NOTE ON IRREDUCIBLE DECOMPOSITION OF A PCSITIVE

LINEAR FUNCTIONAL

By Hisaharu WEGAKI

In this paper we shall introduce a
stationary natural mapping in w*-
algebra generated by a two-sided re-
presentation of a D*-algebra (L with
a motion G (e.§. cf. [8))—a D*-
algebra Ol is mean by a normed*-algebra
with an approximate identity and a
motion G is mean by a group of *auto-
morphisms onOl(the motion has been
introduced by Segal for C* -algebra).
Next, applying the stationary natural
mapping and the decomposition theorem
of Segal (cf. Th.4 and its proof of
[7]) we shall prove an ergodic decom-
position of a G -stationary semi-
trace of separable OL under a re-
striction which generalizes an irre-
ducible decomposition of finite semi-
trace (cf. Th.l of (93, I), ergodic
decomposition of G -stationary trace
(ef. Th.6 of [8]) and ergodic decom-
position of invariant regular measure
on a compact metric space with a
group of homeomorphisms (c¢f, Th. in
App. II of [3] and Th.7 of [7)).

l?) Let Ol be a D*-algebra with
an approximate identity je«.i..p and
with a motion G (=1ist) i.,e. D is a
directed set and el =¢,, tesn g1 for
all « € D, lex -xi=+0 for all
x¢ 0L , and anys,t¢G are automorphisms
on Gt such that ¥x¥u=uxu, x**= x** and (x5)t= xt
for all x¢e 0L , Let — be a G-
stationary semi-trace of oL, i.e, <«
is a linear functional on the self-
adjoint subalgebra generated by {xy; xyedl}
Ci.e. O such that <(x*x)z 0 ,
TLY®) = TUXY) = TCy*xF) , f((eax)*e‘x);-‘r T(x¥x)
T Xy Ky £ KX 1T LyRY) 4
and <c(x*y*)=txy) for all x,y ¢ OL
and s¢ (g o

Putting N ={x:0l; ©(x*x)=0}, N
is a two-sided ideal in Ol. Let a°
be qoutient algebra of OL (= OL/7)
and for any x¢ 0L let x® be the
class containing x ., Letting (x®, v®)
= T(*x) for all x,ye 0L , o°
is an incomplete Hilbert space, Let
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be competion of O°., Putting
x*y® = (xy)° 2% = (y0° and
iy° y*e for all x,yeOL ,1}x°,
x* j, &y defines a two-sided re-
presentation of Ol . Xoreover putting
Usy® = (¥%)® for all s¢ & andyeOl,
{ug, }r 3§ is a dual unitary re-
presentation of G . For, (uy? xf) =
(Y59, x%) = T(X Yy = T oY) = (78 Usx?)
and Usey®= (7557 = Urys® = Ueusye,
Then we have:

Us x> Ug=e and. (Xs)L= st"us-l
and s ¢ &

(1) H* =
for all xe QU

For, usX‘us—|79= us x“’(‘/s-l)6= u,(xys )9
= (x*y)%=x*y¢ and similarly for the
latter, Putting w®, w® and wg
w* -algebras generated by }x=, xe L},
{x*; xe 0L} and Jus, se @} respective-
ly, We= Wb , W' = wb, JAj = A¥ for
all A¢ w*aw® and the  1is G-ergodic
if and only if W* A W° A Wg = VxT}
(ef, Th.2 and Th.5 of (8]) where for
any set £ of bounded operators on ﬁa«
F is the commutor of F .

Let {s be the family of all bounded
elements v in (i.e. v belongs to
& if and only if uxtvr £ Mux® for all
cf. 181 and [ 9]) whose corresponding
bounded operators on be v> and
vt guch that v*x®= 5%, vx®= x*v,
Then { x®; xt OfcL and x®¢= x*
for all x¢ 0L , and the following
relations are equivalent each other :
for any vi and v, in [ v&= v,
vi*z v» (both as operator) and v, = v,
(as point in % ), Now we can define
in > a* -involution and a ring pro-
duct : v*¥ and viv, (= v*v, = v}y, )
for all v, v, ,v, ¢ s satisfying
that v¥*= jv, vt%= ve¥, u¥te wbr( por
v** are adjoint operators of v*
and v® ), Jutj= vt¥* , (vivn)t =
VA VE o, (vl =gtV oand (av+ xvy)ha
Mt ea,n* (ford=a b ) (ef, p.35
of (8], p.6l of 163, II).

