ON THE STOCHASTIC PROCESS OF RANDQM NOISE

By Tatsuo KAWATA

1. Suppose that events occur in
accordance with a Poisson process with
a parameter ¢, each event has a certain
intensity 1J and has an after-effect

U-E(t) after t time units. Let
intensities U, , 1J,5 scc.c at occur~
rences of ‘events be mutually inde-
pendent. The sum of after-effects at
time t can be represented as

.1 X,(t)=/ f(t—s)d](s)
/t-oo
=/ z(t—s)dycw,

where Y%(%),-co{{<ev, is a stochastic
process whose sample functions are
constant between the events and in-
crease by the corresponding intensity
U at each event.

Suppose that & (Z)be defined in
(o0.20] s

(1.2) F (el odand €], (0,00,

and

@ [Fwdt-a, [Fiwdt-4

and, moreover,

(1.4) E(Us)=d. E(UH=A.

If events are srrivals of electrons
at the anode of vacuum tube, (1,1)
represents the noise current. The
formulation (1.1) is due to J. L.
Doob. (1) Formally, the extensive
analysis of random noise was done by
S. O. Rice, in the case X,(t) is a
trigonometric polynomial. The object
of this paper is to prove some results,
in connection with Rice theory, with

Xy (%) defined by (1.1) in a rather
rigorous way from mathematical view
points. The proofs of some known
results are contained, because of
completeness.,

2, Under the condition (1,2), the
integral defining X,(£) in (1.1)
exists(1), X, () is strictly
stationary and consequently stationary
in wide sense.

Campbell's theorem shows
(20) E (X, ] = coa.
EL(X @ —cda)?]= c/sil

where E[X] denotes the expectation
of a random variable X(t) and, for

5§20 s
Prlgtroo-g0% 3]

(202) = 0 . §<o

= _e'cs g-:o

-t ﬁe"‘@‘ﬁ. )
< ! <= ’

§>0.

(2.1) was proved by J. L. Doob
Put
23 Y=g —cul
A Y () = Ay g () — s

= y(r-rs)—;(t)— (2
Let the characteristic functions
of U, and A Y(t) be 2(«) and
fl«t;5) respectively. It is easily
verified that '

(2.4) A(ussd= cy,x/b.{cs (J(M)—/—idu)} .

(2.5) E [AsY(t)J=o , E [{AsT(t)sz:/j es

are easily obtained..

we assume throughout this paper,
that & (+) is _a real valued function
defined on (-22.09) and to be not neces-
sarily zero in (- o) for certain
reasans, (see later) and suppose

that 3 (D=0 » -
26) [ Fwodt =a
Jwodt=4.

Further suppose
(2.7) E[US] <e=,
Let oo
(2.8) Xw=] E(t-AYs>.

o

Theorem 1. The characteristic
function j—(») of X(#) is given



(2.9)  feo=

expf e [jj (E@w-1-:d Eufols]

This is perhaps known, but for the
completeness' sake we shall prove it,

Let (7(4} be a function of [, (-e.02),
Wle take a sequence of step~functions
| GDF,
G = o, t=a,
::C/~, QJ'—l§t< qJ-’ J‘én
=0, t=za;,
a"‘ = 03(41)’

¢ =
4
(2.10) /1G(z~)—c7~wlzdt—->%

-Co

CJ'[m), such that

(/n —po0) |
Then by definition,

(2.11) / GodY D

<AL M_/ G Yo

M -—Pco

where £, (7. means limit in variance,
that is (2.11) means

E[{ ] awdyid -] codnn)]

A (m—po2),

We, then, have

E fexp (u [:c;w) AYen)f
=4 E {47,:/7 (iu/zm(t)ol )’m)f

=£2[%/>{4‘«§ G (Y (a-0

=Yg~
Since Y (& -o>- Y(:{_,—a), J=2 - m,

are mutually independent, by using
(2.4), the above expression is equal

to
bz 1 Eerp [ (Yo Y(5 DY

Mm-pyoo J‘gz

=L 1T %f{c Ct}j-c:,:,)(} (G-I~ idgju)}

m-—pao J=2

o S 061 30

-Pa:;:z
(2.12) = exp/ ¢ (Gww) -1
f[ _/b{} 1 )

— <d G(t)-u} aa'] .

