NOTES ON CONFORMAL MAPPINGS OF A
RIEMANN SURFACE ONTO ITSELF

By KoTaro Oikawa

It is well-known that a closed Riemann surface of genus g =2 admits
only a finite number of conformal mappings onto itself. More precisely,
A. Hurwitz [2] has shown that this number does not exceed 84(g — 1)
and this estimation is exact for g =3Y. On the other hand, a plane
region of finite (= 3) connectivity admits only a finite number of conformal
mappings onto itself, and the estimation of this number has been deter-
mined completely by M. Heins [1]. In this paper, we shall treat a bor-
dered Riemann surface and a closed Riemann surface with a finite number
of distinguished points.

§ 1. General estimations.

1.1. Let W be a bordered Riemann surface (i.e. a compact subregion
of a Riemann surface, the relative boundary of which consists of a finite
number of closed analytic curves) and & be the group of all conformal
mappings of W onto itself. For given integers g(=0) and k(= 1), we take
the maximum of order of & with respect to all W having genus g and %
boundary components, and set

N(g, k) = max (ord. @).

Next, on a closed Riemann surface W of genus g, we take % points p,
ps, +-+, Dx and consider the group & of all conformal mappings of the
region W — {p;, ---, pu} onto itself. For given integers g and k, we take
the maximum of order of & with respect to all W of genus g and all sets
of & points p;, ---, pre W, and set

N'(g, k) = max (ord. ®).

Concerning these numbers, we shall prove the following double in-
equality:

THEOREM 1. For 29+ k—1=2 (g=0, k=1),

N'(g, H)=N(g, k) =12(g — 1) + 6k¥®.
Obviously, for g =2, if k is large enough (i.e., £ = 12(g — 1)), the esti-
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1) For g=2, however, it is not exact. In this case, the surface is always
hyperelliptic and this fact yields immediately that this number does not exceed
48. For g=4, it seems to remain still open.

*)  Added in proof. We can really show that N'(g, k) = N(g, £); the detail will be
written elsewhere.
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mation N'(g, k) =<12(g — 1) + 6k is worse than that of Hurwitz: N'(g, &)
=8(g—1.

1.2. In order to prove this theorem, we require a lemma:

LemMma 1. Let W be a closed Riemann surface of genus g =2, and p' = ¢(p)
be a conformal mapping of W onto itself which is not an identity mapping
and has a fixed point pe. If this mapping is represented as z' = ¢(z) by a local
pdmmeter z about py (2 = 0<«— py), then

4P _ e
dz ’

where m and n are integers and m/n is not an integer.

Proof. The Taylor expansion @(z) = az + a’z2 + --- yields the expan-
sions @*@Q)=@-PpR)=az2+ ---, PR=Q P - P(2) = ¥z + - -+, etc.
Since & is a finite group, there exists a number » such that @"(z) = z,
so that a® =1 and «a = ™™/, If m/n is an integer, the expansion is
P(2)=2z-+Bz" + --- (B==0, h = 2), since (z)==2. This implies ¢*(2) = z
+2Bz"+ -, P*(2)=2+3Bz"+ ---, etc. However, from @"(2) =z, we
obtain # B =0, which is a contradiction, so that m/x is not an integer.

1.8. The proof of THEOREM 1. It is not difficult to prove the first in-
equality N'(g, k)= N(g, k). Let W be a closed Riemann surface with
distinguished points p,, ---, pr. If g=2, we take off from W sufficiently
small k£ non-Euclidean discs with the same radius and having centers at
p1, -+ -, pr respectively. Then, any conformal mapping of the region
W —{p1, ---, b} onto itself can be considered as a conformal mapping
of the resulting bordered Riemann surface onto itself. For g=1, we
take off Euclidean discs and consider analogously. For g = 0 (then %k = 3),
the above reduction is performed with the aid of elementary facts of
linear transformations.

The proof of the second inequality N(g, k) <12(g — 1) + 6k is essentially
a mere n}odiﬁcation of Hurwitz’s one [2]. Consider the doubled Riemann
surface W of the given bordered Riemann surface W. It is a closed
Riemann surface of genus § =2g + k— 1, and any element of & can be
considered as a conformal mapping of W onto itself. Since &§=2, ord. &
= N is finite. What we want to show in the sequel is N<6(&—1).

