ON DPECQVPOSITIONS OF A COMMUTATIVE SEMIGROUP

By Takayuki TAMURA and Naoki KIMURA

If there exists a homomorphism of
a semigroup S onto a semigroup S*
having special type, all elements of
S are decomposed into the class sum
of mutually disjoint subsets. Then
we say that the decomposition of § to
S* is obtained. In particular the
decomposition to a semilattice is of
importance, i.e., S = lJ‘,,S,, where
S«nSp =@ («4p), every s, is a re-
strictive subsemigroup, and for any
«, @, there is a unique ¥ such that
Su Sp< Sgas well as Sp S« Se In
§1 we argue that there is greatest
decomposition of a semigroup to a
semilattice; particularly in §2 we
show a decomposition of a commutative
semigroup by method different from
Mr. Numakura's, and in §3 our de-
composition is proved to be greatest.

$1 Greatest decomposition

In this paragraph § is assumed to
be a general semigroup. A decompo-
sition of § to an idempotent semigroup
gives an equivalence relation; and an
equivalence relation ~ in S raises
a decomposition of 8§ to an idempotent
semigroup if and only if

(1) a~4 , c~d imply ac ~4d,

(2) if a~4 then a~ad.

Lemma 1. (1) and (2) are equivalent
to (1') and (2'),
(1') a~+4 implies ac~ 4¢ and
ca~c4 for every o,
(2') a~o? for every a.

Proof. (1')~>(1): For, from
a~4& , follows ac~4c ; and from
¢ ~d s be~4d . By transitivity,
ac~dd o (1)—=>(1'): evident. (1')
& (2') - (2): from a~4, it follows
that & ~at~ak, (2)—(2'):
evident.

We denote by £ the set of all
decompositions ¢ of § to a semi-
lattice, and by ¥ the congruence
relation which gives ¢ . The relation
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% and ¥ are equal if they give
the same decomposition. Obviously

& is not empty, because it includes
at least a trivial decomposition, a
partition of all elements of § into

one class,

Now we introduce the ordering into
H : i.e. p2y means that =¥ y if
x 3y . The ordering is clearly a
partial ordering. Then we have the
below lammas,

Lemma 2. £ forms a complete
semilattice.

Proof. Since & is a partly
ordered set, we show that any subset
H, of & has a least upper bound,
We define a relation %, as follows.
x Ly means that x Ly for every
¢, « It is not hard to verify
that %, is an equivalence relation
and satisfies the condition (1') and
(2') (in Lemma 1), Clearly ¢t z¢
for all ¢€9,., Take up any ' 2 ¢
for all ¢ed&,, then from ¥4 follows
« Ly for all ¢ed,, i.e., =Ly}
hence ¥z§ , and so § 1is the least
upper bound of 8, . Consequently

Theorem 1, There is a greatest
element of 9 . In other words, there
exists the greatest decomposition of
a semigroup to a semilattice,

In another article we shall relate
what is an equivalence relation giving
the greatest decomposition of a
general semigroup.,

$2 A decamposition of a commuta-
tive semigroup

Let S be a commutative semigroup.,
We define an ordering a2 4é between
elements a and b of § to mean that
a certain element xe¢S and a positive
integer m are found such that

"= bx



The definition is obviously equivalent
to the following:
for some positive integers

a= 4%, m, and an element 4e S .

Lemma 3. This ordering is a quasi-
ordering.

Proof. (1) aza for all &, be-

cause Q" =aad"'for m>1,(2) az 4 and
4zc¢ imply azec , For, from a"=lx
and 6‘=cy s we get a™"=cz where ¢
= yxt,

Lemma 4, a2 { implies acz éc for
every ceS o

Proof, By the assumption a™= bx
for same wm and x, Multiply c™ by
both sides of the equality, we get
@)™ =(4e¢>¢™" x) where w may be sup-
posed to be greater than 1. This shows
ac z 4e

Now, if we define a relation as
az 4 and 4za , the relation is an
equivalence relation.

Lemma 5, a~4 implies that ac~dc,

Proof, Use Lemma 4,
Lemma 6, a~o* for every aeS ,
Proof. Obvious by the definition.

From Lemma 1, 5, and 6, we have

Theorem 2. We have a decomposition
of a commutative semigroup S by
introducing the equivalence relation
a~4 , or az4 and 4za , into S .

Next, we investigate the property
of the subsemigroup S, whose class
sum is S .

Lemma 7. Let e be an idempotent
element of S ., If eza , there
exists x of S such that ezxza and
ax =€ o

Proof., By the definition of the
ordering, e=a'y for some y ¢S where
Wwe may assume m>»| ., Set x=a"'y
then e=ax and ezxza o

Lemma 8, If a~e where ¢ is an
idempotent, there is x such that
ax = e and e~x ,
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Proof, Since ¢ 2 a by Lemma 7,
there is o such that ax=e and
ezxza, On the other hand aze
hence e~x,

b

Now, let D be the set of all
idempotents of a commutative semi-
group S .