- 24 .

The existence of the bracket in the
last expression is easily proved as
follows : letting the distribution
function of [J: be F(x) , we have

[ §(G@m) - |- oot Gt )

://f -'r/f (fuGOx—[-<x C7cf)ujc(1:(,,)/

~oo

___._//;cw(uG(T)z)—-/
- t (e (GO x)— 1 Gaf):{)jd}:&)’

2 L el <dreorz il G (r)/7 e

from which the existence of the
integral in (2.12) is shown.

Hence _the characteristic function
of /” GadY ) is given by
(2,12) " Putting G(t)= E(s-D ,

(9) immediately follows,

Next, we consider the characteristic
function of (X(&. Xtt2) . If F(t)
is differentiable and such that in
addition to (2.6),

(2.13) /”I FWldt <o,

o
e

J1F ot <
and i?t#\)—f(tg}/ﬁ_ converges in
mean ), .(-eco) to F/(t) as fro .
Then

0.iam, XARI— XD _
. Y =

Ao

X

Xw = / Fla-sod)res>,

and

“X{BD+ v X

=/ [uf[f—s)-rvi;fﬂ"”/?"’ T,

Taking ""-f(t’s)"‘vféf—s) as G
in (2,12), we have

E [-64(/6 (i Am f(,f—s)-r:i/\vf?t—s)?]
= .q(/b[c/ { ;(/\};‘(s)u-n\ffsw)—/
_io(()\ECS)u+)\.§/(s)v)fo(S].

Putting A=/ , we find the charac-
teristic function of (x(p). X’(f)) .



Theorem 2. If &(i&) satisfies
(2.6) and (2. 33), and {{(tﬁ,ﬁ)’f(ﬂ%
converges to @) in mean | .f4s 00),
then the characteristic function of

iXU-'),X'(t)} is given by
(2.18)  flu, »2

- e [C/Z(jécgu+§?5)v)—/
ik (Four Fw)fds ||

From this we can show the v ogrlances
of X/t) P Xt tobe Be [ F(Hds
f/“’fi s and the
ovariance of "x¢t» and Xt to be

/ F(s)Pesods

which is zero, if (s> converges to
zero as|sprav o

3. We consider the integral
-4 S

(3.1) ———/ _:s_/\._—ﬁ-——-al)’(s)

- S

which exists in in[,, sense since the
integrand belongs to [,(-e=.s2) , and
we define )’*(t) by putting (3.1}

Yooy - Y (4 . For the integral
(3.1) and ‘f*(t) , see Doob[1], By
Doob, it was shown that tne stochastic
process Y¥(£) has orthogonal incre-
ments and

G.2) E[[aY*®] ]'/»‘CA/T
where AY (t)r—)’ (F+a)-Y .

Let E@e/,(wa)and its
Fourier transform be

/ a —dal
Plro= [4.4-1 /f(f?e‘ AT,
A>ee A -A

Then we can define the process

(3.3) / “?(t)v( Y = Ziw> ,(

We find obviously that
AL
E[12(0-2(0 ]=cp / | et
vy

= H(w-Hw,
where
(3.4) H(u)=c/4/ 17 (0|l

The process Z(#) is also an orthogo-
nal process.

Theorem 3, The stationary process
X(t) = / B(tsod Y0
can be regresén?ed as
” ~
(3.5) )(lt)=/ ezt ,

2>

(3,1

where Z(}) is one in (3.3) and the
integral is taken in /,, sense.

This is easily seen from the
following lemma, which is known (2).

