SQUE CLASSES OF POSITIVE SOLUTIONS OF Aw = Pu

ON RIEMANN SURFACES, I

By Mitsuru QOZAWA

§0. Introduction,

In our earlier paper [1] we had
introduced a method to classify the
Riemann surfaces into the various
types making use of the following
leading idea: Under what conditions
does there exist a solution of a
partial differential equation of
elliptic type Au=Pu on a given
Riemann surface?

Recently Lauri Myrberg [1]1(2]
showed that on every Riemann surface
there always exists the Green function
of Au=Pu , This is an elegant re-
sult in this tendency,

Martin topology played an important
role in Heins'! investigation for the
structure of ideal boundary and for
a class of positive harmonic functions
on an end in Heins' sense. An analogue
of Heins' investigation was stated and
a maximality of a class of positive
harmonic functions on a subregion with
non-compact relative boundary was
established in our papers (21{31.

In the present paper we shall
investigate the structure of the
ideal boundary using the positive
solutions of Au=Pu instead of
positive harmonic functions. In the
way of construction of the theory we
are obliged to add a more restriction
than in the harmonic case in order to
establish a full parallelism between
the theory in Heins' paper and that in
the present paper. In harmonic case,
when F belongs to the class Og , the
maximum-minimum principle in the ex-
tended sense for any bounded harmonic
function holds and we can conclude
that each minimal positive harmonic
function in Martin's sense on any
Heins!' end is obtained by a suitable
limiting process m-—sco (P, —> ideal
boundary) for the Green function
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Gz P.) on a given end.

Riemann surfaces F in considerw
ations are the ones in the sense of
Weyl-Radbé. Differential equation
considered here is the following type

A) Smump+imuey = Pepuey),

where Zz=x+1} is a local parameter

at a point P on F, P(x. %) is a
real continuous function of (x. %)
being except at most at a countable
set of zero-points with accumulation
points lying only on the ideal
boundary and having continuous partial
derivatives. We assume moreover that
if we change the local parameter 2z to
2z’ , then P(%) changes as follows:

P =;f>(quf%§i'%

For this type of differential
equation (A) we can prove the ex-
istence of the Green function and
the solvability and uniqueness of
the first boundary value problem on
compact subsurface. Moreover
Harnack's convergence theorem is
valid, For the precise formulations
one can refer to the well-known
classical papers. Recently L. Myrberg
{1112} gave a precise method of
formulations.

§1, Generalities and known
results,

Let {F}} n=0,1,2,- be an exhaustion
of F in the ordinary sense. Let F,
have a compact analytic curve [, as
its relative boundary.

Let G,,(%3) be the Green function
of (A) on Fn satisfying the following

conditions:
1. AG.(%,5)= Pt -Go(z,8) on Fo,
2. Gu%%) has continuous partial
derivatives of second order on F,-3 ,



3, Gn(Z,S)’fPa}iZ%I is bounded in the
neighborhood of ¢
he G z)=0 on Iy .

Let G(z.35)=dm G (2,5) call the Green
function of (A) on F. Myrberg (21
showed that for any F there always

exists uniguely the Green function of
(A) on F. Essential step of his argu-
identity
qG,n(Z,é)P(Z)do 2T - L% T (z.5)de,
n Nn
which leads to
HG(Z,;)P(Z)&« = 2T (l - (s, ["r&)) ,
n-o
Q0 =1 on [, and satisfies
1f

ment is to establish the following
J

F

F
where L5 =dn 0, (5.1%) such that
the differential equation (A).

{0, My= 0 , then we have
HG(z,S)P<Z)4o~ = 27T,
F

Let @ (2,0, -E) be a finite
solution of (A) on F\.-F, , being
identically 1 on v and O on [ .
Fe Oy (resp, e On ) means that

w(z,,F-F) =&4‘/_v)vt\”c..)n(z,rmf€‘n—’l:‘;)
(resp.f1(2,T) ) reduces to constant
zero., We had already shown that
0.=0n ., This result remains valid
in spite of Myrberg's result, If
there is no non-constant bounded
solution of (A) on F, then we denote
FeOg - O = Ou is also valid.
Moreover if Fe¢ Oa, then on any
subregion D with compact analytic
relative boundary C there is only
one linearly independent solution
of (A) bounded non-constant in D
gsatisfying = 1 on C, and vice versa,
If Fe Og and u(z) is a bounded non-
negative solution of (A) on D (with
compact or non-compact relative
boundary C), then the maximum princi-
ple holds, that is,

u(z) = w(z) ,
CAN

Evidently the minimum principle in
this case does not hold.

let @ (=0, Fu-F)  and b =leluET)
be two finite solutions of (A) on
F.— F, such that
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w, (Z,R,F,:E)z{ 1 on I,

0 on I,

and

(2, 00 FoF) =

on L+,

respectively, Evidently

R 2000 B -F)
2

= @, (2, F-F )+ © (5,15, F-F)

and

ha < hlz), @wl(z) > W 12)
hold for n>m . Let

ﬁ(z,a+[” #-F) ﬂ?ﬁtﬁo ﬁn(z, [;mﬂ’ﬂ_ﬁo)

S0, F-E) = bm @'(z 1,

mae M

B,
Save when the contrary is ex~
plicitly mentioned, an admitted
Riemann surface of infinite genus
in the present paper subjects to the
following two conditions:
(i) the surface has precisely one
ideal boundary element,
(ii) the surface belongs to the
class Q.

