conformal mapping of the resulting bordered Riemann surface onto itself. For $g=1$, we take off Euclidean discs and consider analogously. For $g=0$ (then $k \geqq 3$), the above reduction is performed with the aid of elementary facts of linear transformations.

The proof of the second inequality $N(g, k) \leqq 12(g-1)+6 k$ is essentially a mere modification of Hurwitz's one [2]. Consider the doubled Riemann surface \hat{W} of the given bordered Riemann surface W. It is a closed Riemann surface of genus $\hat{g}=2 g+k-1$, and any element of \mathfrak{G} can be considered as a conformal mapping of \hat{W} onto itself. Since $\hat{g} \geqq 2$, ord. (S) $=N$ is finite. What we want to show in the sequel is $N \leqq 6(\hat{g}-1)$.
When we identify the points of \hat{W} which are congruent by the transformation group \mathbb{G}, we obtain a closed Riemann surface W_{0}, and \hat{W} is an N-sheeted unbounded (but possibly ramified) covering surface of W_{0}; it is not difficult to verify this fact, because ramifying points are fixed points of the elements of \mathscr{G} (cf. Lemma 1) and the number of them is finite. Denoting by g_{0} the genus of W_{0}, we have the following equality from the well-known Hurwitz's formula:

$$
2 \hat{g}-2=N\left(2 g_{0}-2\right)+\Sigma(\text { ramification index })
$$

Now, with respect to a point $p \in W$, we collect all elements of \mathbb{C} which have a fixed point p, and denote this set by $\mathfrak{G}(p)$. This is a cyclic subgroup of \mathscr{G}. For $p^{\prime}=\varphi_{0}(p)\left(\mathscr{\varphi}_{0} \in \mathbb{G}\right)$, we get immediately

$$
\mathfrak{G}\left(p^{\prime}\right)=\varphi_{0} \cdot \mathfrak{B}(p) \cdot \varphi_{0}^{-1}
$$

which implies

$$
\text { ord. } \mathscr{G}(p)=\text { ord. } \mathfrak{G}\left(p^{\prime}\right)
$$

Obviously, ord. $\mathfrak{E}(p)-1$ is the ramification index of p with respect to W_{0}, so that, for any point $p^{0} \in W_{0}$, the ramification indices of all points over p^{0} are the same.
From the symmetricity of \hat{W} and \mathscr{G}, ramifying points are situated symmetrically on \hat{W}; furthermore Lemma 1 shows that there is no such a point on the boundary of W. We project all ramifying points of \hat{W} on W_{0} and denote them symmetrically by $p_{1}{ }^{0}, \tilde{p}_{1}{ }^{0}, \cdots, p_{r}{ }^{0}, \tilde{p}_{r}{ }^{0}$ and the corresponding ramification indices by $\nu_{1}-1, \cdots, \nu_{r}-1$, respectively. Then, since the numbers of points over $p_{1}{ }^{0}, \tilde{p}_{1}{ }^{0}, \cdots, p_{r}{ }^{0}, \tilde{p}_{r}{ }^{0}$ are equal to N / ν_{1}, $\cdots, N / \nu_{r}$ respectively, we have

$$
\Sigma(\text { ramification index })=2 \sum_{i=1}^{r} \frac{N}{\nu_{t}}\left(\nu_{t}-1\right),
$$

consequently we get

$$
\begin{equation*}
\frac{\hat{g}-1}{N}=g_{0}-1+\sum_{i=1}^{r}\left(1-\frac{1}{\nu_{i}}\right) . \tag{1}
\end{equation*}
$$

