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1» Suppose that events occur in
accordance with a Poisson process with
a parameter e, each event has a certain
intensity ΊJ and has an after-effect
U ' l F O ^ after t time units. Let

intensities xf, , χj
z
, • «..* at occur-

rences of 'events be mutually inde-
pendent. The sum of after-effects at
time t can be represented as

-I
where £(t)>-°°<t<<*>

9
 is a stochastic

process whose sample functions are
constant between the events and in-
crease by the corresponding intensity
X/t at each event*

Suppose that <£ (£) be defined in

(1.2) 5 it) eLfi.**) and $ l
z
 (o,

and

and, moreover,

If events are arrivals of electrons
at the anode of vacuum tube, (l l)
represents the noise current. The
formulation (1.1) is due to J. L.
Doob ί

1
) Formally, the extensive

analysis of random noise was done by
S. O Rice, in the case \

t
Ct) is a

trigonometric polynomial. The object
of this paper is to prove some results,
in connection with Rice theory, with
X, (t) defined by (1.1) in a rather

rigorous way from mathematical view
points. The proofs of some known
results are contained, because of
completeness

2. Under the condition (1.2), the
integral defining X,Ct) in (1.1)
exists W. X,(t) is strictly
stationary and consequently stationary
in wide sense.

Campbei1
f
 s tπeorem s hows

(2a) E tX,(t)]^ cold,

where E f Λ j denotes the expectation
of a random variable χ(t) and, for

έ |J

(2.2) =

-c$

(2.1) was proved by J. L. Doob

Put

(2.3)

easily

— 7&+*)-
Let the characteristic functions

of JJ; and A
s
γcf) be l(*t) and

&C+<.;$) respectively. It is
verified that

(2.4) &O

(2.5) Eί>

are easily obtained..

kVe assume throughout this paper,
that £ Or) is ,a real valued function
defined on 6-^*2 and to be not neces-
sarily zero in (-^o) for certain
reasons, (see later) and suppose
that

(2.6)

Further suppose

(2.7) E C I//J <-

r

Theorem 1. The characteristic
function j-(^) of ytt) is given



(2.9)

This is perhaps known, but for the
completeness

f
 sake we shall prove it»

Let G Ity be a function of 1
2
 (-*», o&

V/e take a sequence of step-functions
j

The existence of the bracket in the
last expression is easily proved as
follows : letting the distribution
function of \J^ be pCsQ , we have

^u QCt) X-l ~

s
 Cj - CjC"*)* such that

(2.10) ί

Then by definition,

where ̂L<.τ«. means limit in variance,
that is (2.11) means

E
 t ί
—* ° ^ C"*

V/e, then, have

—Oύ>

Since Yί ̂ -O- YYy-r^Λ / ̂  ^̂
are mutually independent, by using
(2.4), the above expression is equal
to

(C/
"
?
~
!
~ ^

(2.12) =

dt]

J. i Q (t>\*

from which the existence of the
integral in (2.12) is shown.

Hence^the characteristic function

of / Cf(t-?dγct) is given by

(2.12). Putting $U)~ WC*-Z> >

(9) immediately follows.

Next, we consider the characteristic
function of tXC1t), K'ίt)) . If
is differentiable and such that in
addition to (2.6),

(2.13)

J
and
mean
Then

to
converges in
(t) as k+o .

/.-.«.&

and

"XC&i-

Taking &
in (2.12), we have

C? Ct)

f J v)-1

PuttingX-/ , we find the charac
teristic function of
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Theorem 2» If £(£) satisfies
(2.6) and (2,13), and {&(tH
converges to ^'(Jr) in mean h^Cs^
then the characteristic function of
{X(t),/('(f)j is given by

(2.14) j-Cu. <O

-1

From this we can show the variances
of Xft? , X'tt? to be fic/^ 5 '

=y*<r ^ > /<? Y~f 5 W f e and the
6©variance of χ£t-> and X x£) to be

J
which is zero, if
zero

converges to

3. We consider the integral

(3.1) =L

which exists in int,
a
 sense since the

integrand belongs to L^C-*****) . and
we define γ*(t) by putting (3.1) as

Y 00 — Y C/O . For the integral
(3.1) and γ*(£) , see DoobtlJ. By
Doob, it was shown tnat tne stochastic
process Y*(t) has orthogonal incre-
ments and

El
where ^ Y*(t-t*t)-Y*fr).

