IDENTITIES CONCERNING CANONICAL CONFORMAL MAPPINGS

By Yiisaku KOMATU

1. In general, a domain of finite
connectivity which is finitely many-
sheeted and possesses no degenerate
boundary component 1s called a Riemann
half-surface, if the projection of its
whole boundary lies on a fixed circle
alone,

Every Riemann half-surface be-
comes a closed Riemann surface, when it
is inverted with respect to any one of
its boundary components and the origi-
nal boundary is then sewn with its in-
verted image by idential coordination.
Vie may suppose further without loss of
generality that the fixed circle bear-
ing the projection of the boundary of
a Riemann half-surface is coincident
with the real axis of a complex plane.
The closed Riemann surface obtained by
the duplication process is then gener-
ated by an irreducible algebraic equa-
tion with merely real coefficients.

Let now be a Riemann half-
surface laid over the w —plane, and
be the closed Riemann surface ob%ai-
ned from by the duplication
process. Let further

E(w, uw)=0

be the irreducible algebraic equation
generating F~ and

w = A (w)

be the algebraic function defined by
the equation. Every analytic function
meromorphic on the whole surface J~
is necessarily a rational function
with respect to w and wr.

Let %% be any Riemann half-
surface laid over the w*-plane,
yielding the corresggnding closed Rie-

mann surface S * t} is confor-
mally equivelent to %,° then any
analytiec function

*=fw)
mapping onto is surely

prolongadble, in virtue of, inversion
principle, %eyond its boundary into
F°, and the function thus prolonged
maps, of course, the whole surface
onto Hence, according to
the fact mentioned above, it must be a

rational function with respect to w
andt«P i.e. there holds a relation
of the

Fw) =R, (w, A@w)),

where R (w, #») designates a
rational function with respect to its
both: arguments.

2. Let now D be any domain,
laid on the % -plane, with no dege-
nerate boundary conponent., We consider
two analytic functions

w=w(z) and w¥*=w*)

which map onto the Riemann half-
surfaces and %' , respectively.
Consequently are con-
formally e uivnlent.
obtained by eliminating % form both
relations w=w) and w=w'® maps rally
onto £, and hance it is of the
nature mentioned above. We -thus co-
nclude that a relation of the form

w¥(z) =R Cw2), A (w(z))

must hold, R  designating, as stated
above, a rational function of its both
arguments. The last relation can be
regarded as a functional dependence
between the mapping functions w(z)
and w¥(z).

Analytic functions mapping a
given basic domain D onto Riemann
half-surfaces can be constructed in
various ways, especially in connection
with the functions mapping D onto
canonical domains of several tyves.
Such a method has jndeed been availed
already by H. Lenzl) for proving the
Schottky's mapping theorem. Following
his idea and applying it to more gener
general classes, we shall illustrate
in the present Note several examples
of such functions, among which the
functional relations of the above-
mentioned form must be valid.

3. Before entering into the main
discourse, we begin with giving an im-
mediate example. Suppose that D is
an " -ply connected jordan domain
bounded by m disjoint contours C%
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(4=14-,nm). It is well-known that
D can be mapped conformally (of

course, with respect to local paramet-
ers) onto an n -sheeted circle. By
making use of an auxiliary linear tra-
nsformation, it can therefore be map-
ved also on%o an n -sheeted upper or
lower half-plane, which is by itself
regarded as a Riemann half-surface.

By the way, it may further be
noticed that a mapping function of this
type contains yet a definite number
of parameters which can be chosen at
our disposal. In fact, we can impose
upon the mapping func%ion, for instan-
ce, a condition that the points %
arbitrarily chosen on C; , respecti-
vely, correspond to the ﬁbints with a
common projection. Moreover, the map-
ping is then determinate merely within
any linear transformations with real
coefficients.

Y. As 1llustrated above, any
function mapping D ontoan ~n-
sheeted half-plane produces really a
Riemann half-surface as its image.
However, the mapping function itself
is not univalent, unless n=1 . We
shall now show that a function mapping

D onto a Riemann half-surface can
also be constructed in several ways by
making use of unvalent functions
alone<); a mapping function of D
onto a Riemann half-surface is, of
course, not univalent in general.

Our basic idea will now be expl-
sined. Let, in the § -plane, a fami-
ly of curves be given in the form

JR)=c

where f2(Z) is analytic in { and

¢ designates the family-parameter
distinguishing each member. We consider
an analytic function = F(z) mapping

D univalently onto a domain bounded
by the arcs belonging to the family.

