OPERATOR ALGEBKA OF FINITE CLASS II

By Hisaharu UMEGAKI

In the present note, first we shall supply the proof of the last part of the previous note [4] (the proofs of Theorem 2 and its Corollary resp.), here we shall describe more general form than theorem 2 of [4], and next we shall prove some relations between semi-traces and traces in D^{*}-algebra. The definitons and the notations in the note [4] will be used in this note.

1. Let Ω be a D^{*}-algebra and τ be a finite.seri-trace of σ. And let $\left\{x^{a}, x^{\bullet}, j, y_{y}\right\}$ be the representation ot ol generated by τ, and let R^{α} be $C^{*}-a l g e b r a$ generated by $\left\{x^{a} ; x \in \Omega\right\}$. All other algebras $\mathcal{S}, \mathcal{S}^{a}, R^{a}$, and W^{a} are defined by the same way in $\$ 1$ of [4]. Let Ω be the character space of R^{a} and $N=$ $\left\{\omega \in \Omega ; \omega\left(x^{a}\right)=0\right.$ for all $\left.x \in \sigma\right\}$ then $\Omega_{0}(=\Omega-N)$ can be embeded into the trace space of R^{a} with weak* topology on $R^{a_{1}}$ by the canonical mapping (: $\varphi(\omega)(A)=\omega(A)$ for all $\left.A \in R^{a}\right)$. Putting $\Omega^{\prime}=$ weak * closure of $\varphi\left(\Omega_{0}\right)$, Ω^{\prime} is locally compact with respect to the weak* topology on R^{a}. If K^{\prime} is a compact set in Ω^{\prime}, then it is covered by finite number of nbds (with compact, closures in Ω^{\prime}): $u\left(\varphi\left(\omega_{i}\right), A_{j}, \varepsilon\right)=\left\{\omega^{\prime} \in \Omega^{\prime} ;\left|\omega^{\prime}\left(A_{j}\right)-\phi^{\prime}\left(\omega_{i}\right)\left(A_{j}\right)^{\prime}\right|<\varepsilon\right\}$. $\left(\omega_{i} \in \Omega_{0}, A_{j} \in R^{a}, \varepsilon>0\right.$; $i=1,2, \ldots, n ; j=1,2, \ldots, m)$. Hence $K=\varphi^{-1}\left(K^{\prime} \cap \Phi\left(\Omega_{d}\right)<U_{i j} U\left(\omega_{i}, A_{j}, \varepsilon\right)\right.$ where $U\left(\omega_{i}, A_{j}, \varepsilon\right)=\left\{\omega \in \Omega_{0} ;\left|\omega\left(A_{j}\right)-\omega_{i}\left(A_{j}\right)\right|<\varepsilon\right\}$ and each nbd has corpact closure in Ω. Since K is closed in Ω, it is also compact. Let W^{\prime} be a set of all continuous functions on Ω^{\prime} with compact supports. Then for any $f \in L^{\prime}$ $f^{\prime}(\omega)\left(=f(\phi(\omega))\right.$ for $\omega \in \Omega_{0}$ and $=0$ for $\left.\omega \in N\right)$ is continuous on Ω and vanishes outside of a compact set in Ω. Putting $F(f)=\int_{\Omega} f^{\prime}(\omega) d \mu(\omega), F($. is positive linear on L ', and hence there exists a positive Radon reasure v on Ω^{\prime} such that $F(f)=\int_{\Omega^{\prime}} f\left(\omega^{\prime}\right) d \nu\left(\omega^{\prime}\right)$ for all $f \in L^{\prime}$, For any $x \in a \quad x^{a} \in \mathbb{R}^{a}$ and $x^{a}\left(\omega^{\prime}\right)\left(=\omega^{\prime}\left(x^{a}\right)\right) \in L^{\prime}\left(c f^{\prime}\right.$. (5°) of prool of Th. l of [4]). If we denote any element in Ω^{\prime} merely by ω, we have Th. 2 of the previous note [4] as a special case, that is, $a=L$ (group algebra of G consisting of all continuous functions on G with compact support), $\tau=$ positive Radon measure of finite class on G and Ω^{\prime} $=\quad \mathrm{G}^{*}$.

While if O has a centering $\frac{1}{x}$ such that $\quad \tau\left(x^{\natural}\right)=\tau(x)$ ror all $x \in G$ and all traces τ or or , then all $\omega \in \Omega^{\prime}$ are characters of a.