(Ugv)* = usvlu‘-"",

(2) Usv € > and

1)



WoP=yovbufor all se G and ve Jfr

FO!', P Usv = Us Ui xb g = Us xin'bv

and WxPuguil = w(xsyE o = U x®y

& ot uxen,

Next U v Ui x8 = Us\r“(xf')"=u;(x"')"v
= Us Ui x> U v xPUg v = (Ugv)ex9,
The latter follows from the similar
method,

bw)

Let wW** and w be the sets of
all unitary operators in w* and W'
respectively, and put u®*=ujuj for
all U & W*%) | Then (U¥v)* = (ujujv)*
= U for all ve f> (cf. Lem 3 of
[8)). It is evident that for any
we WS uye W Poan iy =
Jutjwts uliuty

Put unitary group generated
by{u*; uewe®}and Vs seal,

Lemma 1. For any W € and
vily, Wvedy and there exists a
unitary operator U on % such that
(W)= wvad* for all ve dr .

Proof. For W = usu¥® (for some
seG  and ue W), Wv e O
follows from (2) and the fact that
Lr> is ideal in w* , and (u'v)*
= (U )™ = (UsWIU) v) ™= ug(Ujujuug
= UgUvs B U= = (Ugu)ve(usu) ™,

For w' = ufus , similarly wW've g
and (W'v)* = (UWXugv)*= (WjUjUugw)®
= Wusv) Ut = Uldg v Ut U= U yueuugy?!
Since general element in has
product form of a finite number of

the above forms W' and W' , we can
prove for any W' in§ .

Let % be the closed linear mani-
fold of all the vectors £ in & such
that WE= ¢ for all W€ § , ‘and
let Z be the projection from
onto ? o Forany ¢ ¢ ﬁl , put K§=
closed convex hull of {u'g ; weq i
Then '

Lemma 2. (Codement's lemma; cf.
€27). (1) Kya consists of only
one point ¥, , (ii) "%,0 = inf{ISN

ySeRy} o, (141) 7% = .,
(3) ju=uj forall ue G and
JL = Zj

FOX‘, jusx9=j(x‘)°= xs*e
= x*0= Uix® and ju*x® = jujuyxe
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= JIUJUX® = UjUx® = ujujjx® = utjee

for all ste&G and W ¢ w*, For

a.n?: 133 i] taking £, = )—__Af.:')u?"gi)(i

(uPeg) and g, (= 28), 378 - 5,

= him By= Umjfa= Lim EATUSTEE K],

Khlle Wi, =ju'g =jt, for all

'E d .
T o JLeKjaP e

(4) x*¢=x*% for all x. gL and §533)

L ]

For, WjUj% = & implies jwyg =
W't . Let xe 0L be x*= x  and
Wx~u & 1 . Putting U, = x*43(1-x<"y"?
and U= x*- L(I1-x*")"2
and u, belong to w>*), Hence

2 . o2 M2

(x4 - jla-x=)"5)T = (x=-1(1-x") )8

)\/zj)g = (x*4i(T- X’“I)‘/l)i
and jx*jE = x*§, x*%g L

This holds for all s.a,xe« Ol ., Since

any x € L can be represented as

7+12 (y and z being self adjoint
inOl), x*% =(y*+iz*)f=(r*+i2%)g=x"¢
for all xe¢Q\

(5)

(g +33 (1

Kecds for any veJs and 2L clyo
For, let {§,}¢<K, such that %, =

memy (3.3 in) [L}] )
@«
v AU v (uMew 0 T APs 1

miny

b

and XM 2 0 )and g - g . Then
WP = TR g

= STV v ST RON S vty
and "b'gnll —> WxPEL S Nvop. yxO
for all x¢ JL . Hence 3¢ £, and we
have the former. The latter is evi-
dent by the former.