In view of its boundary behavior, we
have the relations

JQ (F(z)= Cé for ze C},

each ¢ denoting a value of C ; more
generally, the image of each component
C. may consist of several pieces:of
cubves with different values of C 't
¢;”, ¢ ete. when there curves inter-
sect. TNow, by taking the differentilal
along the ‘z,aoundary C=25=£C’. , we get

JdR(F(z)=0 for zeC.

Namely, the differential 4AJL(F(2))
taken along remains real along
the whole boundary C.

:al dd2(g) taken .along

A
Another analytiec function {=F (%)
of the same mapp:lng character as {=F(z)
will be obtained, for instance, by
replacing (). by another similar
one, say, or by changing the con-
ditions of normalization imposed at the

distinguished points in D. We then
get an analogous relation
A A
Ja 2 (Fxn=0 for zeC,

d designating here again the diffe-
rential-operator along C.

Thias, the function defined by

ad () _ &' Pk
A (Fzy ) (F@)F(z)

is analytic in D and satisfies the
boundary condition

Jw(z)=0

Hence, the function w(Z) maps the
basic domain ) onto a Riemann half-
surface, provided it does no coincide
with a constant.

W(Z)=

for z€C,

Consequently, our problem of con-
structing a function which maps D
onto a Riemann half-surface may be
reduced to that of constructing the
differentials alomg C which remain
real along the whole boundary (.

5. Some of modifications will be
supplemented. Let now, in the ¢ -plane,
two families .of curves be given in the

form

JR@)=c ana RNLE)=¢,
J2(2) being analytic in { and C
designating the family-parameter. We
consitier an analytic ifunction ¢ = F(z)
mapping D univalently onto a domain
bounded merely by -the arcs belonging
to ;either of the families, more gener-
‘ally, 3t may be permitted that an image
of a boundary component extends over
the arcs of both families., In view of
‘the boundary behavior, the differenti-
C remains
real or purely imaginary along the
whole boundary C. .Consequently, its
.squere remains real everywhere along
C.. We'hence get the relation

J((LJ-Q.( F(Z))‘)L=0 {-mr Z€ C

Combining the differential
d2(F(z) with e _similar one from a

pair z) a.nd-.ﬁ.(s) of the same
character, we define a function
2y .ﬂ.ﬁ(ﬁ(z))’)"
K (Fz)
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Then, it is evidently an analytic
ﬁmchon mapping D onto a Riemann
half-surface.

We can also combine an expres-
sion (df2(F()* of the last-mentio-
ned type with those of the previous
‘gpe. PFor instance, a function defined

iy — WRAFRW 4 Q(Fe) dR(FR)
1 (RVER) +E@AQE

where the differentials in the denom-
inator are meromorphic in and
possess the vanishing imaginary parts
along C, 1is evidently a function
mapping D onto a Riemann half-sur-
face.

We may also consider a differen-
tial with an analogous nature of high-
er order. Let, in the 5 -plane, a
family of curves be defined, for inst-
ance, by relation of the form

TR0, 42,5, - 42, GN=0,

where the (2 's are analytic in §
and designates a rational function
of its arguments satisfying a homo-
genelty relation of the form

TR, ty, - ™.
=t T (82, 4, 2.) (A being veal)

for a real parameter t. Let & =F(z)
be an analytic function mapping D
orito a domain bounded merely by the
arcs belonging to the family. Then,
the function defined by

w(z)

- df (F) 4™, (F)
I (‘Q"(F @), AL (F@)  LBAE @

maps D onto a Riemann half-surface,
provided it dges not reduce to a cons-
tant; here A )L(F(z) designates a
differential expression meromorphic in
D and real-valued along the whole
boundary C.

6. By means of the method ex-
plained above, we shall proceed to
construct some concrete examples of
analytic functions mapping & given
basic domain D onto Riemann half-
surfaces. According to our preceding
discussions, we enumerate, for that
purpose, the concrete examples of the
differentials meromorphic in D and
real-valued along the vhole boundary

and containing further s number
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of parameters which can be chosen
arbitrarily.

First, let %, be any point con-
tained in 15 and 4 be any real number
with 0f£a<m. It is well-known that
the domain D can be mapped conformally
and univalently onto the whole {-plane
cut along the segments making the angle
& with the positivereal axis, i.e.
the arcs belonging to the famﬁ.y of
parallel straight lines defined by

\.7 (e—ka’ 4 ) =,

in such a way that the point %« cor-
responds to the point at infinity, and
further that the begining coefficient
in the Laurent expansion of the map-
ping function around Ze«~ is equal to
unity and the coefficient of the
constant term varishes. Let the mapping
function is denoted by

g = @w(z; Z..J;

it is uniquely determined under the
imposed condition of normalization.

