OPERATOR ALGEBRA OF FINITE CLASS II

By Hisaharu UMEGAKI

In the present note, first we shall
supply the proof of the last part of
the previous note (43 (the proofs of
Theorem 2 and its Corollary resp.),
here we shall describe more general
form than Theorem 2 of (4], and next
we shall prove some relations between
semi-traces and traces in D¥-algebra.
The definitons and the notations in
the note (4) will be used in this note.

1. Let OL be a D*-algebra and <t
be a finite semi-trace of OL . And
let {x%, x*,j, %! be the repre-
sentation of ‘QL generated by T ,
and let R* be C*-algebra generated
by { x*; xe®}, All other algebras
Ly £HF s R* , and W* are defined
by the same way in §1 of [4]. Let L
be the character space of R* and N =
{we O ;w(x*) = 0 for all x € o0l then
Q, (= - N) can be embeded into the
trace space of R* with weak* topology
on R* by the canonical mapping L4
(: P(A) = w(A) for all AeRY).
Putting Q' = weak* closure of (),
Q' 1is locally compact with respect
to the weak* topology on R* . Ir
K' is a compact set in () , then
it is covered by finite number of
nbds (with compact closures in (1 ):
Uiquun, A; e)={@'e Q' 16'(A) - 9w (Al e ).
(0,8 Q,, A; € RS, & >0 3
i=1,2,...,n;§=1,2,...,m). Hence
K= ¢ (K'n $(0)) C U'.,J' u(“’L.Aj,i)
where Uy, Ay ,e) = {w €Qo; lohy)- W lkike}
and each nbd has corppact closure in
Q o Since K is closed in Q , it
is also compact. let L' be a set of
all continuous functions on Q' with*
compact supports. Then for any fe L
£ (= f(quw) for weN,and =0 for we N)
is continuous on () and vanishes
outside of a compact set in 0 .
Putting Fi5) = fo f (wydpw, F(,)
is positive linear on L', and hence
there exists a positive Radon reasure
v on Q' such that F(-}):Ia,f“,f,d,w,
for all f e [/ For any xe g x%eg*
and x*Wh (= wx*)) e (' (cf,
(5°) of prcot of Th. 1 of (4]). If
we denote any element in L merely
by w , we have Th., 2 ot the previous
note [4] as a special case, that is,
OL= L (group algebra of G ccnsisting
of all continuous tunctions on G with
compact support), © = positive Radon

reasure of finite class on G and Qf
= G*.
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While if OL has a centering L1
such that <©(xX®)= t(x) ror all xeOl
and all traces «t or JU , then all
w e QF are characters of OL ,

Next, in the prootf of Cor. of Th.
2, the dorain £l of the measure v
is misprint of G*. 1In that proof we
have shown that for ®@ € G*% w(st)
= wis)w(t) for t € G and s € center of
G. Now we give more difect and pre-
cise proof ot the fact, For w e G¥*,
there corresponc two representations
{x*,x*,3,8t of L and §s*,sb, j %!
of G with same such that w)= (x*% %)
and QLs)Y = (528, §) for all x € L,
and $se & , where & 1s the nor-
malizing vector. Since s — s* was
defined by sexf = (x)® , (XH*y® =
‘3"&‘5)9 - xbs.xe = s‘j"x‘ = s& X% ye
for all %, 4 ¢ L, . Hence (xs) =s+x* ,
If s is in center of G, (s*ex3*%,%)
> (s"¢*§,E) and the left side =
WeTY E, §) = wllk) ) = w((Q)s)wey)
(since (ea)s € center of L) =
(C2ads™ €, E 2048 ,§) — (%%, T)('E, %),
Hence «(seg §£)U§*3 §) = (S*4*¥ %)
for all de L . Put § = ()¢
and take the 1limit with respect to

the directed set (&} of the both
sides. Then (s*%, E)%%,§)=(s*t g, %)
or ®W(s)eit) = o(st) .

