ON THE GREATEST SEMILATTICE DECOLPOSITION OF A SENMIGROUP
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(Comm, by Y. Komatu)

If there exists a homomorphism of a
semigroup S onto a semigroup S*, 38
is decamposed into the class sum of
mutually disjoint subsets ke 5%
each of which is a inverse image of
some element & of $*; i.e., 5= S,
( 3. is meant the direct sum of Sefs)
In this case, clearly | S) s gforms a
factor algebraic system of "§" and is
isomorphic to S* . We call such a
partition of S a decomposition of S
to S*, and each S a residue class
of this decomposition, The decam-
position to a semilattice is most im-
portant among others; i.e., 5= S«
where every O is a semigroup afid for
any Sp, Oy » there exists a unique
S such that Sy 55¢ S5and 5,5,¢ 55
Henceforward we will call the decome
position of P to a semilattice the
semilattice decomposition of S .

Generally there exist many semi-
lattice decompositions of a semigroup,
but since it is proved that the
collection of all semilattice decom—
positions of a semigroup forms a com-
plete semilattice, there exists the
greatest one.

In this paper, we shall determine
the greatest semilattice decomposition
of a semigroup, T. Tamura and N,
Kimura showed that such the decom-
position of a commutative semigroup is
determined as the decamposition to the
factor algebraic system under a
congruence relation (~~) introduced
as follows (1). o ~bif a™=bx and

b""s«*& for same positive integers m.,
m and some elements x, Y.

In this paper, the author deals
with general case. To abbreviate the
terminology, from now on, & denotes a
general semigroup and the symbol 3
denotes the word 'exist', Hence if we
describe as Ix; 5 it means that
there exists an element x which
satisfies the relation .

31 Semilattice decamposition

If we define a~b between elements
a, b of 8 to mean that o, b are
contained in a same residue class of
a semilattice decomposition of S,
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then the relation (~) is a congru-
ence relation of § which satisfies
the following two conditions:

(1) o> ~a for any e .
(2) ab~ba for any «, besS .

Moreover this converse also holds
good; i.e.,

Lemma 1. If a congruence relation
(~~) which satisfies two conditions
(1), (2) is defined on S, then the
factor algebraic system of S under
the relation (~) forms a semi-
lattice.

Proof. Obvious by the definition
of the congruence relation,

We turn our attention to a sub-
semigroup S”of S wSxich has the
following pm:.per'oy(P :

(P) For any number of elements
Qs Ryyeeeee,An€ S, 5500,
eeces Gy implies ¥, %, eeces
¢,.€5’ for any number -of
elements %, %:, e0ese,5m€0
which satisfy the relation

O™ — an
{g‘}jﬂ = {a‘}“. .
We call such a subsemigroup to be
a P-subsemigroup of S.

Lemma 2, If S is a P-subsemigroup
of 5, then
(1} xy € S implies yx € 5’ for any
17[ €

‘; 7 ’
(2) x*€ 5 implies x€ 5  for any
%€ S and for any positive
integer K,

Proof. Since O has the property
(P), if we set m=z, n=%, ayj=x,
aa=4Y ’g.=} and ?fx in the above-
mentioned property (P) the first part
of this Lemma is proved. Similarly if
we set n=K,m=|, a;=x(¢=1,
vesesy K ) and ¥,=x the second part
follows,

We denote by L) the collection of
all P-gubsemigroups of S , and by S« ,
S5 5 eeees etc, elements of . , that
is, P-subsemigroups of 5 , We intro-
duce by a subcollection T of LL the
following relation ( T ), which is



closely related to one defined by
Pierce (2).

If § &,y) e Sul=t\xbuc S
rorsevtry ‘Jel\.;l':ﬁt 53%,‘ i I‘lj ,\ th}en t\;}l,
in L2

~
It is easy to see (T ) to be an
equivalence relation of O .

Lemma 3, ( T° ) is congruence re-
lation, and the factor algebraic
system of § under (T ) forms a
semilattice. Therefore, ( T ) gives
one of semilattice decampositions of

Proof. We first show that o ~ b
implies ac be as well as can~ch for
any ce $ o 'Let S« be any elehent of
T . Then xa(cy) = xacued inplies
b (e ):xbcs ;mSﬁ- Conversely,
xb(cy) =xhcyegimplies o (cy) = xat
3 3 . zence {(’-,‘J)‘xkc_;é;gl}=i(23)
[xbeye Su) for any S € T, and this
implies ac~sbc o Similarly ca ~cb
is easy to prove. Next if a ~b Cand
¢~ d are assumed, then ac i be ,
bgr?bA follow from the above.