Next, in the prool of Cor. of Th. 2 , the domain Ω of the measure ν is misprint of G^{*}. In that prool we have shown that for $\omega \in G^{*} \omega(s t)$ $=\omega(s) \omega(t)$ for $t \in G$ and $s \in$ center of G. Now we give more diltect and precise proof of the fact. For $\omega \in G^{*}$, there correspond two representations $\left\{x^{a}, x^{b}, j, f\right\}$ of L and $\left\{s^{a}, s^{b}, j, f y\right\}$ of G with same f such that $\omega(x)=\left(x^{a} \xi, \xi\right)$ and $\omega(s)=\left(s^{\circ} \xi, \xi\right)$ for all $x \in L$ and $s \in G$, where ξ is the normalizing vector. Since $s \rightarrow s^{a}$ was defined by $s^{a} x^{\theta}=\left(x_{s}\right)^{\theta},\left(x_{s}\right)^{a} y^{\theta}=$ $y^{b}\left(x_{s}\right)^{\theta}=y^{b} s^{a} x^{\theta}=s^{a} y^{b} x^{\theta}=s^{a} x^{a} y^{d}$ for ail $x, y \in L$. Hence $\left(x_{5}\right)^{a}=s^{a} x^{a}$ If s is in center of G, ($s^{a} e^{a} y^{a} \xi, \xi$) $\Rightarrow\left(s^{a} y^{a} \xi, \xi\right)$ and the left side $=$ $\left(\left(e_{\alpha}\right)_{s}^{a} y^{\alpha} \xi, \xi\right)=\omega\left(\left(e_{s}\right)_{s} y\right)=\omega\left(\left(e_{\alpha}\right)_{s}\right) \omega(y)$ (since (é $)_{s} \in$ center of L) $=$ $\left((2 \alpha)_{s}{ }^{a} \xi, \xi\right)\left(y^{\wedge} \xi, \xi\right) \rightarrow\left(s^{\wedge} \xi, \xi\right)\left(y^{\wedge} \xi, \xi\right)$. Hence (sa $\xi, \xi)\left(y^{2} \xi, \xi\right)=\left(s^{a} y^{a} \xi, \xi\right)$ for ali $\quad y \in L$ put $y=\left(e_{\alpha}\right)_{t}$ and take the limit with respect to the directed set $\{\alpha\}$ of the both sides. Then $\left(s^{a} \xi, \xi\right)\left(t^{a} \xi, \xi\right)=\left(s^{a} t^{a} \xi, \xi\right)$ or $\omega(s) \infty(t)=\infty(s t)$

We have called that v in ty is bounded if and only if $\left|x^{b} v\right|$ so $M\left|x^{0}\right|$ for all $x \in G$ and a const. $M>0$ (cf^{\prime} 。§l of [4] in which x^{a} must be replaced by x^{b} at P.123, right side, lines 24 and 28). Now we describe supplementary remarks with respect to the bounded elements in h_{y}. Let \mathcal{L} be the set of all bounded elements in h_{y}. If t'or $v \in \mathscr{b}$ we put $v^{*}=j v$, then $v^{*} \in \mathcal{L}$ and $v^{* a}=v^{a *}$. For, $\left(x^{b} j v, y^{\theta}\right)=\left(j v,\left(y x^{*}\right)^{\theta}\right)=\left(\left(x y^{*}\right)^{\theta}, v\right)=$ $=\left(x^{0}, y^{b} v\right)=\left(x^{p}, v^{a} y^{\theta}\right)=\left(v^{a *} x^{\theta}, y^{\theta}\right)$ i.e. $x^{b} j v=v^{a *} x^{\theta}$ for aill $x \in a$ and we have $v^{*} \in \mathcal{L}$ and $v^{* a}=v^{a *}$ For any $v \in \mathscr{L},\left(x^{a} v, y^{\theta}\right)=\left(v, y^{b} x^{* \theta}\right)=\left(y^{* b} v, x^{* 0^{\circ}}\right)$ $=\left(v^{a} y^{*+\theta}, x^{* \theta}\right)=\left(j y^{\theta}, v^{*}{ }_{j} x^{\theta}\right)=\left(j v^{*} a_{j} x^{\theta} ; y^{\theta}\right)$ Hence putting $v^{b}=j v^{* a} j$, v^{b} is a bounded operator on fy and $x^{a} v=v^{b} x^{\theta}$ for all $x \in \pi$.

[^0]\mathbb{R}^{a} and W^{a} be unitorm and weak closure of $\mathscr{L}^{a}\left(=\left\{v^{a} ; v \in \mathcal{L}\right\}\right\}$ respectively.