Based on the boundary behavior,
we have the relations

J(Q—Lk q>,,(z; 'Z.,.,)):'-CI for ZGCj)
C} being constant, which imply

JEed @ (z; 2.0 =0 for zeC;

as before, 4 designates here also the
differential-operator along C. Thus,
the differential expression

e B, (2; 2.)
1s surely of the desired nature, i.e.
meromorphic in D and real-valued

along C which contains the parameters
2z, and o.

Choosing another pair of the pa=-
rameters (ﬁ,, ; &), we consider a diffe-
rentiale ‘®A$; (z;4.). An analytic func-
tion defined by

il A LA ’ A
€Dy (2 20) _ ~ilAmad Py (25 Z0)

w(z)= =
e AP, (z; %) &) (%5 2..)
maps then D onto a Riemann half-surface
provided (Z.; i) # (Zw; ). To
ensure this, it has only to be shown
that the function w(z) thus defined
does not reduce to a constant. In fact,
if it were w(z)=d, « being a constant’
we had ’

LA
@a(z, 2}.\,,)20(6"(“' a.)@a' (Z,' Z,,) + CO’TLSt)

and hence, in virtue of the imposed
conditiofs of normalization at Z.



and Ze, @p(z; 2=, (; 2,.) OF (4, )=(7,; o)
contraz"y t3 the hypothesis. i ’

By the way, we indicate here that
an explicit identity

= e (B, (3;2.) 05 a— i Bppy (2; 20)si0 1),

due to H. Grunsky and M. Schiffer3),
implies
e“-" ‘LQ‘,'(Z} zn)

d éo (Z; 2,)

_L‘E/Z &@,‘/’_(z; Z..)’
AP, (z; 2.)

an excellent example of the general
relation w¥(z)= R (w(xz) AMWw®,
in which the rational function R (w,«)
i1s here simply given by coso + wsina
aflinear polynomial inw independent
of #«p,

7. Next, let Z, and Z» be any
distinct poin%s contained in D and
let # be any real number. As well-
known, D can be mapped conformally
and univalently onto the whole {-plane
cut along the arcs belonging to the
family of logarithmic spirals centred
at the origin with the fixed inclina-
tion g, i.e. to the family defined by

arg § — plgili=c
which may be written also in the form

J (e.,,é/z Ig $) = cas%,
4 being defined by
p= tan %

= Cos & + Ssina- ¢

8 (+ip)
'__-‘—-——'—'—‘1 + FS )
in such a way that the points %, and
Z~» correspond to the origin and the
point at infinity, and further that
the beginning coef‘ficient in the lau-
rent expansion of the mapping function
around Z., is equal to unity. Let the
mapping function be denoted by

&=V, (z; 7, 2.,

it is uniquely determined under the
imposed condition of normalization.

In particular, the function with
P=0 or B=cw 1is regarded as the one
mapping D onto the whole ¢-plane cut
along radial or circular slits centred
at the origin, respectively.

or £

Similarly as above, we have a
differential

e-w/zd.lg‘{’l; (25 z,, Zaa)

of the desired nature which contains
the parameters z,, z, and p.

It is noted that an analytic
function defined by

w(z) = &2 Al Wy (2 2y, 2)
e 872 oLIg’I/r, (%; 2., %)

— ﬂ—»l({:—é)/z ‘% (25 %, Za) Wﬁ/(z; Zo, Ze)
%(Z} z,, é,,)\l/‘,/(z; 2y, Z)

never reduces to a constant unless
(%, Zpy; f)=1(%, %,; §); here £ 1is, of
course, given by A =tan(&/2).

In face, if w(z)=d, a constant, it
becomes

lg 'I’ﬁ (f;j;' Z,.)
L (-8
%

=ode (z; 2,20+ const,

and hence, in virtue of the imposed
conditions of normalization, Wa(z; %, 2,,)
= ’\I/ (z,' Zos Z,.)) 1“9171118 (20, 2»; ?]

=(2, 2., ). Consequently, we can con-"
clude that the function w(2) thus
defined maps indeed D onto a Riemann
half-surface.

On the other hand, we may notice
that & function defined by

wcry = i) nglVE (2; 25, %)
d-@é\ (Z,- ZA,.)

maps D onto a Riemann half-surface,

regardless of the choice of the para-
meters contained., In fact, as readily
shown, any function of this form can

never reduce to a constant.