Hence o.CxbA by transitivity. This
implies ( t¥ ) to be a congruence re-
lation. Since 4 is a P-subsemi-

group of P, 1"3“3 e D, or xubye S«
is eguivalent to taye Sy or 'x.bcm&,e Sa
respectively. Therefore, « ~< & and
ab ~ ba . Accordingly, the
remainder of our Lemma follows from
Lemma 1.

Lemma %4, Any semilattice decoin-
position of S5 1is the decomposition to
the factor algebraic system of § under
a congruence relation ( ” ) introduced
by some subcollection [ of Lb

Proof. Let § ='%. Dx be a semi=-
lattice decomposition of S . Since
it is not hard to verify that each Dy
is a P-subsemigroup of S5, [ <& if
we set [ = {DaJq. Take up any two
elements a, b contained in a same
residue class Dy . Then since xu}e()/,
is equivalent to xb«4e[Dyfor any Dpep
and any X,4e$. Therefore a b
follows from the definition of ( T°).
On the other hand if o b, then
aboe Dy and pbabe Ds hold good be-
cause of aaneD,and bbb €Dy, where

Dgaor Dp is a residue élass such
that it contains an element a or b
respectively., As Dy and D, are P-
subsemigroups of H, ab and ba are
contained in both Dy and Dp . Hence
o wb implies Dx=D,, that is, a,b
are contained in a same residue class
of the decamposition,

Summarizing the above-mentioned re-
sults, we obtain the following Theorem

which will play an important part in
the next paragraph.

Theorem 1. Any semilattice decom-
position of S is the decamposition to
the factor algebraic system of S under
a congtuence relation ( T ) 4ftroduced
by same subcollection [ of .()}, ., Con-
versely, the decomposition to the
factor algebraic system of S under a
congruence relation ( £ ) introduced
by any subcollection [ of 2 is a
semilattice decomposition of S
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position

Let (f; S:'z;- so( and 1{’; S=Z; S(t’
be any two semilattice decompdsitions
of §. Ve define an ordering ¢ >
between @ and ¥ to mean that for any
S« there exists '3/3' such that Sy
C S,
a °

Then the “collection D of all semi-
lattice decompesitions of ‘S forms not
only a partial orderéd set ‘but aiso a
complete semilattice (1), and there-
fore there exists the greatest element,
that is, the greatest semilattice
decamposition of 5. Our first
purpose of this paragraph is to show
that the greatest semilattice decom-
position of S is the decomposition to
the factor algebraic system of
under the congruence relation (Y ),
and the second is to obtain a neces-
sary and sufficient condition for each
redisue class of the greatest semi-
lattice decomposition to be either a
nonpotent semigroup or a unipotent
semigroup (3), (4).

Theorem 2, The greatest semilattice
decomposition of S is the decom-
position to the factor algebraic
system ofN under the congruence re-
lation (&X).

Proof. Let $; S=2 5, be the

greatest semilattice (fecomposition of
5. Then I' CQif we set "= {54,
because each residue class of any *
semilattice decomposition of 5 is a
P-subsemigroup of S . Hence for any
a,be 5, ayb implies a~b .,
On the one hand the decamposition to
the factor algebraic system under_ the
congruence relation ( T° ) is the
greatest semilattice decampositjon of
P as is seen in the proof of Lemma 4,
and on the other hand, by Lemma 3, the
decomposition to the factor algebraic
system under the congruence relation
(£ ) is a semilattice decomposition
of . Therefore (T)=(8), i.e.,
(8%) gives the greatest semilattice
decamposition of S .
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Corollary 1. The greatest semi-
lattice decomposition of a commutative
semigroup & is the decomposition to
the factor algebraic system of S under
a eongruence-relation (=) introduced
as follows (1).

a2 b if o™= ba and b™=a4y are
satisfied for some positive integers
ma and some elements «,4 e 5 .