Lemma 1. If W(#> is an orthogonal
process and W*(r-') is a stochastic

ocess defined similarly as in (3.1),
o 62 2(®.00), 3%(t) is its

Four:.er transform, then

/ Jd W = }*(t) AWD .,
-4 -~

Since the Fourier transform of
Pt 1is e‘t“f(u) » by the lemma,
we have

| Bt-dyen= / 0 0> o Y
=/ ‘fjd/ Pl a(Y*(,u))

which proves Theorem 3.
By the well known inversion formula,
Z (X)) can be represented by means of

X (t> > but we shall give a formula by
means of Y(£).

Theorem 4. Under the conditions
_in Theorem 3, we_have

(3.6) Z(w-Ziw= / PE s v A

(3.7) / PO o )’ (D,
where

(3.8) P u v)—r—/fli)e 5

(3.7) is nothing but (3.3). (3.6)
is also immediate by Lemma 1, since
T"(t a,v) 1is the Fourier transform

) =¢Pw). v<it<au,
= o , otherwise,
The auto-correlation of X () is
[ =E[X X ®] - [eap

l’{ (u)) being the spectral function
3.4 *

Since ¢ () is real, we get

(39 prar= [ comurdH, o0,
where °

N
H,00= cp/lrwlzatf.



L, In this section, we shall
discuss the continuity of X(i7).
It is obvious that X(4) is continue
ous in mean [, , since f(u) is the
Fourier transform of an absolutely
integrable function. We shall prove
under some conditions, that X¢#) is
continuous almost surely.

Theorem 5. Suppose that
(1) & (#) is monotone for [t> 4 >0,

and F()ro S [tfpoe
(11) IEFt;IéAe/t)'I’

{ >0, for largejt) ,
¢ being a constant independent of #

but_depends on and is not neces-

sarily bounded with respect to £ ),
(iii) #r#) satisfies the Lipschitz

condition
[Fw-Fwol< k-1 (F>o)

being a constant independent of Z. and

(iv) the random variables [J. is
bounded, os7/;<PB . Then x(t) is
continuous, with probability 1.

Proof., LetFE. be a finite set in
[z’-—,,'T, 14 L] ,» being a positive
integer fixed for a moment, %7 is any
real number,

X(@® =X (t7)
=/ F(t-srdYs) —-/ f{,z‘is'Dc(\f(s)

oo L oo

for everv

- /w (Ea—-F (<0 4y

._A A o
(4.1) =/ +/ +/ = L+ 1, +1,
Zoo -A /4
say, where A = 3 n72, P’ being any

positive number less than F in (iii).
We have obviously

e _ ’ -F/z
?{téglxm X9 > =]
/-t
(he2) £ 7’{2‘;/’/1,/> 5 /f
o ——/-/n_l,//z
+F{Ic-éblzzl>3 f

I —tA
+F{;:‘E/>/ZB/>3M f,
We shall estimate each of the right
hand side of (4.2). For this, we
consider the mean value of mftq [ L)%
Noticing that almost all sample
functions y_( 5> are non-decreasing,

Ef{ ;:Lfll,/’j
o o[ p 1z

oo FEE

A
/ ﬂu/’ /f{t‘—s)——?(t’—s)/z/g

Zeo £CE "’
2.¢/8 wup | E(T-55"ds

Zao A€

_/f >
+ Cf/ | B (F-s>] As
We take, in advanzg:
’ ] PZ"-
Then 1T < E 1+ 5 <200 gng
t-s> [ —1t1> 07

We may assume @ (a)monctone for

w > - 4 , taking previously » large
enough. Then the right side of (4.3)
is not greater than

z,c/5/ | B ()] o é?f/i/rzlf(u)lzdu

A+t
so / .
£ ¢ Lo €, i GO 2
7/41 /ZPZ 2 72
A

= C e 77
Ve can take X\= (2+DP5%. arbitrarily
large, taking.{ large.