Putting (ve)!=(Zv)* for all vey, ,
by the proof of (5) wucve=)fxey
1Zu)* x1 = x> Zuig i tifor all x s 0L
and we have

(6)

VA W for a1l v o L

Let ® and R be the uniform
closures of L* and [*% respective-
ly, then

Proposition 1. The mapping § is
uniquely extended to a linear mapping
on R onto Rf such that :

(1) Ae@®f implies Af= A ,

(11) ™=af and (4*a)S 2 0 ,
(111) (uAUWf= A for all yg we
and all U= Us (s ¢ &),

(iv) aR)} = (BAY and (afprf=anhd

=ABY for all A,BeR .



(v) (AT, g8)=(A%%,£> for all

At R and E_,sf}o

Proot., (i) follows immediately
from (&), (ii): v**t = (Zjv)*= (I
(by(3)) = (Zw)er = vr o whi1e
(vt x0) = (X’Zv"‘v’ %)
= lim (a0 x> uPvdv, x®y,

Since (x°U'v¥v,x®) = (UvTrveux®, x°)
= Wveu"'x°*2 0 (where u is as in
lemma 1), (uv*v*$x® x*) 2z o,

Taking v, ¢ &r such that wws - A1 =
nve* - A*I—> 0(n>w) we have (ii).
(1i1): Since for any u ¢ w*™ K,
CKV’ ZU‘VEKV and Zu'vi Ke A 3.,,
Hence by lemma 2 ZU*v<=Zv and (uved')
= (W= (ZUPW)® = (Zv)* = vet
for all UM & w** and ved . ithile
for st ¢ , similarly ZUsv=1Zv and
(Ugvete)t = (Ugv)td = (ZUsv)es (Zv)=ved,
Taking v « 4 as the previous we have
(i1). (iv): For any v,w ¢ L and

x jt‘)‘- 3 (ZV“\J’,xo) =(v“w‘,2x9)

= (W, v¥* 7 40) = (v, e Zx9)3)=(v’qu’)=(Z\J“"":"e),

hence (viw®*)$ = (Z‘rv)" = (Zwv )0. — (w—c‘rk){

(Credge)d o) y9) = (K'Zv"w, ¥0) = (Zv‘éw'qu"')e)

= Qo vIRZ (G xrP®) = (Fy vatrg (yxee)
(because v*i*Z(yx*)%¢ ’S), = (v Zu () =
(vt 7w y0)= (vH(Zw)* %8 y8) = (vobygsb 8 50

For any A,8 ¢ R , taking \wy, jwicy:

v -an —> 0 and »w*- BY — 0

we can prove (a8) = (aayt , (afBY =
Af B! and clearly = (ABHE, (v):

For v, wels, (voZw,Iw) = (w'ty, Zw)

B AZv, w70y = (WN 70, Z0) = (v 2o 7w)
Since Z& is dense in ‘3 and yvi-Ar
—> o implies yvti- Aty —> o ,

(v) holds,

Lemma 3, If 3 has the following
properties:

(7 {x“%; x¢ 0} is dense in 5 .

Then the mapping v> = v>¢ ig strongly
continuous on a sphere of J5* .

Proof. Since ZJ is dense in ? »
(7). is equivalent to that { x*Zv;
x¢Ol,vel}is dense in % , If
Vit = v¢ strongly and wviy s M ,
then u(v§~vaytwadxey = (g~ vy 7,
(since ((v§-ve)Tw,x®)= (1Zw)Z(vy-V),Tx")
= (v, (Zw)**2x%) = (Zg®-v*) 2w, x®)
for all xs O, (v§-ve)Zu= Ze; - \’“)Zw’)
= 12U 2wl 5> 0 and v‘M-!-) ves
strongly.