Let ?ί^> €• Lz0~.**? and i ts
Fourier transform be

Then we can define'the process

(3.3)

We find obviously that

where

(3.4) H

The process
nal process*

Theorem 3

Z(t) is

AA-

fi J lfC»)Γeί
also an orthogo-

. The stationary process

can be represented as

(3.5) X(t)-

where Zip is one in (3.3) and the
integral is taken in ̂

2
 sense

e

This is easily seen from the
following lemma, which is known (3)

Lemma 1» If WCf) is an orthogonal
process and w*(χy is a stochastic
process defined similarly as in (3*1)«
and £Cx)eL

x
*.('<»<oc?y, f^Ctr) is its

Fourier transform, then

Jfr

Since the Fourier transform of

]£
 i s

 -e
<ία
 f(Λ*) > °y "the lemma,

we have

which proves Theorem 3.

By the well known inversion formula,
\y

 c a n
 ^ represented by means of

X(t? 9
 b u < t w e s h a 1 1

 δ
i v β a

 formula by
means of Y(t)

Theorem k. Under the conditions
in Theorem 3, we hav

(3.6)

(3.7) is nothing but (3.3). (3.6)
is also immediate by Lemma 1, since
^Ctjju.,^) is the Fourier transform
of

= o , otherwiseo

The auto-correlation of Xdr) is

(3.4).

Since

(3.9)

where

being the spectral function

is real, we get



4* In this section, we shall
discuss the continuity of ̂ XOΌ
It is obvious that )((f) is continu-
ous in mean j^

x
 , since /*£*O is the

Fourier transform of an absolutely
integrable function* We shall prove
under some conditions, that X(t) is
continuous almost surely

Suppose that

1 ί~ th

Γ±i) /ΈCtO\ £ A
e
 It

l> , for large//:/ ,
At ^iπ^ a constant independent of f
buiΓdepends on Jj (and is not neces~
sarily, bounded with respect to / ).
(iii) J.ff) satisfies the Lipschitz

condition

c t>>°)
K ^ a constant independent of £• and

(iv) the random variables Γ/
t
> is

bounded.
 Ό
 £J/+'& & Then X(f) is

continuous with probability l

Proof o LetE. be a finite set in

{t--τk , t^τkl ,-»̂  being a positive

integer fixed for a moment* %' is any

real number•

(4.3)

We take, in advance,

in < «*•7/ί.
Then \t\<\ tΊ+~ an

t-S y J\-\t\> mΓ<}
life may assume ^-Όmonotone for

**•>£- A , taking previously n large
enough. Then the right side of (4.3)
i s not greater than

r/i

(4-1)
' L J-Λ 1A

say, where A ~ 3 <r&*-
9
 f' being any

positive number less than p in (iii),
y/e have obviously

Vfe can take X ^ CzZ+Of/ί arbitrarily
large, taking/ large*

By Tchebycheίfs inequality, we
have, making use of above estimates,

(4.4) ^ CJ

Sirαilary we have

Next

(4.2)
IIJ *-£

/

( - J
We shall estimate each of the right

hand side of (4 2) For this, we
consider the mean value of Aj*>P

t
^

Έ
 \I,\^

Noticing that almost all sample
functions %C^? are non-decreasing,

which, by (iii), does not exceed

' lλ
A
 3- 3K J

E{

Since U.+ ^
tion (iv), and

by the assump-



which is easily verified, the last
expression is not greater than

Putting "3ΓΏ~/'% Sterlings formula
shows that the right side of (4 6)

(4.7) /"~

Xe-r'V*.r:
where C^ is a constant depending only
o n Λ (4.4), (4*5) and (4.7) with
(4 2) show that

f{

£JL

from which it results

(4.8)

where \^r><&> and Cg is a constant
independent of 4*.^ %'

$
 by choosing a

denser and denser set £L (5>)

Let/ be so chosen that ^^^f
and let-,A*.>7* for **£??»• TheΏ by
(4 8), we get

fI*-'.

for sn > -*τ
o

C being a constant independent of '**.
The right hand side is a general term
of a convergent series, Borel-Catelli
lemma shows that

with probability 1. This means that
is uniformly continuous in every

finite interval, with probability 1.