(If W is an unramified covering surface of W_{0}, the Σ term of (1) is absent.)
Now, if $g_{0} \geqq 2$, (1) shows $(\hat{g}-1) / N \geqq g_{0}-\geqq 1$ and we have $N \leqq \hat{g}-1$. If $g_{0}=1$, then $r \geqq 1$ since $\hat{g} \geqq 2$, and from (1), we get $(\hat{g}-1) / N \geqq 1-1 / \nu_{1}$ $\geqq 1-1 / 2=1 / 2$ and $N \leqq 2(\hat{g}-1)$. If $g_{0}=0$, then $r \geqq 2$ by the same reason as above. In the case of $g_{0}=0, r \geqq 3$, (1) implies $(\hat{g}-1) / N \geqq r / 2-1 \geqq 1 / 2$ and $N \leqq 2(\hat{g}-1)$. In the case of $g_{0}=0, r=2$, the equalily (1) is

$$
\frac{\hat{g}-1}{N}=1-\left(\frac{1}{\nu_{1}}+\frac{1}{\nu_{2}}\right) .
$$

If $\nu_{1} \geqq 3, \quad \nu_{2} \geqq 3$, we get $(\hat{g}-1) / N \geqq 1-2 / 3=1 / 3$ and $N \leqq 3(\hat{g}-1)$. If ν_{1} $\geqq 3, \nu_{2}=2$, we get $(\hat{g}-1) / N \geqq 1-1 / 2-1 / 3=1 / 6$ and $N \leqq 6(\hat{g}-1)$. The case $\nu_{1}=\nu_{2}=2$ does not occur. Consequently, in any case, we have $N \leqq 6(\hat{g}-1)=12(g-1)+6 k$.

§ 2. A special case.

2.1. Naturally we ask whether the estimation of Theorem 1 is exact or not. For the case of $g=0, \mathrm{M}$. Heins [1] has determined numbers N and N^{\prime}, namely he has proved

$$
N(0, k)=N^{\prime}(0, k) \quad \text { for } \quad k \geqq 3
$$

and

$$
\begin{gathered}
N^{\prime}(0, k)=2 k \quad \text { for } \quad k \neq 4,6,8,12,20, k \geqq 3, \\
N^{\prime}(0,4)=12, N^{\prime}(0,6)=N^{\prime}(0,8)=24, N^{\prime}(0,12)=N^{\prime}(0,20)=60 .
\end{gathered}
$$

We shall determine the number N^{\prime} for $g=1$.
Theorem 2. For $k \geqq 1$,

$$
N^{\prime}(1, k)=\left\{\begin{array}{cc}
6 k & \text { for } k=m^{2}+3 n^{2} \\
4 k & \text { for } k=m^{2}+n^{2}, \text { but not be representable } \\
\text { as } k=m^{2}+3 n^{2}, \\
3 k & \text { for } k=2\left(m^{2}+3 n^{2}\right) \text {, but not be representable } \\
\text { as } \left.k=m^{2}+n^{2}, 2\right) \\
2 k & \text { for other } k
\end{array}\right.
$$

where $m, n=0,1,2, \cdots$.
The conditions for representability of k in above types are obtained by the prime number decompositions: An integer k is representable in the form $k=m^{2}+n^{2}$, if and only if the prime number decomposition of k is $2^{\gamma} \Pi_{i} p_{i}{ }^{\alpha}{ }^{2} \Pi_{j} q_{j}{ }^{2 \beta}{ }^{\prime}$, where α, β and γ are non-negative integers, p and q are prime numbers such that $p \equiv 1$ (mod. 4) and $q \equiv 3$ (mod. 4); similarly, the condition for $k=m^{2}+3 n^{2}$ is $k=2^{2 \gamma} 3^{\delta} \Pi_{\imath} p_{i}{ }^{\alpha}{ }_{\imath} \Pi_{j} q_{j}{ }^{2 \beta}{ }_{l}$ where $p \equiv 1$ (mod. 3$)$ and $q \equiv 2(\bmod .3)$ and $q \neq 2$.
Using them, we can compute $N^{\prime}(1, k)$, for instance, as follows:

$$
\begin{aligned}
& N^{\prime}(1,1)=6 k=6, \quad N^{\prime}(1,2)=4 k=8, \\
& N^{\prime}(1,6)=3 k=18, \quad N^{\prime}(1,11)=2 k=22 .
\end{aligned}
$$