An end is a subregion of an admitted

surface whose complement is compact,
Without loss of generality we may
assume that the relative boundary of
an end consists of a finite number of
campact smooth Jordan curves,

§ 2, Green function and its
behavior,

Now we shall classify the ideal
boundary [” of an admitted Riemann
surface F into the following three
types:

(a) %_3_?_ w'(z, b, F-F)>o0,

(v) Lm (2,0, F- )= ©

and” Lo @iz, 6, F ) >o0,

(©) I w'znn,F-F) =0
This classification is evidently a
local property and closely depends
upon the choice of [“(z) . We shall
state a fact that either case (b)
or (¢) oceurs, provided that P(z)
satisfies a condition . Pwidor = |
Because we have already seen that

‘ SL—G(Z’S) P@doe = 21t



If )Zm Gi#,8)z8 >0 occurs, then we
havé

ﬂ G5 Pedo + Sﬁ P(z)do~< 2%,

which is absurd by U P&) do-= 00 o

Lemma 2.1. let u(z) be any
bounded solution of (&) on F-F
being non-negative on [, . Then
wz)z0 on F—-F,

Lemma 2,2, let u(z) be any
bounded solution of (A) on F~F
being non-negative and % O on [,
then M w(z) > 0 (resp, = 0)
1mplies that 2‘”“ w5, I, F-F)> 0

(resp. = 0) and vice versa, The
same holds for B .
Z->p
Proof of Lemma 2.1. Let D_be

a connected caomponent on which w(z)
< 0. Then on D._ there is at least
one positive solution of (A) being
bounded and constant zero on the
relative boundary of D—, which leads
to a fact F'¢ Oy by theorem 4,2 in
our previous paper (11. This is a
fact to be rejected by the assumption
FE O,Q‘ ©

Proof of lemma 2.2, At first we
shall assume that u(z) is strictly
positive on [', . Then by Lemma 2.1
and the maximum principle we have

M

0€ W(Z) £ Max U(Z) =

onF' -F, . By the assumption Fe O ,
we have

Rz, [T, F-F) = w'ta.,, F-F)
and

Mi@ 2 w2z mbm,

°

M = Max wiz)y, m:m wiz) ¥o-
D

This implies:the desired fact.

Next we shall prove a proposition
that we may assume that u(z) is
strictly positive on I, . Let K. be
a parameter disc around z on F-F, ,
LetG (é,z) be the Green function of

(1) on' Ky o Then we have
u(l)=7ﬁ;§u(§) 2% Gy J(5,2) doy
Y

Moreover we see that
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= &G (52028 >0
£

on the periphery of Kz, if z belongs
to a closed subdomain D of ;. Thus
uzyz o, £0 on Wy implies that u(z)
2 N»>0, z e D, This fact implies
that a set E_on which u(z) = 0 is
empty on F~F, . Therefore we can
select a suitable subend D, of F-F,
such that W(2)z m >0 on the relative
boundary of D, .

Let (3(z. 3) be the Green function
of (A) on F (or F-F, ), then by
Lemma 2.2, we have that &= G(z,3)>0
(resp., = O) implies to ﬂm Cu(zg“ F-F)
>06 (resp. = 0) and that 3 M(,-('z 5)
>0 (resp. = 0) implies to gg w1z,
F-E) > o (resp, = 0).

If the case {a) occurs, then LmG(z;)
>0 and hence ~_[,G(;,z)>o . Therefore
we can select a suitable subseguence
{z.} such that B2 G (5, z,) exists
with 2,» " and is a non-negative un-
bounded solution of (A) on F (or

F-£).
53.

let q),: be a class of positive
solutions u of (A) on a damain ©= .
If © has a relative boundary, then
we shall add a further restriction
such that u = 0 on the relative
boundary of = ., In this section we
shall restrict to the case that O is
an end or an original admitted Riemann
surface.