When we identify the points of I/AV which are congruent by the trans-
formation group &, we obtain a closed Riemann surface W, and HA/ isan
N-sheeted unbounded (but possibly ramified) covering surface of W,; it
is not difficult to verify this fact, because ramifying points are fixed
points of the elements of & (cf. LEmMA 1) and the number of them is
finite. Denoting by g, the genus of W,, we have the following equality
from the well-known Hurwitz’s formula:

286 —2=NQ2gy— 2) + > (ramification index).
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Now, with respect to a point p& W, we collect all elements of & which
have a fixed point p, and denote this set by &(p). This is a cyclic sub-
group of &. For p' = @y(p) (@ E G), we get immediately

G = @y S(p) - w1,
which implies

ord. §(p) = ord. &(p).
Obviously, ord. 8(p) — 1 is the ramification index of p with respect to
Wy, so that, for any point p°E W,, the ramification indices of all points
over p° are the same. R

From the symmetricity of W and &, ramifying points are situated
AN

symmetrically on W, furthermore LEMMA 1 shows that there is no &/‘,\uch
a point on the boundary of W. We project all ramifying points of W on

W, and denote them symmetrically by p.°, ° - - -, »,° p,° and the cor-
responding ramification indices by v; —1, - - -, v, — 1, respectively. Then,
since the numbers of points over p° p,° - - -, p,° p,° are equal to N/vy,

.-+, N/v, respectively, we have
. L N
3} (ramification index) =23} (v, — 1),
=1 t

consequently we get

(1) €l —n-1+3(--1).
(If W is an unramified covering surface of W, the 3} term of (1) is
absent.)

Now, if go=2, (1) shows (§ —1)/N=gy— =1 and we have N=g — 1.
If go=1, then » =1 since & = 2, and from (1), weget ({ —1)/N=1—-1/v;
=21—1/2=1/2 and N=<2(g—1). If gy =0, then » = 2 by the same reason
as above. In the case of gy =0, >3, (1) implies (§—1)/N=r/2—-1=1/2
and N=2(& —1). In the case of gy, =0, » =2, the equalily (1) is

S R G

If v,23, v,23, weget (§—1)/N=1—-2/3=1/3and N<3(g—1). If v,
=3, vy=2, weget (—1)/N=1—-1/2—1/3=1/6 and N=<6(g —1). The
case v; = vy, = 2 does not occur. Consequently, in any case, we have
N=6(g—1)=12(g—1) + 6k.

§ 2. A special case.

2.1. Naturally we ask whether the estimation of THEOREM 1 is exact
or not. For the case of g =0, M. Heins [1] has determined numbers
N and N’, namely he has proved
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N, k) = N'(0, k) for =3
and
N'(0, &) =2k for k=R4, 6, 8, 12, 20, k=3,
N'(0, 4) =12, N'(0, 6) = N'(0, 8) = 24, N'(0, 12) = N’(0, 20) = 60.
We shall determine the number N’ for g =1.

THEOREM 2. For k=1,
6k for k = m* + 3n?
4k for k= m?*+ n?, but not be vepresentable
N, ) =, as k = m* +3n?,
for k= 2(m? + 3n?), but not be representable
as k= m* + n%,»
2k for other k,
where m, n =20, 1, 2, ---.

The conditions for representability of k in above types are obtained
by the prime number decompositions: An integer %k is representable in
the form k& = m?® + »?, if and only if the prime number decomposition of
k is 2'11;p;**11;q5%#5, where «, B and vy are non-negative integers, p and
g are prime numbers such that p =1 (mod. 4) and ¢g=3 (mod. 4); similar-
ly, the condition for k& = m?* 43n? is k = 22Y3811,p;*:II;4;2#t where p=1
(mod. 3) and ¢=2 (mod. 3) and g=F2.

Using them, we can compute N’(1, k), for instance, as follows:

N1, 1) =6k=6  N(1,2) =4k =8,
N, 6) =3k =18, N'(1, 11) = 2k = 22.