5* In this section, we consider
tha !lnon«vanishingH property of χ(ir)
We first prove the following theorem*

Theorem 6» Let j(f?6 LJi C-<&* <χ?~)
* L ( 0 Sign Xtand M 0 $ttX(

belongs to / . 3 /.^,^) and * L,(-<χ?'
with probability 1, and i ts Fourier
transform is given by

(5.D

where G ^ ) iff, the (inverse) Fourier
i ί ί l

Proo£o We have

and

Hence by Fubini's theorem,

with probability 1* We, then, have

by (3.7) Further we have



/

\fzπ

(5.3)

Έ.Ct-*>}Cf) belongs to L
2
 (-*"*<**

as a function of t for almost all s,
since

Hence the f irst term of (5 3) can be
proved to be

CiίtJ
The second term of (5 3) is - Co(<i
And the theorem is proved*

The function of x
act

(5-4) ίCi.vJ

belongs to Lj-***0"} for almost a l l
5 , since as was shown '£.&-*) frCt)
L£aύJ°φtoτ almost a l l 5V We can also
see that <tCx,<& i s xn Uit-oci<*>)&& a
function of .5 * For we have

which i s , by Minkowski inequality,

Now we put

(5.5)

this is obviously well-defined, and
also is written as

i

(5.6)

0O ί00

for £(χ,s)ίs the Fourier transform

Lemma 1. Let <£Ct?*Lt and further
be monotone for /£/> to <» Then for

t

s $

 c* being constants independent of S «

Noticing that £(«.) is monotone for
A.>ψ , and 4Λ<-ψ, we have

which proves the lemma

(5.β) F(<+>= OU-"~*X ~-.<

where &C
4
*) is a positive increasing

function such that

(5.9) -Έr-- cLu — ex? φ

Let k C2) be analytic in / ,
o^y &y Suppose that the Fourier
transform of pfto i s equal to iΓtoa for

έ Then i t i s equal to f^tzcy

This fact is due to N Levins on (_ l7,
(P. 75, Th XXIII)•

Now we shall prove the following
theorem.

Theorem ?« Suppose that 'Ϊ.Ct)&

( 5 1 0 ) J 1 ΈCH>Γ<U= oC^βX *

*) ofand the Fourier transform
ΈOt) ia a function of ̂
such that
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(5.31)

J4JJ

jgherg θ(v) is a non~decreasin^
function of tr for lar^ e v-

 $
 and

Then /ft£) can not vanish over,, any
interval with probability 1*
It is worth noticing that if (5*11)
is satisfied, then £(t) can not
vanish over any interval• From the
view point that Έ.Ct) is a function
representing an after-effect, this
fact is rather curious• Although
<&(t)*=-o (t<o) practically, it seems

more convenient mathematically to take
non-vanishing 3E (f) for such function

o

function*

Proof* Let

(5.14)
I

The Fourier transform of 9(:t) is

Say.(8)

But.

noticing that almost all sample
functions %LV> are non-decreasing^

7

β

I
/ f

which is, by (5.4)

L©mma 1, this does not exceed

for sane βonstants C, and czi ί«hich
i s s by (5.10)

By Theorem 6, the Fourier transform
of 9U)Kίt) is, with probability l

s

where ίC z,*>) is defined by (5«A)
Θ

We shall estimate

We divide into three parts

X J
3

say, where A ̂ Ac-»)~ K-e®
1
^ > <**-

being a positive integer and K being
a constant which will be determined
later We have

γ

Tchebychβff inequality shows

(5.U) H . έ ^

Similarly we have

(5.15)
 H
 ^

 c

Now _

*€ *

*0

which is, by the assumption (5-11)