By Tchebycheff's inequality, we
have, making use of above estimates,

PLpp 1L >4 7
= 7="Ef /;;f/z.lzj

(L}nll) é 7 Cz M_Aéf

Similary we have
.5) Pf ﬂuflz,/>§’ﬂ"’/z;§ 9 e,
teE

Next

74 sf |L.] > +~="7f
A
éF{/A :;j/?f(ﬁs)—?;(#s)/a/}(s:

St

which, by (iii), does not exceed
4 [t
7) {[A {/l}fs) > .}R‘ 7 j
& *
- -2A¢ (2Ac) [A
P R 20|

Since U+ - +U,%%4B by the assump-
tion (iv), and

o]
o

Atp



{"‘;i %57‘ = -,,%M

which is easily verified, the last
expression is not greater than

57 g 2Ac )*

"”"%?EB) %!
A
W) _  Ac) 455487 ¢

T [ wP5hBT/

Putting ! =M, Stirlings formula
shows that the right side of (4.6)

/ o/czm_F/
e ¢ m”/)/* e’ )ﬂ
Wt punl
= | —dms f

where Cg is a constant depending only
onf. (heh), (he5) and (4.7) with
(4e2) show that

PL A<t (XCO—Xl1)| >3
A<E
A G S pun
< /(f Cort * _Ce
([ m(/’—/’%.]) ,
from which it results

®

P ‘*/’ X0t >4
(x-27

(4.8)
< 1p &= ¢

7

where As>ew and (’g is a constant
independent of 2, £’, by choosing a
denser and denser set E.(5

Let £ be so chosen that A— -r)‘>3’
and let A >7* for m 277, Th
(4.8), we get

P anp /X(t)—)((_,é)/>m—f/2f

12-%] <zt
,"/ §m/ff//‘

-2
éC’*‘-f‘r for 2 2,

-

C being a constant independent of 72,
The right hand side is a general term
of a convergent series, Borel-Catelli
lemma shows that

' NZ
e, 1X X
e S/t F2

with probability 1. This means that
X(t) is uniformly continuous in every

finite interval, with probability 1.
5. In this section, we consider
the "non-vanishing" property of X(1).
We first prove the following theorem,.

Theorem 6. Let Joe L., oo
and €[ ,(-00, o0)e Then 7(;-))({10

belongs %o Litoo,02 a.nd L, (~00. a2)
with grobability_ 1, and d its Fourier

transform is given by
G [ Gus-opcpAT

) @0 b
(5.2) :‘. / ({—T:/T/ i(f—s)(/?(t)e 11“) oloyfs)
b ~co

—chia G2,

where ((x) is the (inverse) Fourier
transform of 9(7): ;(t)

Glxy= .M/;"(z‘)—e 'ng'(f
Proof. We have

/ E {/X(f;;(t),’zjaw

-

/ /;m{ E_{[xmljctt

- e/é”g’/wl'}(f)/ Al < oo |

/aa

/ E{IXD Ptk cﬂ"-‘/ 13t0) E{ |xoi3

and

ém 7;(@/ ol < o=

Hence by Fubini's theorem,

JO Xl L,
with probability 1. We, then, have
P4

= / F Xt UL

—/4m/dZ(§) /;a‘)e (ffz‘”

Amae 24

=/ G(E-=2dZ(§
=/2 (-9 0d YT

by (3.7). Further we have
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fz,’—:/ Jwxw U

= E’t / j(z-)e"'rz?f/ Elt-s>d)(s)

ol / ;(t)e"'{iz‘/ Fat-srdycs)
(5.3) Zow Zoo

<A - -4l
= Fe at | Flt-)ds
F (43 J(£) velongs to L-.:’(-w_ )

as a function of ¥ for almost all s,
since

Lzs/7fzt/s>;m |t

-;/ /;(t)lzaél‘/ | F (#->]ds

e [T <o

Hence the first term of (5.3) can be
proved to be

o t J [£3)
[ (] Ber-spme an) dycss

The second term of (5.3) is —cwa G(-=)
And the theorem is proved, :

The function of ¢ oo
(5.4) [(1.9)=V72_’r—£/§/1'—$);6f)€—“2f

belongs to La(-4202) for almost all
» since as was shown F(r-<> Fo
&l.,(a0f for almost alls’?’ We can also
see that €(z,5>4s an L,(wz ) as a
function of S. For we have