Dimensions of ideal boundary,

[

Between 'ty and CP there
exists a one-to-one and onto mapping.
Let u(z) be a member of P, _F » then
we put that T, (z) is the largest
minorant of u(z) among Peg . let
v(z) be a member of &, _ s then we
put that S (z) is the least majorant
of v(z) among p-F o Bvidently
these operations have their senses.,
And moreover we can conclude that

STu_:LL and TSV=

and S and T operations are one-to-~one,
onto and positively linear mappings

between F-F and F-F, *



Thus we can define a sort of di-
mension dem,(I” ) as the maximal cardi-
nal number of linearly mdependent
solutions of (A) belonging to l o

Let us now define dimension d:unz'(r' )

of the second kind of [ as follows: Let

G(z,%) he the Green function of (A)
on F-F, . By the result stated in
§2, three cases can happens, that is,
cither (a) Lm, G(z z)>0 or (b)

Le Gumy =0 but & G@w¥) >0 or (c)
Gcz,5)~ o . And we denote these
Ehree cases,for convenience,by [e(a),

(e (b) and [" e (c), respectively.

If ['e (c¢) happens, then we put
dim, (M) = O .« If either (a) or
(b) happen, then we put that dim, (™M
is maximal cardinal number of linearly
independent limit functions of G (x,3,)
with 5,— [ belonging to Prg
This cardinal number dim, (") is
also a local invariant., Evidently

LA £ dim () holds. In
cases (b) and (c) we see dim, (1)
¥ dim (") . For the case (a)
we now offer an unsolved problem:

Does thére hold a relation
dim, ([ = dim, (") 2
This problem relates closely to the
following problem which is wider than
the above one.

Can any minimal positive solution
of (A) be expressed as a suitable
limit function such that

B GF‘-F,(Z’ 5n) o

n->0 GF‘-F—L (20, 5q)

In this problem we donot require that
F is of null-boundary of any sort,
Here minimal positive solution u(z) of
(A) onF~-F, means the one belonging
to GPF = with a postulate for mini-
mallty' If v(z) £ u{z) remains valid
on F-F , then v{z) = k u(z), k> 0,
unless v = 0,

1f Fe Ogn and Fe(a), then ¥
GOé , that is, F is of null-boundary
in Nevaimlmna's sense. In fact, let
F¢ Og " , then the harmonic measure
of - F‘ with regard to [, : w®a.n,i-E)
satlsfiesfu}.w{?"(m = 1 and hence
L (1- w®x)'=0 is valid, On the other
hand (1 - w<“'<z>)z+’e3;F (z,%)z 0 holds on
F-F, forZef-F s wheregp_% (z,3%)

is the harmonic Green function on
F-F, with pol(e)at z , This leads
to a fact km R 3F~F (z,3) = 0

which implies that L G— _(z 3)=0
This is absurd, 7

Let IPF F, Dbe a class of positive
harmonic functions on F-F  with
vanishing boundary value on [, . We
shall now denote its dimension in
Heins!' sense by dim (")

In this section we shall restrict
to the case that Fe Oy and ["eta) .

Next we shall construct a positive-
ly linear mapping °f” and its inverse
mapping 8 from [P, into qu_E o

Let u be a minimal positive
harmonic funetion of Peg, 5 then
w=dm 3 "=(z,5,) for a suitable
non-compact gequence {5.] . Evidently
G (2300 2 gF_E (2. %n) o And hence we
ca.n ‘extract a suitable subsequence
{5nm} such thatv=lp G, o(=.5.,) exists
and is not constant zero on F- ,
for bm Gpg (3n,,, 2)>0 by [* €(a). And
we shall put that °I, is the largest
minorant of u belonging to d%_z
then €I >0 for oxvsT, <u \re@ F oo
Ev1dently T, is a positlvely llnear
mapping from g into GPF

let v be a limit function ,%::;ogp-a
(2, 5») along a sultable non-compact
sequence {%n} . Then we shall conw
struct a sequence of the harmonic

Green functions Sp & (2,52 | since
Fe 0™ , we can extract a sub-
sequence such that w-tm 9% (53, )
exists on F-F, in the wider sense
and % o ., let .8, be the least
harmonic majorant of v , then .3,
surely exists and satisfies v < .3,
W %00 , operation is evidently
positively linear on Y g-7, , where
-F, is a class of positive so-
1utlons of (A) belonging to 2.
and being expressible as a su:Ltable
positively linear combination of any
linearly independent positive solutions
of (A) each of which is obtained as a
limit function I Grg (2. 3.) along
a suitable non-compact sequence {5=},

Next we shall prove that “I and .3
operations are both one-to-one and
onto mapping between |P. g and 0,z .