Proof. First of all, since S is a
commutative semigroup, a relation {(x %)
lxa e Saf= {(-x,g)lxbye .} is equivalent
to a relation “jx |tde S4={x|xbeS}for
any SxefLl . We first show that
A%b implies a~b for any elements
a, be . By the definition, e~V
means {x|xa e S}={x|{xbe 5 Jto ve
satisfied for any 9« €L « If we
set p'={t|3 positive integers wm,

m Jelements x , 4 ;a™=tx,t*=ay],

S’ is clearly a P-subsemigroup which
contain.the element a., Therefore ,
{xlxae gl=dxbes}. Since ae &,
the following results follow in order;
i€e, a*ec 8 abe 8’5 b*e 5’ and
consequently be S,

Therefore, there exist positive integers
m, n and elements x, 4 such that

A™= bx and bﬂ=k4}

Hence a~b . Next, o «b implies
axb for any elements a,be 5.

If az b, there exist positive integers
ms m and elements xsY such that

a™=bx and b= A}

Take up any S« € SL. Then if tae Sxs
the following relation are satisfied

in order; i.e,, t&"e S« ,‘ta: x
e 5“,1503""«3,4,“6 S a , 'b‘-*&l*;u‘ 12 5‘*’
to.«zo«."‘ e By’ tb™e S, and consequent-
ly %be S«. Hence btoe Px implies
the Sx for any element t ¢ D .
Similarly for any te S, the By
implies toe € O« , Thus ab
Therefore ()= (52) . This completes
the proof of this corollary.

Theorem 3. In the greatest semi~-
lattice decomposition of O, each of
residue classes is either a nonpotent
semigroup or a unipotent semigroup if
and only if, for each pair of mutually
different idempotent elements &, €z,
there exists a P-subsemigroup O of D
such that either 573 @ but S e, or
&3¢, but 8 pey .,

Proof. Since necessity of the con-
dition is obvious, we may prove only
sufficiency. We assume that there
exists a pair of mutually different
idempotent elements e, €, such that
e 7% € . By the hypothesis, there
exists a P-subsemigroup $ of S such

that either §73¢;, but 5% €, or
S'se, but Hde, . Without loss
of generality, we may assume 5’9 ¢, but
P Pe,. Since e e, and ejeeef
ere.ee 5’y Hence “¢e,c 5 because &
is a P-subsemigroup of S . Therefore
e,21¢,¢8"; hence ¢,¢,e,e 5’5 hence
e, ¢ 5". This is contradictory to
e,4 5. Thus, there exist no pairs
of mutually different idempotent
elements e, , ¢, such that e;g{)@; .

Remark. In the greatest semi-
lattice decamposition of a general
semigroup, each of residue classes is
not necessarily a nonpotent or uni-
potent semigroup, This is obtained by
a simple example as follows,

Example, Let © be a right singular
semigroup (4) consisting of two or more
elements., Since O contains no P-
subsemigroups of S except S own,
residue classes of the greatest semi-
lattice decomposition of 5 are 9
alone, However, 5 is neither a non-
potent semigroup nor a unipotent semi-
groups.

Corollary 2. In the greatest semi-
lattice decamposition of a commutative
semigroup, each of residue classes is
either a nonpotent semigroup or a
unipotent semigroup.

Proof. let S be a comutative
semigroup and e, , €, be two mutually
different idempotent elements of S ,
If we set S, ={a|d%,4ef, I positive
integer m ; ¢y = ax, "a™=1¢,4} then
O is a P-subsemigroup of . It is
obvious that ¢, € &; . If e, is
also contained in §,, then there
exist elements « , 4& such that ex=e,
and Q,,,",‘: Ryo

Therefore e 8,= &3 A=¢xA=¢and ¢, e
= @,0,M — 224 = €, and consequently
e,f—.i?. Her?ce e. ¢ 51 o By
Theorem 3, this campletes the proof

of this Corollary.
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Differentialgeometris, I. Von P. K.
Strubecker., Slg. Goschen Bd.
1113-1113a, 18 Fig. 150 S. 1955
geh. DM 4.80.