2.2 In order to prove THEOREM 2 we use the elementary properties of
lattices. We consider a lattice in the complex ¢-plane and denote the
principal lattice points by o, «’. In order that the lattice may be deter-
mined uniquely by o, o/, we must assume that they satisfy the follow-
ing conditions:

__,];ég}}wl_<l, 3(", >0,
» 2
' 1 ' N
(2) . o |21 i -5 =% =0,
}“’—/|>1 it o<m® <1
) 2

2) In this case, the prime number decomposition shows that 2 can not be repre-
sented as k& = m? +3n2.
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A point ¢ which is representable in the form { = mw + nw’ (m and » are
integers) is called a lattice point, and the set of all of them is denoted
by

Lo, o) ={mw + no’; m, n =0, =1, =2, ---}.

LEMMA 2. Let P={s@ +t2; 0=s<1, 0=t <1} be a parallelogram, four
vertices of which are lattice points (i.e. 2, Q'€ L(w, »"). Then, the number
of lattice points which belong to P is equal to the ratio of arveas, namely it is
equal to

1322 /S0 @.

This is a famous property of lattice and we omit the proof. The follow-

ing lemma also seems to be well-known, and it can be proved very
easily:

LeMMA 3. Supfpose there exists a linear transformation ' = a& - B which
gives a one—to-one mapping of L(w, ") onto itself.

1) If o' =iw, then a must be one among the numbers =1, =+ .

(i) If o' = 2w (& = &™), then « must be one among the numbers =+ 1,
+ &, 4+ €%

(iii) In the other cases, o must be either of *+1.
Conversely, in each case, there exist transformations £’ = af with such «.

2.3 For the purpose of preparation, let us consider the group &* of
all conformal mappings of a closed Riemann surface W of genus 1 onto
itself.

As is known, the group I' of covering transformations of the universal
covering surface z < oo of W consists of linear transformations

Z=z+¢, ¢ € Lo, o).

We may assume that o'/w satisfies the condition (2). Then the surface
W is determined uniquely by o'/w; the surface W with o’ =iw will be
denoted by W, with o’ = €% (€ = /%) will be denoted by We.

An element of G&* induces in the well-known manner a linear trans-
formation S(2) = az + b of the universal covering surface |z| < o onto
itself. It satisfies a relation

(3) Z=z+¢ <+— S@)=Sk&+, |z/<oo,

where ¢, ¢'& L(w, ') and the correspondence ¢ «— {’ does not depend
on the choice of z; in other words, S determines an automorphism of I.
Conversely, any S(z) = az + b satisfying the relation (3) determines an
element of &*. So that, denoting by G* the group of all Sz)=az+ b
with the condition (3), we get immediately

G*/T" = @*.

For any W, linear transformations 22 =z+ b and 2/ = — z -+ b are con-
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tained in G* for arbitrary 5. As regards S(z) = az (e +=1), however,
LemMma 3 shows that S(z2) & G* for W==W,, We; for W;, G* contains 2/
= =iz and only them; for W, G* contains 2/ = == €z, 2/ = = €%zand only them.
Now, let Gy* be a set of all linear transformations S(z) =z -+ b. It is
evidently a normal subgroup of G*, and the above consideration shows

{I: U} for W:%‘J I/Vi, n/s,
(4) G*/Gy* =~ where I(z) =z, U(z) = — 2z,
{I, V, V*, V3} for W,, where V(z) =iz,

{I, T, T?, T3 T¢ T%) for We, where T(2) = €z.

On the basic surface W, denoting by &* the set of all elements of &*
which have no fixed point on W, we see immediately that Gg*/I" = y*.
So that ®¢* is a normal subgroup of &* and &*/8y* = G*/G,, and we can
see the structure of &*/Gy* immediately from (4).

2.4. Proof of THEOREM 2. Let W be a closed Riemann surface of genus
1 with distinguished points pi, -+, Pz, and @ be the group of all conformal
mappings of the region W — {p;, ---, px} onto itself. All elements of
®& are considered as conformal mappings of W onto itself, i.e.® C G*.
We denote by &, the set of all elements of & which have no fixed point
on W. Since G; = & N G*, & is a normal subgroup of & and

(5) @/@0 C @*/@0* = G*/Gg*.

It is now not difficult to construct an example such that ord. & = &,
ord. (§/G) = 2, concerning any k=1; hence we have

N'(1, k) =2k, for k=1.