(8) The approximate identity {e. in
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OL satisfies that e. belongs to the
center of Ol and & =e, for all
se@G and e Do,

If et satisfy (8), then (7) is
always satisfied. For, clearly €f¢ 7
and eXx® —> x° strongly
in £ , and {x~e); x€NueDy 49
dense in f-) o

THEOREM 1. Under the assumption
(7) or (8), the mapping § (on &7) is
uniquely extended to a linear mapping
on w® onto w!{= W*n Wiwsatisfying
the conditions(i) - (v) in the Prop,
1, where we take w* and w§ in the
place of R and R¢ respectively which
coincides with § on R introduced in
Prop. 1, and moreover

(vi) 1¥=1 , and (A*M}= o for A

¢W'implies A = 0.

Proof, Since £ is dense in W*
under the bounded strong topology
(ef. [4]), by lemma 3 and its proof
¥ (on XL*) can be uniquely extended
onto w* ., Since the uniform con-
vergence in &% implies boundedly
strong convergenca (in the operator
topology), the introduced mapping §
(on W* ) coincides with § (on ® ).
If s and uwvfns M, then vi— A
(strongly) if and only if vg*—»a*,
For, wiviZw, = wivEZw, = v§ wiZw,
and {v}wZw}, is Cauchy directed set
for all w ,w; ¢t L ; since {x*Zv;
xe0,veb}is dense in and 1vin=njve¥i
=Uvglls M | there exists a strongly
limit B of v: o Since for any
E3&h  (jBjE,T) = lim(jv}j% 3)=
lim (v3*§,3)=1im(E, vi3)= (£,A) =W 3),
JBj= A" and hence vit= v > jBy= A*
The converse is clear., If (Zv)*g =0
for all ve Jr, then (v*¥3g x°)=((Zv)**,x)
=(§,x*Zv)= 0 for all x¢ 0L, ve 5>,
and §=~ 0 ., Hence there exists 1u,)
CZ% such that vv/Wv s 1 and uf —1I
(strongly) by Satz 5 in (5] and Th.l
in ¢4j. For any ws 2L , A¢W! and
ue § , uwhA =AU and hence WAu =
AWu=Au or AwezZdl , By the con-
struction of § on w*, Af is
boundedly strong limit of a {v°$}
(vpe Lr)  and hence Afug = (Aﬁ;)i -
(ZAu*= Awy,  Since u = I  strong-
ly, Ab = A The fact Atew! for any
A EW* follows from that L * is dense
in w® under the bounded strong topolo-
by. Since for any A€W we can take
Wt ¢ & such that ¥w s M, v —> A



and v3*—~ A® strongly, for any % ¢
HOARA - Mg B S K a®~ v3h) AR

+ MUCA-VEOER + MU= VE)EN
hence vp¥v* ~> A*A  strongly and Wwi*vih
= #93rs M* |, Since (1) - (v) fold
in 5* (cf. Proof of Prop., 1), we have
also (i) - (v) for A« w* ,

%

4)

(vi): Since T s w! , I'-T is
evident, Let A« W® satisifies (A*A)
= 0 , then ((WAZy Tv)= (A*AZv,2v)
(by(v)) NAZvi= ¢ and

x*AZy = Ax*Zv = Ax*ZV=0 for all xe Ol
and ve b . Hence A=0 4

Now we have following

Corollary 1. Lst T be arbitrary
& -stationary trace of a p* -algebra
oL with a motion ¢ and let we , w*
and Wg be the W*-algebras generated
by the representations {x% %}, ix,%}and
\Us, 4% . Then there exists a G-
stationary natural mapping on w* onto
W*aW'aW& satisfying the properties
(1) - (vi) on w*

Proof., There exists a strictly
normalizing vector ¥ ¢ % such that
jT=% , x= X =xf , T = (X, §)
for all x ¢ OL and { x~% ; x € O} is
dense in (e.g. cf. Th.l in [87).

Wie now prove uy > ¥ strongly in %
for any approximate identity {ugt in
0oL, (ul x®) = (u;ﬁ,x“'i) = Tluyx¥)>
T(X")--(t,rﬂ,)and |ru?°|=au,°gu S NEN

for all p . Hence u'; —> % weakly,and
ul  being uniformly bounded, con-
verges strongly. Clearly e® 1is also
approximate identity in a for allse&
Hence (€)%= usef —> ut, () — %
and hence W =% for all s ¢ &,
Therefore ¥ belongs to the manifold
3, and the condition (7) is always
satisfied and by Th.l we have Cor.l.