This book deals with the elementary
differential geometry of curves and
surfaces in two~- and three-euclidean
spaces,

The contents of this book which are
divided into two parts, may be sketched
as follows, The first is the theory
of plane curves, and the second that
of space curves, The former con-
tains: § 1. Vector calculus in plain.
§2-5. Representations of curves,
Tangential formulas, etc. & 6-7, Arc
length, and its geometrical meaning.
§11-14, Natural equations of curves,
Canonical representation, Osculation
of higher orders, Circle of curvature,
§15-16, Evolute, Involute. 4§17-18.
Special curves, etc, The latter con-
tains: 8 1. Vector calculus in the
plain, § 2-6, Representations of
curves, Arc length, Osculating circles,
Principal normal, Binormal, Formulas
of Frenet, § 7, Metric classification
of space curves by E. Study, ¢ 8-10,
Three spheric images of curves and
their examples. & ll-13. Canonical
development, Natural equations. etc.
4§14, Osculation of higher orders,
Osculating circle, Sphere, Spherical
curves. § 15-16, Families of surfaces,
etc. § 17-18. Various soris of
torsions, etc, 819-20. Evolute
surface, Involute surface. § 21.
theory of isotropic space curves,

The

The book covers the whole field of
the elementary differential geometry,
the vector notation being adopted
throughout, Concise and clear ex-
planations can be found passim., Both
relevant remarks and rich examples in
the book will help the reader in
getting the ideal which the author
wants to tell in the book., We may
say, at the close of this short
coments, the book is very handy for
students,

(A. Kuribayasi)

BOOK REVIEWS
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Flinfstellige Tafeln der Kreis- und
Hyperbelfunktionen, Neudruck, By
Keiichi Hayashi, Walter de Gruyer

& Co, Berlin, 1955. 182 pp. DM
12,00,

This is the "Neudruck" of the table
published first in 1921, This inter-
esting and useful table gives five
figure values of trigonometric and
hyperbolic functions: cos x, sin x,
tan x, cosh x, sinh x, tanh x, six
figure values of eX and seven figure
values of e X for
x = 0 (,0001) 0.1
x= 0,1 (oml) 3.0
X = 3-0 (001) 603
X = 603 (-1) 10.0 s 3
xX= s Ty Emy Wy, T,

RIS

and

The argument x 1s measured in radian
and its value in degree (noted 9 in
the table) is also given for each
above mentioned value of x to two
decimals in second., In six final
pages, there are also well chosen lists
of formulas relevant to the functions
tabulated and a page of "conversion
table of radians (x) dinto degrees

(?)n.

The values of all functions are
justaposed in two successive pages,
so that the users of this table get
the facilities of finding the values
of trigonometric, hyperbolic and ex~
ponential functions of the same
argument x at a time.

(Kazumichi Hayashi, Tokyo Institute

of Technology.)



Differential- und Integralrechnung,
unter besonderer Beriicksichtigung
neuerer Ergebnisse. (Gdschens
Lehrbiicherei, I. Gruppe : Reine
und angewandte Mathematik Bd. 26.)
III, Band: Integralrechnung,
Zweite, v6llig neubearbeitete
Auflage. Von Otto Haupt, Georg
Aumann und Christian Y, Pauc,
Walter de Gruyter & Co,, Berlin,
1955, x1ii+319 Seiten. DM 28,00,

The present work is formally the
second edition of a book with the same
title written by the first two of the
authors and published in 1938, How-
ever, its contents are, compared with
the former edition, so substantially
revised throughout that it seems to be
quite another new book. Attempting to
make the reader familiar with new
formulations and methods in the theory
of integrals from classical as well as
modern view-points, this book takes an
intermediate situation. For instance,
on the one hand, measures and integrals
are dealt with in usual sense while,
on the other hand, the theory of
linear functionals is developed as
an extension of Lebesgue integral.

The titles of contents listed in
the following lines will well explain
an extensive and profound character
of this book:

First part. Contents, measures and
their extensions. I. Introduction to
the theory of Boolean lattices. II,
General theorems on contents and
measures., III, Extension of contents
and measures,
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Second part. Integrals by sub-
division and o -additive functions.
Linear functionals. IV. Integral by
subdivision belonging to a measure.

V. Additive functions with arbitrary
sign. VI, Linear continuous function-
als, VII. Measures and integrals in
product spaces, Multiple integrals,

Third part. Measures and integrals
in topological spaces, VIII, Measures
and contents adaptive to a topology.
Integrals belonging to them,

Fourth part. Primitive functions.
Indefinite integral, IX. g-additive
function as a primitive function. X.
Additive function as a primitive
function.

Fifth part. Some Applications, XI.
Functions and surfaces of bounded
dilatation in Eyp.

Literature,

(Y. Komatu, Tokyo Institute of
Technology.)