From the definition of the group &; we can easily see that ord. & is
equal to one of the numbers k, /2, k/3, ---. So that we conclude from
(4) and (5) that the possibility ord.® > 2k occurs only in the following
cases: For W;, ord. & = k and ord.(§/S,) = 4; for Wg, ord. & = k or k/2
and ord. (/&) = 3 or 6; for==W,;, Ws, it is impossible. Consequently,
for the purpose of determining N’(1, k), it suffices to consider the follow-
ing four cases:

Case I: On W,, the distinguished points py, - - -, pr are congruent to each
other by & and & contains an element which corresponds to V(z) = iz
4+ 5. In this case, ord. & = 4k.

Case II: On Ws, Py, ---, px are congruent to each other by &, and
& contains an element corresponding to T'(z) = €z+b. In this case,
ord. ® = 6k.

Case III: On We, Py, ---, pr are congruent to each other by & and
& contains an element corresponding to T3(z) = €2z + b. In this case,
ord. § = 3k.

Case IV: kis even. On We, only ps, ---, pi2 are congruent to each other
by &, and @ contains an element corresponding to T(2) =&z +b. In
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this case, ord. ® = 3%.

Now, on the universal covering surface |z! < oo of W, the groups G, G,
of linear transformations correspond to &, &, respectively. Since Gy/I"
=~ @, and ord. G =< & < o, the group G, consists of the transformations
of the following forms:

2 =z+ mp + nw, m, n=0, 1, =2, ---,

where we may assume thet wp//u satisfies the condition (2). The fact
Gy DI implies L(u, /) D L(w, o).

Case I: Take the point z =0 over a distinguished point p;. Then the
set of all points z that are congruent to z=0 by G,, namely the set
L(p, '), coincides with the set of all points z situated over p;, :--, Ds.
Consequently, the principal parallelogram of the lattice (w, '), which is
a fundamental region of the group I', contains % points of L(x, /). Then
LemMaA 2 shows that £ is equal to the ratio of areas of principal parallelo-
grams of lattices (w, »’) and (g, p').

On the other hand, G contains an element V(z) = iz + b, which gives a
one~to—-one transformation of L(u, p/) onto itself, since any element of
& preserves the set {p;, -+, px}. So that, when we apply LEmma 3 to
L(u, p'), we have iu = ¢/, which means that lattices (o, »’) and (¢, p') are
similar. Supposing now o = mu + nu’, the side of principal parallelogram
of (w, ®') is ~/m? + n*- !, and then the ratio of areas is equal to m? + 2.
Consequently we obtain

k=m*+ n’

Conversely, if k= m? + %%, the above consideration shows that we can
easily find points p;, ---, pr» on W, so that Case I may occur.

Case II, Case III are analogous to the above case. We can see u/ = E2u.
If @ =mp + np', the side of principal parallelogram of lattice (w, ') is
s+ n —mn- ), and consequently we have k= m?+ n:—mn. It is
not difficult to see that %k is representable as k= m>+ n*>— mn if and
only if %k is representable as k = m> + 3n®.

Case IV: Take z = 0over p,. Since only p;, ---, pye are congruent to
each other by &, the number of lattice points of L(ux, p/) that are con-
tained in the principal parallelogram of the lattice (w, ') is equal to
k/2. By the assumption of Case IV, G contains a linear transformation
of the form T (z) = €z -+ b, to which corresponds an element p’' = @(p)
in .

If o{ps, ---, bre}) ={p1, -+, Pui2}, the situation is similar to the case
II. We obtain analogously k/2 = m* + n*> — mn. (To tell the truth, this
case does not occur. We omit the proof of it, since it has no effect on
the proof of our theorem.)

If @ does not satisfy the condition above, we can show easily

PUbr, -5 o)) = {Drpzer, -+, Pk
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P e (p({pl: ] pk/Z}) = {pl’ ) pklg}'

So that, repeating the same argument as in Case III with respect to @ - @,
we get k/2 = m* + n* — mn. Conversely, if k= 20m? + n* — mn), we can
easily find points p;, -+, ps on We so that Case IV may occur.

REFERENCES

£13 M. Hews, On the number of 1-1 directly conformal maps which a multiply-
connected plane region of finite connectivity p (> 2) admits onto itself.
Bull. Amer. Math. Soc. 52(1946), 454—457.

[2] A. Hurwitz, Uber algebraische Gebilde mit eindeutigen Transformationen in
sich. Math. Ann. 41(1893), 403—442,

MATHEMATICAL INSTITUTE,
Tokyo UNIVERSITY.