2, In this section, we shall prove
arn ergodic decomposition of a & -
stationary semi-trace « of a sepa-
rable D¥-algebra o with a motion G .
Wwe shall use the same notations in
§ 1, and assume the condition (7) or
(8). Since 0L is separable, the
Hilbert space & is also separable
(cf. Lems5 of (81),

Lemma 4. There exists a nonzero
vector ¥ in B such that jt = § and
ix*% 5 xe L} is dense in ﬁy.
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The proof follows from the similar
proof of a theorem of Segal (cf. the
last paragraph of the proof of Th.9,
p.49 of £73): Let 3%.} be a countable
family of nonzero elements of 44 which
is maximal with respect to the proper-
ties: 1) j%u= §, , 2) JQE.}, are
orthogonal with respect to each other,
Putting § = & §,/anga 1s the re~
quired one. This follows from the
proof of Segal adjoining the facts,
that the closure W, of @®*%, and
projection Pa (onto #Mw ) satisfy
that oL*¥n c M, a‘mncmn, JMnc M,
Us W c 2y for all se & and Pn e wé
wivhwg), and that {x*3; x€ 0L, 3¢ G}

spans ‘1 R

Let ®, (resp. dl? )be (algebras
generated by ® (resp,.®¢ ) and I,
Then the natural mapping § on R is
uniquely extended on R, onto R
which coincides with the contraction

of the mapping § on w* . For any
st G and A¢«®R (or &, ) putting
A*= usAuge, AteR (or Ry ), &

defines a motion on R (or ®,) such

that x** = x** for all s¢ & and xe0L,
Let © and ), be character spaces of
®RY and ®¥ , and putting w(Ad=
wAf) for allAeR (or R, ), w are

G -stationary traces of R (or ®R.
respectively). Then Q (resp. L1, )
is locally compact (resp. compact)
Hausdorff spacef) and there exists a
Radon measure dp on QL. such that

(9) AL, E) = f, S @ dpw
forstRé and AR

The (9) follows from that p(A*)=pWhy,
RS At = plsa) and w(sAr= w(tsAY) = w(sAb
= ws)iw) for all Ae®R, ScRf and

wef) , where pLA)= (A%, I).

Denote R the C*-algebra generated
by {x*sxe O},

THEOREM 2, Let T be G-stationary
semi-trace on Ol and ) the character
space of ®¢ . Then there exists a
positive Radon measure v on () such
that

=

(10) T(XY) &nn(*)')dv(w)
for all x,y¢ Ol and w, are dviw-
almost all G -ergodic traces on Ol.

Proof. By a method of Segal which
is done under the resolution of
identity (cf. p.284~5 in [61), for



any s.a, ve 2 there exists a sequ-
ence {1.} of linear combinations of
orthogonal s.a., idempotents in ZJ,
such that

(11)  #g.- v — 0, and

Wgh= vei > 0 (n—+o00),
For any ve Zh , taking v=vi+ vy
(: v =v, and v* = vy ), (11) also
holds for v. Denote L, and &4 be
the sets of all s.a. idempotents in
7%y and linear extension of &,
respectively, Let ®f{ be the set of
all projections in & then R{=b;
(=11 p e 5y}) (of, (495, .25 of [9),
I). This follows from, that for
PR} taking (9.} ¢ Ly such that 0¢. -
Pt —> 0 (which is possible by (11) and
the fact that the uniform closure of
Lt is RE), Gsw = Pw uniformly on
0, and that &*! is an ideal in RS,
Let C,(0) be the set of all continuous
functions on ) with compact supports,
Then Con ) e b (Lt being an ideal in
R

Putting ve(p)=0¢¥ for any p e &y,
Vo(*) define a.complete additive
gage on Jrp which can be considered as
a complete additive set function on
the collection K. of all compact-open
sets in O (considering ve(Kp)= vo(p*)
where K, 1is compact-open set corre-
sponding to b ¢« Ly ), and it can be
uniquely extended to a complete ad-
ditive measure v on the family of
Borel-sets generated by X, »

