By Hisaharu UMEGAKI

In the present note, first we shall supply the proof of the last part of the previous note [4] (the proofs of Theorem 2 and its Corollary resp.), here we shall describe more general form than Theorem 2 of [4], and next we shall prove some relations between semi-traces and traces in D^{*}-algebra. The definitons and the notations in the note [4] will be used in this note.

1. Let OL be a D*-algebra and τ i. Let UL be a D^{*}-algebra and τ be a finite semi-trace of Ω . And let $\{x^{*}, x^{*}, j, h\}$ be the repre-sentation of Ω generated by τ , and let \mathcal{R}^{*} be C*-algebra generated by $\{x^{*}; x \in \Omega\}$. All other algebras $\mathcal{L}_{\mathcal{F}}, \mathcal{L}_{\mathcal{F}}^{*}, \mathcal{R}^{*}$, and W^{*} are defined by the same way in §1 of [4]. Let Ω be the character space of \mathcal{R}^{*} and N = $\{\omega \in \Omega; \omega(x^{*}) = 0$ for all $x \in \Omega$; then Ω . (= Ω - N) can be embeded into the ($\omega \in \Omega$; $\omega(x^{-}) = 0$ for all $x \in 0$; then Ω_{\circ} ($= \Omega - N$) can be embeded into the trace space of \mathbb{R}° with weak* topology on $\mathbb{R}^{A_{\circ}}$ by the canonical mapping φ (: $\varphi(\omega)(A) = \omega(A)$ for all $A \in \mathbb{R}^{\circ}$). Putting $\Omega' =$ weak* closure of $\varphi(\Omega_{\circ})$, Ω' Ω' is locally compact with respect to the weak* topology on \mathcal{R}^* . If K' is a compact set in Ω' , then it is covered by finite number of nbds (with compact closures in Ω') $\mathcal{U}(\varphi(\omega_i), A_j, \varepsilon) = \{\omega' \in \Omega'; |\omega'(A_j) - \varphi(\omega_i)(A_j)| < \varepsilon\}.$ $\begin{array}{l} (\omega_i \in \Omega_i, A_j \in \mathbb{R}^{\infty}, E \geq 0; \\ (\omega_i \in \Omega_i, A_j \in \mathbb{R}^{\infty}, E \geq 0; \\ i = 1, 2, \dots, n; j = 1, 2, \dots, m). \\ \text{Hence} \\ K = \phi^{-1}(K' \land \Phi(\Omega_i)) \subset U_{ij} U(\omega_i, A_j, E) \\ \text{where} U(\omega_i, A_j, E) = \{\omega \in \Omega_0; |\omega(A_j) - \omega_i(A_j)| < E\} \\ \text{and each nbd has compact closure in} \\ \Omega \quad Since K is closed in \Omega, it \\ i = 0 \text{ compact} U_{ij} = 0 \text{ to be of } n \\ \end{array}$ is also compact. Let L' be a set of all continuous functions on $\,\Omega'\,$ with \cdot compact supports. Then for any $f \in L'$ $f'(\omega) (= f(q\omega))$ for $\omega \in \Omega_0$ and = 0 for $\omega \in \mathbb{N}$) is continuous on Ω and vanishes outside of a compact set in Ω . Putting $F(f) = \int_{\Omega} f'(\omega) d\mu(\omega)$, F(.)is positive linear on L', and hence there exists a positive Radon reasure users exists a positive Hadon reasure \mathbf{v} on Ω' such that $F(\mathbf{f}) = \int_{\Omega'} f(\omega) dv(\omega')$ for all $f \in L'$. For any $\mathbf{x} \in \mathcal{A}$ $\mathbf{x}^* \in \mathbb{R}^*$ and $\mathbf{x}^*(\omega') \ (= \omega'(\mathbf{x}^*)) \in L'$ (cf. (5°) of proof of Th. 1 of [4]). If we denote any element in Ω' merely by ω , we have Th. 2 of the previous note [4] as a special case, that is note [4] as a special case, that is, OL = L (group algebra of G consisting of all continuous functions on G with compact support), $\tau = \text{positive Redon}$ measure of finite class on G and $\Omega' = G^*$.