We have called that v in ‘f-ﬂ is
bounded if and only if iIx*vi £ M {x°l
for all Xx e 0L and a const,

M >0 (cf. 81 of [4] in which x* nust
be replaced by xt at P.123%, right
side, lines 24 and 28). Now we des-
cribe supplementary remarks with re-
spect to the bounded elements in fy .
let £y be the set of all bounded ele-
ments in % ., If ror ve s we put
v* = jv , then v* ¢ £ and v**= ve¥,
For, (jv,y)= (jv, (3 x*)°) = (xy")° v) =
= (X0, Py = (X0, vyt = (vaFxe, ye
l.es x*jv = v**x°® ftor all x e O
and we have v*e Jy and u¥*= vt ,
For any ve ds, (X°V, 48) = (v, y*¥**)= (§*v, x*%)
= (vl 10 = (5y® v x0) = (Jvresxt, y°)
Hence putting v$ = ju*j , v is a
bounded operator on % and x*v= v'x°
for all x e OU ,

2, let 0L be a D¥*-algebra with
the approxirmate identity { e«} , let
< be a semi-trace of JU and let
{x*, x5, f;‘} be the corresponding
representation ot JL , Moreover let



& and w* be unitorm and weak clo-
sure of L (={ve;vebirespectively.

PROPOSITION 1. The 1rollowing con-
ditions are equivalent each other:
(1°) © 1is trace. (2°) There exists
a constant M > O such that viele,) (¢ M
for 81l o ., (8°) 1 e L .
(40) 4(,“=W“

Proof. (19)— (2°) is clear.
we prove (2°)—>(3°)., Since
<(Ceux-x) g (eux - 2)3) £ ¥ € x -x > T (FFY)

X0, 1eqtxp® —xy® = o,
By Lenma 1.1 of [3], there exists a
directed set % € Ol such that G-I
(strongly). Hence (x4 ~239° o> §°
in and {(xy)®; x,3¢€ A} is dense
in . For any § € and € >0
we fined x,4e and o, such that
13 —(x9)*) < e/3 and @ P®-14)°|<ef3
for & > «, . Therefore ieig -T g
teuy - Y (xy®l + 1ealyy)®o (g +
[ry)® - g1 c28/3 +e/3=¢ fowads
and hence < = T strongly. Putting
£L8) = LT, el) for Se K 1) £
1311021 § 11 TLeLeHYE ST MY T,
Hence 14,8 £ M"  for all o .
Moreover ™ f((yx*))= Ly ¢f Uy = (§f, ¢ el)
= (% et x®) —> (3%, x%),
Since 4 ¢4x*¥®; X, 9¢ A} i3 dense in

, {§{,} weakly converges to a
bounded linear functional f on
and there exists €
T‘S) - (S) i) .

for all X e or

First

such that
Hence (3§, el)—=> &, ¥
ey —r (weak-

1y). 1n the equality (3,eix®)= (3, ,x"el),

the left side > (3%, x%)

and the right side -£> ¢S, ¥*§ ) .
Hence %x° = x* ior all =x e 0L .
Putting Ax*= x"% , AXx° = x®

for a1l x¢ & and A =1 or
1°=§®and ¥*=A . Thus T e&" .
Since £ 1s an ideal in w* ,
(39)~>(49) is clear. [Ilnally we prove
that (49)— (1°), (49)=> 1€ L > T°=}
€l — 1}2 = i’l' _—_1‘0';1.. While, X.‘§=
Y = 3ttt o= A 0y x®a xfa Y

and  Tixhy)y=04f, 2% = (%, 2°F ) = ((xty)g §),
That is, © 1is a trace of' 0L (c¢§.Th.1413])

REMARK 1. In the previcus proof
we have that €x—% T strongly.

Hence any semi-trace < of a D¥-algebra

dL satisfies
¢ tilex-xfiex-xNg 0 forall xe Ol

which is stronger than the condition:

there exists a subsequence

@) }2«n}y < ).} depending on each
x € 0L such that
TU X FunX) —> TLX X) (M 03)

which is a condition ot semi-trace
(cf. 8§81 or [4]). But the condition
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(‘f) must be assumed in the definition
ol seri-trace. For, (F ) is necessary
in the proof of the fact that the two-
sided representation corresponding to
a semi-trace is proper (ct. Th.2 of
[3]) and the properness 1is used in the
proof of €5 ~> T .

REMARK ¢. Prop.,1 implies that
if G is a unimodular locally compac*
group, then B(G)=W(G) if and only
if G is discrete.