Then for any v, w £ ZL, v¥.) and
wi:) are in L,(Q,v) and

(12) (= (vewre dv),
o
For, by (11) we can take }9,}and }v}
<in Lrq ¢ 44a-vi =20, Uty - wi =0,
45-vI=v0 and §TL - wel = 0 (n=>0),
Since #q,.-~ 4.1 = § 145w - Lhc@iFdviw
-0 (M n—>oo),
there exists a v/(-) in L#(Q},v) such
that 95 Ww> —> v'(w) in measure, and
Wp- V'l —> O
Since % (w)y=vew) uniformly on Q ,
viiw) = velw) a.e., and hence ky,.-vii=
et - v avw) - o . Similarly
I~ wi® = 175 @) ~ wwnt dviw) —> ©
Hence tv, w)
= 1im ,‘m_>”(1,,‘)f,,)=lims W) FRY (W) qvw)
= \ vNwiwrundvey, For any v ¢ L and
we 2L (Sw)=(Zv,w)= jth)‘(w)vr*‘w) Aviw),
(since w(vew**) & wv*)w(w*®) =

(nevy being Liv) «norm),
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(It wrw*e),= [ w(viw*s) dviw),
For any v,wely and v e 20, (uw, w)=
(*u,w)= (u,v**w) = Wus pay¥ ey dy(w) .
Letting {uw} ¢ Z& such that, us z o0,
PUgEE 1 and 0 § w(ug veurt) o w(vaure)
(the existence of {ua} is possible bythat
vevtaw) (=w(varr=)H) vanishes at infi-
nite on L1 ), w(udvusute) § w(vevre)
and {w(usvir*)dvw) = (urvv) S (v, v)
Hence by Fatou's lemma «(v®v¥**) is
¢ =integrable and

W vy duw) & (v, v),

Let {AntC (ZL) such that #AnV & 1, An20
and An—> 1 strongly on o Since
(u(_A“\rAu'*t) S wrev¥)and SQ(A»V‘“V*“)AV(M)
= (A v, v) = (v,v) S S w (U VU g o),

Hence
L(vrvFeyavw) = (v, v)

for all ve L.

For any v, w ¢ly,vw*is complex finite
linear combinations of the form vuv“*
(ie.vwts T9rpvpvd ¢ & ). Then,
taking 3jA.} in (ZXL)* as above it can
be shown that (v.w)= Iauvw ve). This
implies that w(vew*)(=ZTwlviv®)) 1is
v —integrable and |w(v*w**)dvw) =
D@ g ud aviod = £onlvie,n) = v

Since Vo) determines a unique
positive linear functional w¢() on
Co(22) which is the contraction of
Y()  onto C.(0) and vp*) = % (p*)
= Ye(p*) for all ps Ly , 4V is a
regular measure on Q . Since for
any p¢ .Gr wi* is contained in gaf
and weakly closed, (K ,v ) is perfect
measure space (cf. Lem. 1.4, of (7] ).
Hence any non-dense set in Kp or
more general any non-dense set in £
is y-null set by the regularity of ow.

Let I be the character space of
wé , then wf is *isomorphic with
CI") by S$-=S¢), and there exists
a continuous mapping ¢ from I’ on
0, such that S($) = S¥) for
all Se®f and ¥ 7. We prove that
$(M =0 : since ¢(") is campact
in o, , if Q,- ¢(P) is non-empty,
then there exists a 0¥ S ¢ R such
that S(P(¥r)=0 for all 7¢|” , Since
s€¢ Wt and Say=0 for all s I s
S 1s zero operator on o This is
a contradiction, Let dp’ be regular
measure on.{T such that

(ASE, §) ﬂumsmawm

for all A¢ W* and s ¢ w!



where ¥(A) are traces on W* defined
by ¥A)=$Ad) for all{: T and heW®.