While if **OL** has a centering \forall such that $\tau(x^{t}) = \tau(x)$ for all $x \in OL$ and all traces τ of OL, then all $\omega \in \Omega'$ are characters of OL.

Next, in the proof of Cor. of Th. 2, the domain Ω of the measure ν is misprint of G^* . In that proof we have shown that for $\omega \in G^* \omega(st)$ $= \omega(s)\omega(t)$ for $t \in G$ and $s \in center$ of G. Now we give more diffect and precise proof of the fact. For $\omega \in G^*$, there correspond two representations $\{x^*, x^*, j, \ell\}$ of L and $\{s^*, s^*, j, \ell_j\}$ of G with same f_{τ} such that $\omega(z) = (x^*, \xi)$ and $\omega(s) = (s^*\xi, \xi)$ for all $x \in \bot$ and $s \in G$, where ξ is the normalizing vector. Since $s \to s^*$ was defined by $s^*x^0 = s^*y^*x^0 = s^*x^2y^0$ for all $x, y \in \bot$. Hence $(x_s)^* = s^*x^*$. If s is in center of G, $(s^*e_{x})^*\xi, \xi)$ $\pi > (s^*y^*\xi, \xi) = \omega((e_{x})_{x}) = \omega((e_{x})_{x}) = ((e_{x})_{x})^*\xi, \xi)$. Hence $(s^*\xi, \xi)(y^*\xi, \xi) \to (s^*\xi, \xi)((s^*\xi, \xi))$. Hence $(s^*\xi, \xi)(y^*\xi, \xi) = (s^*y^*\xi, \xi)$ for all $\xi \in \bot$. Put $y = (e_x)_{\xi}$ and take the limit with respect to the directed set $\{e_{x}\} = (s^*t^*\xi, \xi) = (s^*t^*\xi, \xi)$ or $\omega(s)\omega(t) = \omega(st)$.

We have called that v in $\frac{1}{2}$ is bounded if and only if $|x^{*}v| \leq M(x^{*})|$ for all $x \in 0$ and a const. M > 0 (cf. §1 of [4] in which x^{*} must be replaced by x^{*} at P.123, right side, lines 24 and 28). Now we describe supplementary remarks with respect to the bounded elements in $\frac{1}{2}$. Let dy be the set of all bounded elements in $\frac{1}{2}$. If for $v \in dy$ we put $v^{*} = jv$, then $v^{*} \in dy$ and $v^{**} = v^{**}$. For, $(x^{*}jv) = (jv, (yx^{*})^{*}) = ((x^{*}x^{*})^{*}, v) =$ $= (x^{*}, y^{*}v) = (x^{*}, v^{*}y^{*}) = (v^{**}x^{*}, y^{*})$ i.e. $x^{*}jv = v^{**}x^{*}$ for all $x \in dL$ and we have $v^{*} \in dy$ and $v^{**} = v^{**}$. For any $v \in d_{*}$, $(x^{*}v, y^{*}) = (v, y^{*}y^{*}) = (y^{*}y^{*}, x^{*0})$ $= (v^{*}y^{*}, x^{*}) = (jv^{**}x^{*}, y^{*})$ Hence putting $v^{*} = jv^{**}j$, v^{*} is a bounded operator on $\frac{1}{2}$ and $x^{*}v = v^{*}x^{*}$

2. Let \mathcal{A} be a D*-algebra with the approximate identity $\{e_{\alpha}\}$, let τ be a semi-trace of \mathcal{A} and let $\{x^{\alpha}, x^{\flat}, j, f_{\gamma}\}$ be the corresponding representation of \mathcal{A} . Moreover let \mathcal{S}^{*} and W° be uniform and weak closure of $\mathcal{L}^{\circ}(= \{v^{\circ}; v \in \mathcal{L}\})$ respectively.

PROPOSITION 1. The following conditions are equivalent each other: $(1^{\circ}) \leftarrow$ is trace. (2°) There exists a constant M > 0 such that $\tau(e_{x}^{*}e_{x}) \leq M$. for all α . (3°) I $\in \mathcal{J}^{\alpha}$. $(4^{\circ}) \qquad \mathcal{J}^{\alpha} = W^{\alpha}$.