By the way, we indicate here
also that an explicit identity

¥ &z 2, 2.)

1+t

124
Pl S AT Ry L A XD

vith f=tan(¢/2) due to H.Grunsky'*),
implies

e_;e/z ug LACEES)
dlp Y, (% %, 2.)

=c°s§ + sin%~ e‘n'.’lt/l d.lg?..(z; Z,,z.,),
A'lg'wo (Z; zo, 2-0)
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an excellent example of the general
relation w*(z) = R (w(z), ACw(Z))),

in vhich the rational function R(w, )
is here simply given by cos(4/2)

+ wsin(¢/2), again a linear polynomial
in w independent of «

8. Let %, denote here again any
point contained in D and & be any
real number witho<a<TC.It 1s knownJ)
that there exists a function mapping
D onto the whole § -plane cut along
the segments making the angle a or
a+m/2 with the positive-real axis,
1.e. the arcs belonging to either of
the families of curves defined by

JE*)=c and R (e*¢)=¢,

in such a way that the point Z«
corresponds to the point at infinity
and the boundary components C; with
1sj=p correspond to the segments
of éhe former family while the
remaining components Cj with P<jz=m
correspond to those of the latter,

and further that the begining coeffi-
cient in the Laurent expansion of the
mapping function around %Z. is equal to
uinty and the coefficient of the cons-
tant term vanishes. Let the mapping
function be denoted by

¢ =plez; 2,

1t is uniquely determined under the
imposed conditions.

Based on the imposed boundary
behavior, the expression

e~ (q 8Pz, 2, 0*

is a desired one which contains, for
each value of p with {<p<m, the
parameters 2z, and 4. It will readily
be shown that an analytic function de-
fined by

w(z) = ¢ @& APy (z; z,,))

d-éar(l; Zo)

~2i(E-0) @5/(2; N
L (x5 2.0

maps D onto a Riemann half-surface
provided (Z.; 4; Pl (Za; 2 P

fug the way, it is noted that

the tion @B, (2;2.) OF Suna(z; %), the
parameter value a+m/2 in the lat-
ter being to be considered with respect
to modulo 7t, may be fogarded as a
particular one of $.(z;z.)with p=n
or p=0, respectively. The values of
the indices ¥ and in the defining
expression are accordingly permitted

to be equal to 0 or m. It may also
be noted that an analytic function
defined by

—u(2a-a* )

W(Z)=E @8 z; 2

d-@:,, (2; Z:)i@:; (z; )
maps D onto a Riemann half-surface

regardless of the values of its para-
meterse.

. On the other hand, the previous
results can further be extended. Ve
have hitherto supposed that, by a
mapping of D onto a canonical domain
on the - plane, an image of each
boundary component corresponds to an
arc belonging to one and the same fa-
mily. However, this restriction is
removable, as already noticed in the
general discussion. In facty) it has
only to be imposed that a mapping in
consideration, {= 3, (z), transfers
each boundary component into a set
consisting of the pleces lying on
either of the families J(e™**§)=cC
and R (e %*¢)=¢, Therefore, the com-
plementary component of 5, (D)
with respect to §,(C;) may contain a
number of polygons of which the sides
belong to the families. In such a "
circumstance, the expression ¢ *\(s{,(z)
is also of the desired nature.

A generalizgtion similar as above
from &, (%; 2.) to €(z; z.,) can be appli-
ed to Y(z; %, Z.) yielding ¥/(z;z,2.),
Namely, let 2, and Ze denote
again any distinct points in D and A
be any real number. There exists then’)
a function mapping D onto the whole
{ —plane cut along the arcs belong-
ing to either of the families of loga-
rithmic spirals centred at the origin
vith the inclination P and —¢7 i.e.
the families defined by

atgs-plolgf=c and agl+ lsl=c
or by
JCe el Deent ank K(gimjg $)=csinf,

{4 being defined, as before, by P
=tm@f)or e %= (1+:pY(1+p*), in such a
way that the points Z, and Z.. corres-
pond to the origin and the point at
infinity, respectively, and the bound-
ary components C,- with 1= isé
correspond to the’ arcs belonging to
the former family while the remaining
components C; with #<j<m_ corresp-
ond to those of the latter, and further
that the beginning coefficlent in the
Laurent expansion of the mapping around
Z. 18 equal to unity. The mapping
function denoted by

= (5, 7)
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is uniquely determined under these
imposed conditions,

Quite similarly as above, the
differential expression

~it Y *
e (g 4(2; %, 20)

is surely of the desired character
containning, for each value of p
with 1= p<n, the parameters z,,
z,and g.