We shall prove now that, putting
™A= Y(A)  for 311 AfR and AEW“ R
wy are G -ergodic traces excepting a
p' -null set in I ¢ Let AR
(¥sP-N') be the two-sided represen-
tations of R and let {#(uy),%,} be
the dual unitary representation of G
with normalizing vector By € such
that $F(ADE= TN 6y , quE, = E4
T (T = #0U098)E and m(R)= (¢35,
t4) for all At R , Let wo®), b
and Wg(¥) be w* -algebras generated
by 'I'Y:&f\)heg_: ]?;(A)}Af.?, and
%M e. As in the proof of Lem., 4.2
in (73 (cf. p.31), if 2my= P o+ 6y
for G -stationary traces f and 6y
of R such that f(A) and oy(A)
are p' -measurable for all A¢R , then
PyeAY=(Ty9300%;, %)) for all A€ R where
Ty € WHPAWSD (wgy'and H Ty s 2
(ef. Pro;f of Th,5 of [73). For any
A, BER, PBYA) (= (Tyg5(A S
is p! -inteérable and”‘ 1, T 330)

I Ty £3 gy BBy 3 dp' D)

. N 2 ) 2
2 (frey Wz rapen (ies®gapon)
= RAENUBEN,

Since {Ag; AtR} is dense in ¢,
there exists a bounded operator T on
%y such that

(13) (TA3,BY) = | (T, 5M5,07(BYE)) dp'ch)
forall A,B ¢ R,

From (13) and Tyew*¥) w*¥\ we !

it implies T+¢ w*a whn w' , and

(TsAs,BY) = Srmsam;m)s, PHBIT)ARN)

for all sew$ and A, BeR

Hence Ty = T(¥) Tjaey where Iy is
unit operator on . Thus we have
Lem. 4.2 of Segal for G-stationary
trace by the similar way. The proof
of theorem of Segal (p.32-4 in (7)) is
applicable for @ -stationary traces in
the place of state, and my are G-
ergodic traces on R (i.e. extrem
points in the space of all & -station-
ary traces of R ) excepting a p'=
null set in [, For weQ putting
WA +rT)=wM+X (for 11 At R and
A), w's O (ef. p.32 of [7]) and
the correspondence w - w* is one-one
(form Q4 into Q, ). For such a w’
we denote w uncder identification.
The inverse ¢~' of ¢ induces on N :

$7w) = $7NW) for all w s Q. Let
Q! be aset of all @ in Q such
that w¢,, are @ —-ergodic traces.
(Mf'm) is well.defined as a G-
stationary traces on R excepting a
P’ -null set set N’ by the fact that
WMy(A = m(R) for all A€ R and all
7, ¥'¢ @), If Q -Q’ contains
a non-null open set Q,, ¢$7(Q.)is
non-null open set in {* and for all
f5 $7(Q:) wy are not G -ergodic on R.
This is a contradiction. Putting
m(A)=myy (p), there exists a ve-null
set N in N such that m, are G-
ergodic for all @ € 0 - N , Putting
T(x) = Me(x*y for all x e OL ,
o (weQ-N)are G-ergodic traces on
Ol ., Indeed, if w, =xc, +u-m,for
some & -stationary traces T, and T,
on OL and 0 £ x < 1, then JTuxy)d
& TX) YY) & TN LY Y)
= my (XX m Yty g et nyﬂn"

and hence |t (iey)ls ixsnneinsnnand txe)
— <,1x) implies it ) s wx*w, Put-
ting pu*) = ) for all x ¢ O pis
well defined as a positive linear
functional on i x*; xs ot} and P (x**)=
Pt = Tux) = o= fxt), Hence ¢
(v = 1, 2) are extended to G-
stationary traces p, (i = 1, 2) on
R such that ™, = »g) +aw-n¢/, There-
fore T, and <, are linearly de-
pendent. Since wir=myxIzwus)
Tw(xy) is v —integrable for all x ,
Y¢ O and <ixy*) = j T ( XY vew),
The proof is complete, “n