2.2 In order to prove Theorem 2 we use the elementary properties of lattices. We consider a lattice in the complex ζ-plane and denote the principal lattice points by ω, ω^{\prime}. In order that the lattice may be determined uniquely by ω, ω^{\prime}, we must assume that they satisfy the following conditions:

$$
\begin{align*}
& -\frac{1}{2} \leqq \Re \frac{\omega^{\prime}}{\omega}<\frac{1}{2}, \quad \Im \frac{\omega^{\prime}}{\omega}>0, \\
& \left|\frac{\omega^{\prime}}{\omega}\right| \geqq 1 \quad \text { if } \quad-\frac{1}{2} \leqq \Re \frac{\omega^{\prime}}{\omega} \leqq 0, \tag{2}\\
& \left|\frac{\omega^{\prime}}{\omega}\right|>1 \quad \text { if } \quad 0<\Re \frac{\omega^{\prime}}{\omega}<\frac{1}{2} .
\end{align*}
$$

2) In this case, the prime number decomposition shows that k can not be represented as $k=m^{2}+3 n^{2}$.

A point ζ which is representable in the form $\zeta=m \omega+n \omega^{\prime}$ (m and n are integers) is called a lattice point, and the set of all of them is denoted by

$$
L\left(\omega, \omega^{\prime}\right)=\left\{m \omega+n \omega^{\prime} ; m, n=0, \pm 1, \pm 2, \cdots\right\}
$$

Lemma 2. Let $P=\left\{s \Omega+t \Omega^{\prime} ; 0 \leqq s<1,0 \leqq t<1\right\}$ be a parallelogram, four vertices of which are lattice points (i.e. $\left.\Omega, \Omega^{\prime} \in L\left(\omega, \omega^{\prime}\right)\right)$. Then, the number of lattice points which belong to P is equal to the ratio of areas, namely it is equal to

$$
\left|\mathfrak{\Im} \Omega^{\prime} \bar{\Omega}\right| / \Im \omega^{\prime} \bar{\omega}
$$

This is a famous property of lattice and we omit the proof. The following lemma also seems to be well-known, and it can be proved very easily :

Lemma 3. Suppose there exists a linear transformation $\zeta^{\prime}=\alpha \zeta+\beta$ which gives a one-to-one mapping of $L\left(\omega, \omega^{\prime}\right)$ onto itself.
(i) If $\omega^{\prime}=i \omega$, then α must be one among the numbers $\pm 1, \pm i$.
(ii) If $\omega^{\prime}=\varepsilon^{2} \omega\left(\varepsilon=e^{i \pi / 3}\right)$, then α must be one among the numbers ± 1, $\pm \varepsilon, \pm \varepsilon^{2}$.
(iii) In the other cases, α must be either of ± 1.

Conversely, in each case, there exist transformations $\zeta^{\prime}=\alpha \zeta$ with such α.
2.3 For the purpose of preparation, let us consider the group $\mathbb{S b}^{*}$ of all conformal mappings of a closed Riemann surface W of genus 1 onto itself.

As is known, the group Γ of covering transformations of the universal covering surface $z^{\prime}<\infty$ of W consists of linear transformations

$$
z^{\prime}=z+\zeta, \quad \zeta \in L\left(\omega, \omega^{\prime}\right)
$$

We may assume that ω^{\prime} / ω satisfies the condition (2). Then the surface W is determined uniquely by ω^{\prime} / ω; the surface W with $\omega^{\prime}=i \omega$ will be denoted by W_{\imath} with $\omega^{\prime}=\varepsilon^{2} \omega\left(\varepsilon=e^{i \pi / 3}\right)$ will be denoted by W_{ε}.