J:I[Cz,_;)/zal.s
s/N{/T ?:(l'—s);(t‘)/oltfzpls

which is, by Minkowski inequality,

<[ LM{/ 7§(f~5>;(f9/245 jzﬁajz
= U 7?‘*)/ dt { { / EIS f<oo,

o =
Now we put

X~ [ (5= | Etr-o g it ) diyesy

(5.5) et
= / l (=, 924;65))

this is obviously well-defined, and
also is written as

5.6 *
(5.6) - X (xa)a
-_—_-/ _1._.( ?(a)G(u—z)e_‘s%)c//‘(s)’
Zeo 2r oo
for f(x.s)1s the Fourier transform
of Pa> G (u-2)e

Lemma 1. Let F(t)¢l,, and further
be monotone for [#/> £, . Then for

1s1>2%, » 0
) [AEERL e LraB(-2)

C,5 €2 being constants independent of S .

Noticing that & (w) is monotone for

47-{—,_2-' ’ and u<_’iil, we have

“ Flt-s>
| 2

%

=/ B9 4 [ 1S5
I+ 1z sz——dl?l‘
1£1>%4 LY
< / e 7 z
= ’+(5/2)ZL/§(A)/J“
=

FECS,

J At
which proves the lemma.

Lemma 2, Let F(u)e[,l, and let
(5.8) Flar= 0(e %) usan

where (9(«) is_a positive increasing
function such that

I
(5.9) / _Blw du = oo |
) a*
Let 4 (2Z) be analytic in azz</,

0=Y4% 7 + Suppose that the Fourier
LLZLLS.I_M Féw>1s equal to 4 o for
a<p{,4_z§/}<£. Then it is equal to A(=>

for asxzfe

This fact is due to N, Levinson[1],
(P. 75, Th. XXIII).

Now we shall prove the following
theorem.

Theorem 7. Suppose that Z(t)e
L(e2adand ¢/, (—oo, o),

(5.20) | Bl = 0(}% L x>oo

lul>=z
and the Fourier transform P(«) of
Ft) is a function of L, Coe.00)s
S that
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(501)  prw= (< %U“?)

|4l — oo

where @(v) is a non-decreasing
function of v for largev , and

(a2 [Ty,

/

* LB
(50B) / € “* 0"1’<M~

Then X(#) can not vanish over any

interval with probability 1.
It is worth noticing that if (5.11)

is satisfied, then & (#) can not
vanish over any interval. From the
view point that £(#) is a function
representing an after-effect, this
fact is rather curious., Although

& (t)=o0 (o) practically, it seems
more convenient mathematically to take
non-vanishing ¥ (+) for such function,
function.

Proof. Let
-t
(5.1) 2 Civ "

The Fourier transform of j(j“) is
C—,Lz):/zﬂ ‘C_XZ . x>0

o <o,

b

By Theorem 6, the Fourier transform
of }(,t))({t) is, with probability 1,

bo
/ VAED s)ﬂ//(s)-c'a(d G-z ;

where £(z,s) is defined by (5.4).
We shall estimate

Xx(i)=/w«{’£z,s) d&r(s)_

We divide into three par'cs

X'eo= /

=j+j+j)

say, where A=A(=)= Ke%% 4 e

being a positive integer and K being
a constant which will be determined

later. We have

P anp [X*oo] > & F0)

MEL Eme)

2 P( et 17,]>4<777)

MNELE el

rP( ~r I Tl>F e’"‘ia’"’)

mEZE Nt

TP ( e 154 €7%)

mEXEn

g

= H,r Ha + Hs)
Sc".yo(S)

But

E /[(z s)J}(s;/j

{(/mf:fﬂl,f(x s)la[;(s)}zj

noticing that almost all sample
functlons 7:.5) are non-decreasing,

- pef 4o

which is, by (5.4)
Mals G >
éﬂCA ;;(/IE(M);W/JQ
e 17 e | & 2] 2
= _é?LT,q ds (L —--’—;f;’““vlf']
By Lomma 1, this does not exceed

/ /+c’[q>/§(”)]zot’s

for some constants €, and ¢, , which
is, by (5.10)

3
c -0 ]
N R L5
Tehabycheff inequality shows
Cs -2
(5.14) H,= 7(—3 e 20 5 O
'*3/‘0[0')
= 9_{
Similarly we have
(5015) H5 5_: C ----’9[»'.)