Lemma 9., D is not only a sub-
semigroup of S but a semilattice.

The partial ordering & is introduced
into D in usual way:

e »f if e=fe

lemma 10, As far as elements of
D are concerned, it holds that e &~ f
if and only if e 24 o

Suppose ezf i.e. e=4x
Then fe =4fx=fx=¢€,
The converse is trivial.

Proofo
for some xe¢S .
Hence e %f »

Lemma 11, Let e, f¢ D e~f
implies e=#% .

Proof, From e~#f , .we have e« f
and f+'¢ by Lemma 10. Since & 1is
a partial ordering, e=4§ is concluded,

From Lemma 11 we have the interesting
theorem,

Theorem 3, In the decomposition of
a canmutative semigreup as Theorem 2,
$« 1s a subsemigroup~having at most
one idempotent.

Furthermore, if S« contains-an idem-
potent, S, is a unipotent inversible
semigroup L1), Then Sie , in-which
e is an idempotent of §,, is the
greatest group of S, and S, has the
property that

For xe¢ S, there is a positive
integer m such that «x"€ Sie,

The structure of a cammutative
nonpotent semigroups sush as Sy will
be argued precisely in another paper.

§3 Two decompositions

Mr, K, Numakura obtained a decompo-
sition of a commutative semigroup S
by the following equivalence relation

~ [2] as follows.



axb if and only i° A (Spe)=N(Sp¥)
for all peS . " -

The decomposition due to ~ ( §2) and
~ are denoted by ¢ and %; re-
spectively. e shall aiscuss the re-
lations between ¢, and ¢, .

Theorem 4 ¢ 2 ¢, , in other
words, if a~{ then a=4 .

From O\f\'l’ ) iceo “Mz l‘n ] 4"; ag )
for any pes ,

ﬁ (Spa;)-ﬁ D(grﬁh) < Q(SP“).

(S}

Similarly
Nspty < N (Spa).

Thus we have
o

A (spa) = N

erl.‘)) i.ee, axt,
Let 9, be the greatest decompo~
sition of S to a semilattice (for
the existence of ¢, is assured in
§1), and let = be the equivalence
relation determined by ¢, . Evidently

‘f’l§(f,§?o .

Theorem 5. It holds that ¢ = ¢, ,
in other words, ¢, is the greatest
decomposition of S to a semilattice,

Proof., It is sufficient to show
that a~4 , (or "={x and 4"=ay )
implies a= 4 . Since each class by
¢, 1s a subsemigroup, it follows
that a=a™, Let & be a class to
which « belongs, and § be the semi-
lattice which is determined by ¢, .
The multiplication in § is denoted
by v o, —
From a"={x, we get d=4¢vx _ and
consequently & &4 where &~ is a
partial ordering in § . Similarly,
from 4"=ay, we have a2 & . Thus
it has proved that a ~4 implies
q= Z or a=¢ -«

Now, if a semigroup S is decomposed
to a semilattice composed of only one
element, § is called an s-indecompos-
able semigroup.

We have immediately from Theorem 5 the
below theorem.

Theorem 6, A commutative semigroup
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S is s-indecomposable, if and only if,
for every pair a, 4 of elements of S,
there exist a positive in integer m

and an element x €S such that a"= 4x,

Finally we show ¢, <%, by an example,
Let S be the set of all pairs ( ¢, ; )
of non-negative integers except one
(0,0 ), and the multiplication is
defined as

Coyd) U, do) = (it éa, diths)

where tt(:, J.tJ2 are usual ad-

ditions.
S is a cammutative semigroup. Now let
A=Ad,0; vzl

8

S

1

KSR RN

"0

T,y teeg gy,
A, B and C are mutually disjoint
subsemigroups and

$=Avevc

It is easily seen that this is a
decomposition, written by ¢', of

S to a semilattice, Of course
¢'£¢,. On the other hand, we

consider the mapping § of § on the

additive semigroup I of all natural

numbers as follows,

(i 5) = i

f 1s a homomorphism of S on 1.
Setting a= (L,J‘) )

foxpa) = f(t)w\{(r)-r'"f“‘)
Z 141t md4])
>m
Let 1,={¢; V>m}. Then $(Spa”)<1In
Since A 1,=¢ 5 0 (Spa)=¢ for
Ny n=)
every p, a4 € S , It follows that Pa
decomposes all elements of S into one

class, Clearly ¢, <¢'. At last we
arrived at ¢, < ¢, .
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