An element of $\mathscr{S S}^{*}$ induces in the well-known manner a linear transformation $S(z)=a z+b$ of the universal covering surface $|z|<\infty$ onto itself. It satisfies a relation

$$
\begin{equation*}
z^{\prime}=z+\zeta \quad \longleftrightarrow \quad S\left(z^{\prime}\right)=S(z)+\zeta^{\prime}, \quad|z|<\infty \tag{3}
\end{equation*}
$$

where $\zeta, \zeta^{\prime} \in L\left(\omega, \omega^{\prime}\right)$ and the correspondence $\zeta \longleftrightarrow \zeta^{\prime}$ does not depend on the choice of z; in other words, S determines an automorphism of Γ. Conversely, any $S(z)=a z+b$ satisfying the relation (3) determines an element of (3) *. So that, denoting by G^{*} the group of all $S(z)=a z+b$ with the condition (3), we get immediately

$$
G^{*} / \Gamma \cong \mathfrak{G}^{*}
$$

For any W, linear transformations $z^{\prime}=z+b$ and $z^{\prime}=-z+b$ are con-
tained in G^{*} for arbitrary b. As regards $S(z)=a z(a \neq \pm 1)$, however, Lemma 3 shows that $S(z) \notin G^{*}$ for $W \neq W_{\imath}, W_{\varepsilon}$; for W_{i}, G^{*} contains z^{\prime} $= \pm i z$ and only them; for W_{ε}, G^{*} contains $z^{\prime}= \pm \varepsilon z, z^{\prime}= \pm \varepsilon^{\prime \prime} z$ and only them. Now, let $G_{0}{ }^{*}$ be a set of all linear transformations $S(z)=z+b$. It is evidently a normal subgroup of G^{*}, and the above consideration shows

$$
G^{*} / G_{0}{ }^{*} \cong \begin{cases}\{I, U\} & \text { for } W \neq W_{i}, W_{\varepsilon}, \tag{4}\\ & \text { where } I(z)=z, U(z)=-z \\ \left\{I, V, V^{2}, V^{3}\right\} & \text { for } W_{\imath}, \text { where } V(z)=i z \\ \left\{I, T, T^{2}, T^{3}, T^{4}, T^{j}\right\} & \text { for } W_{\varepsilon}, \text { where } T(z)=\varepsilon z\end{cases}
$$

On the basic surface W, denoting by $\mathfrak{G}_{0} *$ the set of all elements of $\mathfrak{C B}$ * which have no fixed point on W, we see immediately that $G_{0} * / \Gamma \cong \mathbb{G}_{0}^{*}$. So that $\mathscr{S}_{0} *$ is a normal subgroup of $\mathbb{C b}^{*}$ and $\mathscr{S b}^{*} / \mathscr{S}_{0}{ }^{*} \cong G^{*} / G_{0}$, and we can see the structure of $\mathscr{B}^{*} / \mathscr{G}_{0} *$ immediately from (4).
2.4. Proof of Theorem 2. Let W be a closed Riemann surface of genus 1 with distinguished points p_{1}, \cdots, p_{k}, and \mathbb{F} be the group of all conformal mappings of the region $W-\left\{p_{1}, \cdots, p_{k}\right\}$ onto itself. All elements of \mathfrak{B} are considered as conformal mappings of W onto itself, i. e. © $\subset\left({ }^{(5)}\right.$. We denote by \mathscr{G}_{0} the set of all elements of \mathbb{B} which have no fixed point on W. Since $\mathfrak{G}_{0}=\mathfrak{G} \cap \mathscr{G}_{0}{ }^{*}, \mathscr{G}_{0}$ is a normal subgroup of \mathfrak{G} and

$$
\begin{equation*}
\mathfrak{B} / \mathscr{G}_{0} \subset \mathfrak{B S}^{*} / \mathscr{E}_{0} * \cong G^{*} / G_{0} * \tag{5}
\end{equation*}
$$