Now

14 (z, 9)’ = ‘/——z_g_-L; l/(f(,o G(‘“'Z) _e"(‘s.tau ]

so —

= f}—;‘g/ ] Pl G (w-=> ] olu
r" / | Pew)  (m-20e o

which is, by the assumption (5.11)

ao
- 8(«) — (-
= Cy/‘C (ae-x> e (e )pld.(_
4

- -0(=>
= e T2 e mEwzm

Hence

HZ,F{ Mf’ l/{(z,s)c{;;(g] -‘9("/)2

mé A Lne
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A / 4 86w
—f-‘-Fi/A("t)C577 3C;-€ f
i %
(2Ac)” -2Ac
= Z. /4/ £ 4
FY% 7 ~d 66w
where W= N(=)= 5. € « Thus
by Stirling formula

H, < _._.(ZA_S‘Z‘/
== !

_ %
L [ 3G2 Ke e {‘/e”(scf)
,/‘Z;E{ nCZ < 0%
=/
If we take [(=(fecCCs)in advance,
then for large i,
(5.16) H.£ce2
(5.14), (5.15) and (5.16) show that

/
P aup [Xeo)>e#07)z cpe =0

mE xEnt]
Similar inequality holds for negative
integer », and the right hand side is
the general term of the convergent
series., Thus

anp [)(*(z) | < e
mE XL ne)

holds with probability 1, and hence

/
-z [ 1e3)

> 6 ()
* [ Z7,

I

MEXENne
for large [*| , with probability 1.
Since the (inverse) Fourier transform
of X¥x)is y(XH)tcAa) . If
)((.t-) vanish éver some interval, then
z{t)(X(b+cda)= (H-cda which is

alytic in a strip containing the real
axis, Therefore by Lemma 2, X'(f) can
not vanish over any interval with
probability 1. Thus our theorem is
proved.

Corollary. If we suppose that
Pla)= O (e M)A pbeing a positive constant,
instead of (5.11) in Theorem 7, then
X(t) 1is analytic on a strip including
the real axis, with probability 1.

This is immediate since {3(=3”'
is function everywhere analytic.

6, We add a remark rather obvious,
Let E. (o) be a set of roots of

X(H=0, -TEXET.
And let the distribution function of
X () ve D(x), which is independent
of a paramster £ as X(#) is a strict-
1y stationary process. We have the
following fact

57 Exlo) sonverges to  D(+e)~D(-0)

as oo, with probability 1.

Let
oty = | M=o
=0 "4-4'-0,
and let
zz("‘)=l . I“I(é

=0, lu]>e&

_ !
Tz ., Ju]=¢&
Evidently Zi. X (w)=)X(#). We have

20 -
E (o)= 5% EACCOY S

Since X(1) is metrically transitive,
with probability 1,

’
Lo 2—]': / A, (X()dt=F {,‘t,(x(t))}

T->ce

- {._;W E{ Ze (X)}

A
- /. [ eitu X%
(6.1) EZ“—»_” E {Z‘—uz_{ el o M}

A0

A

. / wEar XD

e A fo, L[ 2mEE e due
Evo A 7 / M ( )

The interchange of the integral and the

expectation is legitimate since the

integral in (6.1) is uniforaly bourided

with respect to 4, ¢ being fixed.

The above expression is

o~ A, .
L & / "l/ T AER G, ) dD (e
e Aee _w(L,,q P )
= Lo [ D (- DED) J= Dt+o)-D )
Z—ro 7/
(letting #— o through points such that
D(z) and D(x) are continuous) which
proves the italicized fact.