REMARK 1. In the previous proof we have that $\mathcal{L} \longrightarrow \mathcal{I}$ strongly. Hence any semi-trace τ of a D*-algebra \mathcal{O} satisfies

(+) t((exx-x) (exx-x)) + 0 for all x e of

which is stronger than the condition:

ቀ	there exists a subsequence $\{e_{\alpha n}\} \subset \{e_{\alpha}\}$ depending on each
	$x \in \mathcal{O}$ such that $\tau((e_{x_n}x)^*e_{x_n}x) \longrightarrow \tau(x^*x)(n \rightarrow \infty)$

which is a condition or semi-trace (cf. §1 of [4]). But the condition

(†) must be assumed in the definition of seri-trace. For, (†) is necessary in the proof of the fact that the twosided representation corresponding to a semi-trace is proper (cf. Th.2 of [3]) and the properness is used in the proof of $e_{\perp}^{*} \longrightarrow I$.

REMARK 2. Prop., 1 implies that if G is a unimodular locally compact group, then B(G) = W(G) if and only if G is discrete.

Now we show a theorem of Godement (Th. 7 of [1]) in the following case.

PROPOSITION 2. τ is a finite pure semi-trace of \mathcal{O} if and only if it is pure trace.

Proof. We prove the part of "only if", since the converse has been proved in the previous paper (Th. 1 of [3]). Let $\{x^*, x^*, j, f_i\}$ be the corresponding representation of \mathcal{O} . Since it is irreducible⁽³⁾ W^{*} \land W^{*} = $\{\times I\}$. Furthermore, since W^{*} is of finite class, A^{*} is scalar operator for any $A \in W^*$. Let \mathcal{Z} be central manifold of $f_{\mathcal{U}}$ (i.e. $\zeta \in \mathcal{Z}$ if and only if $x^* \zeta = x^* \zeta$ for all $x \in \mathcal{O}$). By Lemma 3 and the proof of Prop. 1 of [3], we can find a vector $0 \neq v \in \mathcal{L} \land \mathcal{I}$. Clearly $v^* \in W^* \land W^*$ and v^* is scalar $= \times I (\lambda \neq 0)$. Therefore $v = \lambda I^0$. Since $e_{\mathcal{A}}^* = e_{\mathcal{A}}^* \rightarrow I^*$ strongly. Thus we have that τ is a trace. From the irreducibility of $\{x^*, x^*, j, f_{\mathcal{A}}\}$ it follows that τ is a pure trace.