Hence

'Z l
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7

by Stirling formula
τhus

Nί

If we take fζ*-(jf<ecC$)iΆ advance,
then for large rz,

(5.16) faύ c
d
*

 V

(5.U), (5.15) and (5.16) show that

Similar inequality holds for negative
integer ΎV, and the right hand side is
the general term of the convergent
series* Thus

holds with probability 1, and hence

\κ*<*>\
for large \τc\ , with probability 1.
Since the (inverse) Fourier transform
of χ*tx) is ]O)(XCt)+c«Λ.') If
X (±-y vanish over some interval, then

tic in a strip containing the real
axis. Therefore by Lemma 2, Xtf) can
not vanish over any interval with
probability l Thus our theorem is
proved*

Corolla If we suppose thatlary* p
f£O Ofor^Oλ being a y o j y ^ J
instead of (5 11J in Theorem 7> then
Xtt") ia analytic on a strip including
the real axis, with probability l

This is immediate since }
is function everywhere analytic*

6 We add a remark rather obvious*
Let H

τ
 Co) be a set of roots of

And let the distribution function of
XCir) be V(x) , which is independent
of a parameter £ as Λ (f) is a strict-
ly stationary process* We have the
following fact

Έτίo) converges to -V£-*?

Let

and let

with probability 1*

« \ ,

= • o

- JL

Evidently &χ~

Since Xct) is metrically transitive,
with probability 1,

Z
£
(*)=X£u). We have

b~ Trf *>

£•—^0

(6*1) -

The interchange of the integral and the
expectation is legitimate since the
integral in (6.1) is uniformly bounded
with respect to/f, ε. being fixed.

The above expression is

(letting i-?o through points such that
l?6θ and VC-*) are continuous) which
proves the italicized fact*

7* Here we shall prove the formula
which gives the mean value of zero
points of XCir) over an interval. The
formula is known for special cases (9).
We shall prove it by using a method
due to M* Kac flj^who gave the mean
value of real roots of an algebraic
equation with random coefficients.

Suppose that Ί&(t) satisfies (2.6),
and Jt'cf) satisfies (2.13) and more-
over {Έ-Φt4)-Έ(*)}/& converges to
^/(i) in mean LzC-*

9
***} "fe suppose

that γ(M"> satisfies that ψOu-?^
OC£~*

lΛAl
y in addition to the assump-

tions in Theorem 7 Then by the
corollary in/5* X(t) is analytic
with probability 1 and almost all
sample functions have finite zero points
on every finite interval*
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Let Jodflfc distribution function of
' ) be τ>Cx.D=r(Xlt)ύx

X j ) which is also independent
of i Lastly we assume that the
distribution function of X(t) is
continuous for every f

Yίe shall prove the following
theorem*

Theorem β* Let Έίt) and its
Fourier transform satisfy the above
conditions* Put

(7.1)

which is assumed to exist If J =-

J**-* •£(WC*)-W/*))exists. then the mean

vo,lue of the number of zero points
of X(f) over any interval (a, bΓ*is
given by

(7.2)

To prove the theorem we shall use
the following lemma which is made use
of by U. KacUl).

Lemma 3* Let %OO be 1 i f
/ x | < £ and 0 otherwise* If neither
a nor b i s a zero of J cxy $ then the
number of zeros of -j-tiQ in the
interval (a, b) is.

We shall prove the theorem*
Because of

(difference at u~l£\ is not
important in our following arguments
for the distribution of Xtf) is
continuous), and

ett
We have

where the interchange of the integrals
and the expectation is legitimate
since f

A
**U£A*/.^X'*)«

<
lu±s

bounded"* '
M

If -j-tM^y and j-ί^v) denote as
before the characteristic functions of
XCf) and iXCV.X'ct)} respectively,
then the above expression is

f

Now
tA *

Hence we have

E { ft CX(t)) \X'(t>\]

"JJ

Hence the theorem is proved.

ΊL (,XCt)*X'(ϊ)) has probability
density j>^

t
 -p) , then (7*2) becomes

(7.4)

-<of 171 f
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is assumed to exists

This is due to S
β
 O RiceCU when

XW-LC^,. ••> ̂
H
)t) H^.^are

random variables and L(t,*~~ϊ*ί)t)
is a function differentiable with
respect to t.
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