7. Here we shall prove the formula
which gives the mean value of zero
points of X(#) over an interval, The
formula is known for special cases (9).
We shall prove it by using a method
due to M. Kac [1]{* who gave the mean
value of real roots of an algebraic
equation with random coefficients,

Suppose that E (%) satisfies (2.6),
and $7t) satisfies (2,13) and more-
over | E@+-F(#+)}P converges to
Z7(#) in mean [ (-00.00> . ‘e suppose
that ¢(u) satisfies that Plw =
Q(eA«) in addition to the assump-
tions in Theorem 7. Then by the
corollary in 5, xt¢#) is analytic
with probability 1 and almost all
sample functions have finite zero points
on every finite interval.
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Let joint distribution function of
X, x’(r)) be Dz gd)= PlXttisx,
X14Y) zaa which is also independent
ott . tly we assume that the
distribution function of X () is

continuous for every 1.

Ve shall prove the following
theorem.

Theorem 8, Let Z(t) and its

Fourier transform satisfy the above
conditions. Put

(1.1) weo= / I$]d D3>

—-00
which is assumed to exist, If J=
Lss 35 (Wo-wlg)exists, then the mean
of the number of zero ts

of X(t) cover any interval (a, b) is
ven

(7.2)  (£-a07 .

To prove the theorem we shall use
the following lemma which is made use
of by k. Kac

Lemma 3. Let #:(® be 1l if
|xl<£ and O gtherwise, If neither
anor b is a zero of f"" , thegt

number of me; of f(z)
interval (a, b) is

[ :
/fm;z- Y (foo) | ftoo] olz
E~ro 4

We shall prove the theorem.
Because of

%(“)g___ A‘“lz ¢uf,[{'

(difference at a=l£l is not
important in our following arguments
for the distribution of X(#) is
continuous), and

1= st s

We have

Ef (x| X §

A en San 4X(i)41
{ A»co / du

. =

ﬁ

_7_51_6 E Mzu AX(ﬂA;IM
Aee

‘_/_ A oo /_mx/(t)v o(vJ

f 0O

= —7-.{; - du ________,d,u-fu
A—Ho 7'5 mv?
Za /.

-

-
=

CEf etX®ur L xtrvdfdv
where the interchange of the integrals
and the expectation is legitimate

since dj sl o XY, is
bounde 7/

If f(a> and f(«, @) denote as
before the characteristic functions of

X@) and § Xct), X f respectively,
then the above express

%5‘(—
’,{'2‘;2; mv

[ feo- Z(f(a,ouf(«,—w)] o
Now

A
Lo, *'/,. BN DA

ADec
A—)n / ““"E“‘J..:/,ei“ dDe
73 - / dDee)

/ Al D e 3)-Dee, a)j
Si.milarly

/&«, "‘:“‘8"‘

A F
A E Al v
,4-)» / J‘// WfotyD(:ry)
—co -oo
=/ <3 d/ de D3
~ 6o -
o’ )
—.-/ e A D - D y)f_

Hence we have

E { % <) [X10]}
// %—F-lo(v e({'D(f,y)-—D(~f.?)f

-0 ~OO

as ao
=/ /#/olD(z,r)-/lyl AD (23
—oo -0
Hence the theorem is proved.
If (X(H.X?H) has probabilit
density pec P s then 57.25 becames
(70’+) “ - a.)j'
= (4-4)/ I?If(o.y)d;



siere [* )¢/ p(x.2)dy (-oo<zc00)
is assumed to exist.

This is due to S, O. Rice[l] when
X@®)=L(Z, > Zyit) T,,...587
random variables and L.(¥,... Fv; %)
is a function differentiable with
respect toZ.
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The detail proof of the in-
version of the order of ine
tegrals is omitted, but we
can, without difficulty,
prove it by use of the defi-
nitions of ordinary and
stochastic integral.

Moreover, of course, £(x.s)
is bounded for almost all g

since F(#-s) ()¢ 2
for almost al)i}as. L,(-w )

We can define Plasf(->) for
analogous way as in the proof
of theorem 5 or Doob [1]
Chapter 2, but details are
amitted here.
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