REMARK 3. Concerning the concept of pure trace of D*-algebra we show the following (a general form of a theorem of Godement - Th. 9 of [1]). Let τ be a trace of a D*algebra \mathcal{O} with $\mathbf{u} \tau \mathbf{u} = 1$. If we put $\tau_{\mathbf{y}}(\mathbf{x}) = \tau(\mathbf{x}\mathbf{y})$ for all \mathbf{x} and $\mathbf{y} \in \mathcal{O}$ and let $\{\mathbf{x}^{*}, \mathbf{x}^{*}, j, f_{*}\}$ be the corresponding two-sided representation of \mathcal{O} . Then $\mathcal{O}^{*} = \mathbf{w}^{*}$ (by Prop. 1) and $\tau(\mathbf{x}) = (\mathbf{x}^{*}\xi, \xi)$ where ξ is the normalizing vector of $\mathbf{f}_{\mathbf{x}}$ (i.e. $\xi^{*} = \mathbf{I}$). Put $(\tau_{\mathbf{x}})^{*}(\mathbf{x})$ $= (\mathbf{x}^{*}\xi, \mathbf{y}^{***}\xi)$. Then we have that τ is pure trace (= character) of \mathcal{O} if and only if $(\tau_{\mathbf{x}})^{*}(\mathbf{x}) = \tau(\mathbf{x} \tau \tau_{\mathbf{y}})$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{O}$. For, if τ is pure, $\tau(\mathbf{A}) = (A\xi, \xi)$ is pure trace on W* and hence $\tau(AB) = \tau(A)T(B)$ for all $A, B \in W^{*} \cap W^{*}$ and $A^{*} = \tau(A)I$. Therefore $\mathbf{y}^{A*} = \tau(\mathbf{y}^{*})\mathbf{\Gamma} = (\mathbf{y}^{*}\xi, \xi)\mathbf{I}$. While $(\tau_{\mathbf{y}})^{*}(\mathbf{x}) = (\mathbf{x}^{*}\xi, \mathbf{y}^{***}\xi) = (\mathbf{x}^{*}\xi, \mathbf{x}^{*}\xi)$ $= (\mathbf{x}^{*}\xi, \mathbf{y}(\mathbf{y}^{*}\xi, \xi)) = \tau(\mathbf{x})\tau(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{O}$, then $(\tau_{\mathbf{y}})^{*}(\mathbf{x}^{*}\mathbf{z})$ $= \tau(\mathbf{x}^{*}\mathbf{z}, \tau(\mathbf{y}))$, and its deft side = $((\mathbf{x}^{*}\mathbf{z})^{*}\xi, \mathbf{y}^{***}\xi) = (\mathbf{z}^{*}\xi, \mathbf{y}^{***}\mathbf{x}^{*}\xi)$ and the right side = $(2^{\circ}\xi, \tau(3^{*}) \times \xi)$. Since the both sides are equal for all \times , \Im and $z \in \mathbb{O}$, $3^{**} = \tau(\Im) I$. Let P be projection onto the central manifold \mathbb{Z}_{*} For any $\sigma \in \mathbb{Z}$, there exist $x \in \mathbb{O}$ such that $|x_{*}^{*} - \sigma(x \rightarrow \infty)$. Hence $Px_{*}^{\circ} \rightarrow P\sigma = \sigma$. Since for all $x \in \mathbb{O}$ $Px^{\circ} \in \mathbb{B}$ and $(Px^{\circ})^{*} = x^{**}$, cf. the proof of Prop. 1 of [3], $(Px^{\circ})^{*}$ $= \tau(x)I$, $Px^{\circ} = \tau(x)\xi$ and the center of \mathbb{B} is scalar, i.e. $= i \times \xi$. Thus the center of $\mathbb{B}^{**} = w^{\circ} \wedge w^{\circ} (= w^{**})$ is $\{\lambda I\}$, and τ is pure. The proposition obtained in this remark contains the first part of Prop. 2 of [4] as a special case.

FOOTNOTES

(1) In a separable D^* -algebra, the decomposition of arbitrary semitrace into a system of pure semitraces in the form of direct integral over the real line has been shown in the previous note [3] using the reduction theory of von Neumann. Recently I.E.Segal has been published his decomposition theory "Decomposition of Operator Algebras. I and II, Mem. Amer. Math. Soc., 1951". If we apply his theory, Th. 1 of [4] may be shown in a most general form (in separable case). The precise discussion may be stated in the following in which we may prove that, in Th.1 of [4] all $\omega \in \Omega$ are characters of A which is not always separable. (2) For any $A \in L^{\infty}$, let the corresponding bounded element (ϵ B) denote A^{Θ} .

(3) It is known that for semitrace or trace of a D*-algebra being pure, it is NASC that the corresponding two-sided representation is irreducible respectively (cf. [3]).

REFERENCES

- [1] R.Goderent, kénoire sur la théories des caractères dans les groupes localement compact unimodulaire, Journ. Math. pure et appl. 30 (1950), pp. 1-110.
- [2] I.E.Segal, Irreducible representations of operator algebra, Bull. Amer. Math. Soc. 48 (1947), pp.73-88.
- (1947), pp.73-88.
 [3] H.Umegaki, Decomposition theorems of operator algebra and their applications, Jap. Jcur. of Math. 22 (1952).
- [4] _____, Operator algebra of finite class, Kodai Math. Seminar Reports, No.4, (1952), pp.123-129.

Department of Mathematics, Tokyo Institute of Technology.

(*) Received May 7, 1953.