The decomposition of finite semi-
trace onto pure traces follows as a
special case (: & consists of only the
identity automorphism) of Th.2, be-
cause (7) is always satisfied for
finite semi-traces (cf. Prop., 1 of
[8]); and we have Th.l and 2 of [ 97,1
as special cases, since for non-
separable case the present proof re-
mains valid for the type of (91,

As an.application, we can prove an
ergodic decomposition (to finite
ergodic measures) of invariant (not
ergodic) regular measure 4t on sepa-
rable locally compact space £ with a
group of homeomorphisms under a con-
dition that if there exists a family
of finite invariant regular measures
{d pet such that dt and 1ays} are
absolutely continuous with respect to
each other in the sense that for a
Borel set B in £ is dt -null set



if and only if 4ty -null set for all
As another application, we have
7 -ergodic decomposition of Hpat
measure of a locally compact group
with a complete compact nbd system

invariant under J where ¥ is the
group of all inner-automorphims.
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FOOTNOTES

0) The natural mapping § in this
section will be introduced by a similar
method with Godement for algebra of a
representation of a unimodular locally
compact group corresponding to a posi-
tive Radon measure (cf. Jour. de Math,
pure et appl. 30 (1951)).

1) A stationary trace (resp. semi-
trace) T on OL is called G -ergodic,
if < is not convex combinations of
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two other linearly independent G -
stationary traces (resp. semi-traces)
on 0L where the trace « satisfies
sup{r(x*‘x); xeQ@, vxu 5 1} =1

2) 1In general,jAj € w* if Aew®,
and jBj e W* if Bew®. ForjAjxy® =
JARTYO= JurRA 7 = Tx5TA 0% XC3Ajr%and
jAj € W®, The latter similarly
follows,

3) (4) implies that v*% = v*g¢ for
allvs f and & ¢ G . For (v*E, x%)=
V™58, x0)= 5 v 1) = (W% 55)= (8, )
= (E7j“*“jj")=‘z,"bj‘7)=Vg,"j\)): ('EJV"’"x")
= (v"z)x°) for 211 x € OL,

4) "J. von Neumann's theorem ( [5])
stated for separable Hilbert space,
but both the theorem and the cited
proof remain valid for arbitrary
Hilbert space,

5) For any >0 there exists g,
such that BOAYA = VE*VOIE I E WCAS V) AT+
WM A~ vEIRE+ »'?"‘:v;, -VEl g ||(A*-\$""’)Agl+
F A= DT VT (VR - VEITE S AR vy Al
MR(A -v@)g;+ M“(v?- g)g“<s

{’OT all B P, >Po-

6) Let 7 be closed linear mani-
fold generated by {x*3;xsm}and let
M be the othogonal manifold of M
(ioe- m, = m* )o Since j)“g = jx‘lis
xlbg - xl&'g a.nd US‘.’E =u‘!.u‘.‘g = xs\g
for all x¢ 0L , 2 and M, are in-
variant under j and Z ., If I,
3~ M)#0, then there exists § in

M., (such as j{=35 4 O ) and
TeM, , This is a contradiction of
the maximality of {§.} . Hence ZWM,
=0 , Foranylew,, x¢ Ol and
Vedy , (3,x2v)=(x*%,Zv) = (263, v)
(since x*%e M, Zx*T ¢ L, )=o0 .
Hence {= 0 or Wu,=0, i,e, M= #,

7) For a locally compact space E ,
we denote Cu(E) (resp. CC(E) ) be
8* —algebras of all continuous
functions on € vanishing at infinite
(resp. all bounded continuous functions)
with norm 4% = supifte>| and *in-
volution *(p>=T® (:complex conju-
gate). Then R and ®! are *iso-
morphic (i.e. *preserving isomorph)
with CutQ) and ¢(Q)) by the iso-
morphisms A — A() and Al = w(A) for
all AeRY ,weQ and reRS , weQ)
respectively.

8) Because 1Ky; b € L} form a
complete basis of open sets in Q,

9) We can prove by the same proof
of Segal (cf. p.l4 of [7]) that sup
JECNAY; AR , HALE 1Y = 1 ex-
cepting a p' -null set N' in [,
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