-8 operation determines uniquely an
element of IPr-7, for any given
element of Ol . Let A’ and
A5 be two elements of lPF B
correspondlng to a given element v
of Q]F # and there be no majorant
relation between .5 and A
Let Urmin(A° %) on F-F, , then
U is a superharmonlc function such
that Us 8" ana Us 87 . Let
Un be a harmonic function such that
Un=U on[w+[s , then Unz U
and Uns AP, B onFu—~F, . And
moreover Un monotonically increases
with increasing n., Thus Lm U,
ex1sts and we shall deno’ce this b;y
U, Then U*>v and U™
and UM< A" hold on F~ ?‘a . “This
is :unpossible by the definitions of
B and AP, Thus we see that
/S“) /%(z) on F~ Fn °

‘T operation determines uniquely
an element of GPF -§, for any given
element of Pe-p, » Let Ty and
«’ be two elements of Fp. 7
corresponding to a glven element u
of Pe-g - let V" be a positive
solution of (A) on F-F, such that
Vs max (T, T®) on M+ o
Then ev:.dently V™2 max (T, TP) and
Vi ym™ 1fn<mandV"<ufor
any n, And hence Valm Y™ exists
and is a solution of (A‘Sn on F-F,
If T % T ™ and there is no majorant
relation between T and T
then V> T, and V>T > remain valid
on F-F, . This is J.mposs:Lble by
definitions of T and T .

T F°T,, holds unless w;=uy .

Since ‘T has the sense for any w
elPeg, and w>T, , AT . can

be defined and /%"Ius w holds even

if T, ePpp, does not yet guaranteed,

Conversely, if 8+ has the sense for

an element ve Fy & ,T.8, can

be defined and 8¢ P, 5 and T.A,zv

holds on F~F, ., Let u be .3, , then

j)ﬂ:/gv-. /Sv and l)c&:)') 2/81)' on

F-F.o This leads to a relation

ATAy= Ay on F-F, , Iet v be
Tu, then TAT, 2T, and THL, L.,

and hence ST 8T, %’uon F-F . If

u is minimal in Martin's sense, then

ku= AT, with O<k<$l, Hence we

have KT, = TRT, =T, which leads to

a fact that'k =1, 3%C, = w . For

any minimals and hence their positive-

1y linear combination, that is, any
elements of Pr_#. , 8°T=1 holds.
Therefore, Qj’ur GI,’M‘ implies that
(,L1 = WUg o

We shall give another exposition
for .3 and T operations. If A has
its sense for an element ve CPF_F »
then we can define a relating harmonic
function S. by km, V™, vhere v™ is
a harmonic function on F“—Fo such
that v"=v on [n*1% . Then v"s 3y
for anynandv V™ if n < m and
hence &m v™ exists and % o and
hence S, € Pz, - Evidently S, Ay
and S, 2. %, , since Sy is a harmonic
maJorant of ¥, Therefore Su=_3y,
let u belong to Pr-§, , then T,
(>0) exists, let u™ be a positive
solution of (A) on Fn-TF, such that
w'=uw_on MM+, , then Tus utcu
on F.~F, which leads to o fact that
Ty=2m u™  exists by mono‘bonelty,
that is, if n < m, u™> u™ holds,
and T, T, <v is valid on ¥- F‘ o
By definition €,z T, and hence
CI:‘uE Tu_ °

Iet u= Sv , then we see that
Sy-u'=0on [+l and V™V =0 on
Te+ Uy and 8yU™vvu=9 satisfies a
relation Ap=-P(u"-v) . On the
other hand we have u™ 2z v holds for
any n. Thus 4920 and hence $z°
on F,-F, , that is, Sy-u"2 v"=v on
f,- Fo « Let n tend to infinity,
then Sy~ T328,-vand TSy € v on
F~-F, . Thus TSy =v for any v
for which S+ has the sense.
Especially ¥ & belongs to a
family for each element of which S
operation has the sense. Therefore
we see that Ted=T1 for (e .
Now we may conclude that b, = /%1,1
implies that v, =v, , if 3 operatlon
has the sense for v, and v,

let u be minimal in Martin's sense,
then Ty is also minimal in Fe.g, .
Let T,z v hold, then u=8Tuz 8. which
leads to a fact that ku=.Av for O<k
£1, provided A, * © . Hence KT,
=TAy=v , O0<kszl, unless v = 0,
Therefore, ', is also a minimal in

F-F, o Moreover u can be expressed
as a limit function &z, 9% (2, 5m)
hence we can extract a suifable sub-
sequence {Sn.,] such that Vi=km.,
Gegzmye Qp.g » Evidently Vs T,



and hence Y~ k°T'w which shows that
Vi is also a minimal in QYpe.p and
T« belongs to (BF—FO . Therefore
we can conclude that the image of
IF--5, by T operation belongs to

a class gF-E N

Now we may state a result:

Theorem 1. lLet FeOn and T ¢ (a).
Between O, g and &, g there exists
a one-to-one and onto mapping ST such
that I operation preserves minimality,
We have dim, ([ = dim,([) < dim I\
The maximal range set of _3 operation
coincides with %FE .
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