It is now not difficult to construct an example such that ord. $\mathbb{S}_{0}=k$, ord. $\left(\mathbb{G} / \mathscr{G}_{0}\right)=2$, concerning any $k \geqq 1$; hence we have

$$
N^{\prime}(1, k) \geqq 2 k, \quad \text { for } \quad k \geqq 1
$$

From the definition of the group \mathscr{G}_{0}, we can easily see that ord. \mathscr{G}_{0} is equal to one of the numbers $k, k / 2, k / 3, \cdots$. So that we conclude from (4) and (5) that the possibility ord. $\mathfrak{G}>2 k$ occurs only in the following cases: For W_{i}, ord. $\mathscr{S}_{0}=k$ and ord. $\left(\mathbb{B} / \mathscr{S}_{0}\right)=4$; for W_{ε}, ord. $\mathscr{S}_{0}=k$ or $k / 2$ and ord. $\left(\mathbb{G} / \mathscr{G}_{0}\right)=3$ or 6 ; for $\neq W_{i}, W_{\varepsilon}$, it is impossible. Consequently, for the purpose of determining $N^{\prime}(1, k)$, it suffices to consider the following four cases:

Case I : On W_{2}, the distinguished points p_{1}, \cdots, p_{k} are congruent to each other by \mathbb{S}_{0} and \mathbb{E}_{5} contains an element which corresponds to $V(z)=i z$ $+b$. In this case, ord. $\mathbb{B}=4 k$.

Case $I I$: On $W_{\varepsilon}, p_{1}, \cdots, p_{k}$ are congruent to each other by \mathbb{B}_{0}, and (3) contains an element corresponding to $T(z)=\varepsilon z+b$. In this case, ord. $\mathbb{E}=6 \mathrm{k}$.

Case III: On $W_{\varepsilon}, p_{1}, \cdots, p_{k}$ are congruent to each other by \mathscr{S}_{0} and $\left(\mathbb{S}\right.$ contains an element corresponding to $T_{1}(z)=\varepsilon^{2} z+b$. In this case, ord. $(\mathbb{S}=3 k$.
Case $I V: k$ is even. On W_{ε}, only $p_{1}, \cdots, p_{k / 2}$ are congruent to each other by \mathscr{E}_{0}, and \mathscr{S}^{5} contains an element corresponding to $T(z)=\varepsilon z+b$. In
this case, ord. $\mathfrak{B}=3 k$.
Now, on the universal covering surface $\mid z!<\infty$ of W, the groups G, G_{0} of linear transformations correspond to $\mathscr{G}, \mathscr{G}_{0}$ respectively. Since G_{0} / Γ $\cong \mathbb{G}_{0}$ and ord. $\mathscr{S}_{0} \leqq k<\infty$, the group G_{0} consists of the transformations of the following forms:

$$
z^{\prime}=z+m \mu+n \mu^{\prime}, \quad m, n=0, \pm 1, \pm 2, \cdots
$$

where we may assume thet μ^{\prime} / μ satisfies the condition (2). The fact $G_{0} \supset \Gamma$ implies $L\left(\mu, \mu^{\prime}\right) \supset L\left(\omega, \omega^{\prime}\right)$.

Case I: Take the point $z=0$ over a distinguished point p_{1}. Then the set of all points z that are congruent to $z=0$ by G_{0}, namely the set $L\left(\mu, \mu^{\prime}\right)$, coincides with the set of all points z situated over p_{1}, \cdots, p_{k}. Consequently, the principal parallelogram of the lattice (ω, ω^{\prime}), which is a fundamental region of the group Γ, contains k points of $L\left(\mu, \mu^{\prime}\right)$. Then Lemma 2 shows that k is equal to the ratio of areas of principal parallelograms of lattices (ω, ω^{\prime}) and (μ, μ^{\prime}).
On the other hand, G contains an element $V(z)=i z+b$, which gives a one-to-one transformation of $L\left(\mu, \mu^{\prime}\right)$ onto itself, since any element of $\left(\sqrt[3]{ }\right.$ preserves the set $\left\{p_{1}, \cdots, p_{k}\right\}$. So that, when we apply Lemma 3 to $L\left(\mu, \mu^{\prime}\right)$, we have $i \mu=\mu^{\prime}$, which means that lattices (ω, ω^{\prime}) and (μ, μ^{\prime}) are similar. Supposing now $\omega=m \mu+n \mu^{\prime}$, the side of principal parallelogram of (ω, ω^{\prime}) is $\sqrt{m^{2}+n^{2}} \cdot \mu$, , and then the ratio of areas is equal to $m^{2}+n^{2}$. Consequently we obtain