Now we show a theorem of Godement
(Th. 7 of [1]) in the following
case,

PROPOSITION 2. < 1is a tinite
pure semi-trace of Jl if and only
if it is pure trace,

Proof. We prove the part of
"only if", since the converse has
been proved in the previous paper
(Th. 1 of [3]). Let {x%x%j, %
be the corresponding representation
of & , Since it is irreducible'?
W* A W® = {»T}. PFurthermore, since
W* 1is of finite class, AY is scalar
operator I'or any A€ W* , let 2
be central manifold of (L.e. 3 Z
if and only ir =x*§ = x*g tfor all
x€ O\ ), By Lemma 3 and the proof
of Prop. 1 of [3], we can find a
vector 0% v ¢ Ub n2Z . Clearly
v*e WA wb and v* 1is scalar
=xI (X % 0) , Therefore v = AI°.
Since €y > 1T strongly, so is e —» 1T
and e%1°=e% — I° strongiy. Thus
we have that <t 1is a trace. From
the irreducibility of (=x=*,x*,j, &}
it follows that T 1s a pure trace.

REKARK 3. Concerning the con-
cept of pure trace of D*-algebra we
show the following (a general form
of a theorem of Goderment - Th. 9 of
[1]1). Iet T be a trace of a D*-
algebra OL with utTuw = 1 . If we
put Ty xX) = TXY) for all x
and ¥ € OL and let { x*, x*, j %)
be the corresponding two-sided re-
presentation of &L . Then %= w?
(by Prop. 1) and =<¢x) = (x*§, §)
where § 1s the normalizing vector
of’ (Leee € =T ). Put (tyW¥(n
= (%%, 3*“! g) . Then we have
that © 1is pure trace (= character)
of O 11"and only IT (Fy¥ox) = TCO )
for all x, 4e¢0L. For, if <« 1is
pure, T(A)=(A%,t) 1s pure trace
on W% and hence T(AB) = T(A)T(B)
for all A,Be W*~ W® and AY = T(A)I.
Therefore 3§*%= T(Yy*)T=(4*% §)T .
While (Ty\*(x) = (x%f %) = (yohxog 1)
= (X%, T)(EE, 8) =T Ty, ’
Conversely, if (TgIf(X) = T(X) T(Y)
for all x, 3y € L .then(Ty)¥(x*2)
- T(x*z) TY , and its delt side =
((x¥z)* g 4*¥*"g) = (2°%, Yy x*%¥)




end the right side = ( 2%  Tig) xX*%)
Since the both sides are equali for
all X, § and =z € , %% = T¢HIT
Let P be projection onto the centraili
manifold Z., For any v ¢ Z , there
exist x.€ OL such that 1x% -~y i—0mao0),
Hence Px3 — Pv = v . .Since for
all xe Ol ?x®ef and (Px%)* = x*% |
cf. the proof of Prop. 1 of (3], (Px*
=<1, Px® = TWXE  and the
conter of Jo is scalar, i.e, = 3>%} .
Thus“the center or 5H*"=W*aw"®(= we¥)
is {x1r} , and ~ 1is pure. The
proposition obtained in this remark
containg the rirst part of Prop., 2

of [4] as a special case.

FOOTNOTES

(1) In a separable D*-aligebra,
the decomposition of arbitrary semi-
trace into a system ol pure semi-
traces in the torm ol direct integral
over the real line has been shown
in the previous note [3] using the
reduction theory of von Neumann. Re-
cently I.E.Segal has been published
his decomposition theory "Decomposi-
tion of Operator Algebras. I and 1I,
Mem, Amer. Math. Soc., 1951". It
we apply his theory, Th. 1 of [4]
may be shown in a most general form
(in separable case). The precise
discussion may be stated in the fol-
lowing in which we ray prove that,
in Th.1l of [4] all w ¢ & are
characters of A which is. not always
separable.,
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(2)"For any A ¢ L% , let the
corresponding bounded element ( € B)
denote A® ,

(3) It is known that for semi-
trace or trace of a D¥-algebra being
pure, it is NASC that the correspond-
ing two-sided representation is ir-
reducible respectively (cf. [31).
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