Several functions mapping D
onto Riemann half-surfaces can then be

defined by means of the method employ-
ed above; for instance,

—id-p/dlg !F@" (2, %, %) \
wz)=e¢e 5
dlg Y/ (z; 2, 22)
p
VAth (2, 203 f5 P) % (%, i 5 1),

-;.(4~m( w "

or
. 2 4 2
W(Z,) — e“'k(“a»‘t/z-) (A_ lg- "flp (Z,- 7@, z:.))A ,
A (% zX )ang’Wf( %; £y Zn)
ete.

Remark and extension analogous
as stated above concerning
can glso be applied to the present
cased)

9. We shall now turn to another
class of examples. Let P(l) be a
golgxomial in { of degree n—1.

t has no multiple zero, the equation

|P(¢)[=c”

defines a family of Cassinian, and
each member of the family consists of
at most m—1 simple closed curves.
Let ¢; (j=4.., m) be real numbers
such %mt ¢,=0 and

J ong?((z)=—27c fox j=2,---,n,
C

where X (%) is defined by

A=) = exp f:

i
W, (%Z) denoting the harmonic measure
o} C;, with respect to D and &,(2)
e hardonic function conjugate to u%( z),
The quantities ¢; (j=2, -, ~)
are determined uniquely under these
eonditions. Then, C,de la Vallée Pous-
s8in?) has proved a mapping theorem

I L. (z)
g (uy(z)+ o.)}( ),

stating that, if X'(z)=0 along C,
there exists a polynomial P() of
degree m~1{ such that D can be

mapped conformally and univalently
onto a domein of which the boundary

components corresponding to C; (j=1,---, m)

are the regular closed curves lying on
[P = e,

respectively; the mapping function 1is
determined uniquely except an arbi-
trary motion.

We now condider a function ${=G(z)
effecting such a mapping. Then, since
the boundary components @ (C;) Cj=t,--,
M) of the image-domain G(D) lie on
the curves defined by

respectively, the meromorphic diffe-
rential

Ld-.lg P(G(Z))

remains real along the whole boundary
and hence 1is of the desired
nature.

The above-mentioned mapping
theorfm is further modified by G.
JulialO) in such a manner that the
polynomical P(7) may be replaced by
8 rational function Q () also of
degree n—1 and with a fundamental
circle; the uniqueness assertion is
then modified in a manner that the
mapping function is determined uni-
quely except an arbitrary linear
transformation.

It is a matter of course, that
such a mapping function {=[H(z) is
also available for constructing a
differential of the desired nature,

j.e.
idly Q(H(=)).

10. We have enumerated several
examples of analytic functions map-
ping a given basic domain D onto
Riemann surfaces. As a consequence of
the general statement, there holds
always an identity of the form

w¥z)=R (w(z), A(w(z))

between every two functions w(z) and
w*(z) of this category, where A(w)
denotes an algebraic function of w
defined by an irreducible equation
generating the closed Riemann surface
which is obtained by duplicating the
Riemann half-surface w (D) and R(w,«)
is a rational function of its
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both arguments. By definition, A(w)
devends only on w(D) bdut not ‘on w*(D),
while R(w, «¢) depends on w(D) as

well as w*(D),

If, in particular, D is simply-
connected, i.e. m=1{, then it can
be mapped onto the upper or lower
half-plane. An ordinary half-plane
being, of course, a Riemann helf-
surface, we can then put Aw)=w and
hence R(w,Aw) reduces to a ration-
al function of w alone. Thus, any
function mapping a given simply-
connected domain onto a Riemann
H half-surface is especially a ration-
al function of a function mapping it
onto a half-plane.

In case the connectivity of D
does not exceed three, i.e. m =< 3,
it can be mapped univalently onto a
slit domain bounded merely by the seg-
ments lying on the real axis. Such
an image-domain being a Riemann half-
surface, we may regard a mapping func-
tion as a member w(z) of the class
in consideration. The closed Riemann
domain obtained from w(D) by duplica-
tion is then two-sheeted. And the
algebraic function A(w) 1s given by
a square root of a polynomial in w
of degree two, four, and six, respec-
tively, for n=1, 2 and 3. If a
branch-point is transferred into the
point at infinity by a linear
transformation with real coefficients,
the degree of the polynomial in
question 1s decreased by one in each
case.
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