$$
k=m^{2}+n^{2} .
$$

Conversely, if $k=m^{2}+n^{2}$, the above consideration shows that we can easily find points p_{1}, \cdots, p_{k} on W_{\imath} so that Case I may occur.

Case II, Case III are analogous to the above case. We can see $\mu^{\prime}=\varepsilon^{2} \mu$. If $\omega=m \mu+n \mu^{\prime}$, the side of principal parallelogram of lattice (ω, ω^{\prime}) is $\sqrt{m_{2}+n^{2}-m n} \cdot \mu$, and consequently we have $k=m^{2}+n^{2}-m n$. It is not difficult to see that k is representable as $k=m^{2}+n^{2}-m n$ if and only if k is representable as $k=m^{2}+3 n^{2}$.

Case IV: Take $z=0$ over p_{1}. Since only $p_{1}, \cdots, p_{k / 2}$ are congruent to each other by \mathscr{E}_{0}, the number of lattice points of $L\left(\mu, \mu^{\prime}\right)$ that are contained in the principal parallelogram of the lattice (ω, ω^{\prime}) is equal to $k / 2$. By the assumption of Case IV, G contains a linear transformation of the form $T(z)=\varepsilon z+b$, to which corresponds an element $p^{\prime}=\varphi(p)$ in $(\mathbb{O}$.
If $\varphi\left(\left\{p_{1}, \cdots, p_{k / 2}\right\}\right)=\left\{p_{1}, \cdots, p_{k / 2}\right\}$, the situation is similar to the case II. We obtain analogously $k / 2=m^{2}+n^{2}-m n$. (To tell the truth, this case does not occur. We omit the proof of it, since it has no effect on the proof of our theorem.)
If φ does not satisfy the condition above, we can show easily

$$
\varphi\left(\left\{p_{1}, \cdots, p_{k / 2}\right\}\right)=\left\{p_{k / 2+1}, \cdots, p_{k}\right\}
$$

$$
\varphi \circ \varphi\left(\left\{p_{1}, \cdots, p_{k / 2}\right\}\right)=\left\{p_{1}, \cdots, p_{k / 2}\right\} .
$$

So that, repeating the same argument as in Case III with respect to $\varphi \circ \varphi$, we get $k / 2=m^{2}+n^{2}-m n$. Conversely, if $k=2\left(m^{2}+n^{2}-m n\right)$, we can easily find points p_{1}, \cdots, p_{k} on W_{ε} so that Case IV may occur.

References

[1] M. Heins, On the number of 1-1 directly conformal maps which a multiplyconnected plane region of finite connectivity $p(>2)$ admits onto itself. Bull. Amer. Math. Soc. 52(1946), 454-457.
[2] A. Hurwitz, Über algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann. 41(1893), 403-442.

Mathematical Institute,
Tokyo University.

[^0]: Received March 16, 1956.

 1) For $g=2$, however, it is not exact. In this case, the surface is always hyperelliptic and this fact yields immediately that this number does not exceed 48. For $g \geqq 4$, it seems to remain still open.
 *) Added in proof. We can really show that $N^{\prime}(g, k)=N(g, k)$; the detail will be written elsewhere.