PROPOSITION 1. The rollowing conditions are equivalent each other:
(10) τ is trace. (2^{0}) There exists a constant $M>0$ such that $T\left(e_{\alpha}^{*} e_{\alpha}\right) \leqq M$ for all α - $\left(3^{\circ}\right)$ I $\in \mathcal{G}^{a}$
(4^{0}) $\mathscr{L}^{a}=W^{a}$.
Proof. ($\left.1^{\circ}\right) \rightarrow\left(2^{\circ}\right)$ is clear. First we prove $\left(2^{\circ}\right) \rightarrow\left(3^{\circ}\right)$. Since
$\left.\tau\left(\left(e_{\alpha} x-x\right) y\right)^{*}\left(e_{\alpha} x-x\right) y\right) \leq\left\|e_{\alpha} x-x\right\|^{2} \tau\left(y^{*} y\right)$

$$
\vec{\alpha} 0, \quad\left|e_{\alpha}^{a}(x y)^{0}-(x y)^{0}\right|^{2} \rightarrow 0 .
$$

By Lemma l.l of [3], there exists a directed set $x_{\beta} \in \Omega$ such that $x_{p}^{a} \rightarrow I$ (strongly). Hence $\left(x_{\beta} y\right)^{\theta}=x_{\beta}^{a} y^{\theta} \vec{p} y^{0}$
in and $\left\{(x y)^{\theta} ; x, y \in 0\right\}$ is dense in fined For any $S \in h^{\prime}$ and $\varepsilon>0$ $\left|\zeta-(x y)^{\bullet}\right|<\varepsilon / 3$ and $\left|e^{a}(x y)^{0}-(x y)^{0}\right|<\varepsilon / 3$ for $\alpha>\alpha_{0}$. Therefore $\left|e_{\alpha}^{a} 5-5\right| \leqq$ $\left|\cdot e_{\alpha}^{a} \zeta-e_{\alpha}^{a}(x y)^{\theta}\right|+\left|e_{\alpha}^{a}(x y)^{\theta}-(x y)^{\theta}\right|+$ $\left|(x y)^{0}-5\right|<2 \varepsilon / 3+\varepsilon / 3=\varepsilon$ for $\alpha \geq \alpha_{0}$ and hence $e_{\alpha}^{a} \rightarrow I$ strongiy. Putting $f_{\alpha}(\zeta)=\left(\zeta, e_{\alpha}^{\dot{0}}\right)$ for $5 \in f,\left|f_{\alpha}(\zeta)\right| \leqq$ $|51 \cdot| e_{\alpha}^{\theta}\left|\leqq 151 \tau\left(e_{\alpha}^{*} e_{\alpha}\right)^{1 / 2} \leqq M^{1 / 2}\right| 51$. Hence $\mid f_{\alpha} \leq M^{1 / 2}$ for all \propto Noreover $f_{\alpha}\left(\left(y x^{*}\right)^{0}\right)=\left(x^{* b} y^{\theta}, e_{\alpha}^{\theta}\right)=\left(y^{\theta}, x^{b} e_{\alpha}^{\theta}\right)$ $=\left(y^{\theta}, e_{\alpha}^{a} x^{0}\right) \longrightarrow\left(y^{0}, x^{0}\right)$.
Since $\left\{\left(y x^{*}\right)^{\theta} ; x, y^{\prime} \in O\right\}$ is dense in
h , $\left\{f_{\alpha}\right\}$ weakly converges to a bounded linear functional f on y and there exists $\boldsymbol{\xi} \in$ fy such that $f(\zeta)=(\zeta, \xi)$. Hence $\left(\zeta, e_{\alpha}^{\theta}\right) \rightarrow(\zeta, \xi)$ for all $\zeta \in f_{\gamma}$ or $e_{\alpha}^{\theta} \rightarrow \xi$ (weakly). In the equality $\left(\zeta, e_{\alpha}^{a} x^{\theta}\right)=\left(\zeta, x^{b} e_{\alpha}^{\theta}\right)$, the left side $\vec{\alpha}\left(5, x^{\theta}\right)$
and the right side $\longrightarrow\left(5, x^{b} \xi\right)$
Hence $x^{0}=x^{6} \xi \quad$ Ior ail $x \in \sigma^{\circ}$. Putting $A x^{\theta}=x^{6} \xi, A x^{\theta}=x^{\theta}$ for ail $x \in d$ and $A=I$ or $I^{\theta}=\xi^{(2)}$ and $\xi^{a}=A$. Thus $I \in \mathcal{L}^{a}$. Since L_{0}^{a} is an ideal in w^{a} $\left(3^{\circ}\right) \rightarrow\left(4^{\circ}\right)$ is clear Finally we prove that $\left(4^{\circ}\right) \rightarrow\left(1^{\circ}\right) . \quad\left(4^{\circ}\right) \rightarrow I \in \mathcal{L}^{*} \rightarrow I^{\circ}=\xi$ $\in \mathscr{E} \rightarrow x^{b} \xi=x^{b} I^{0}=I x^{0}=x^{b}$. While, $x^{-} \xi=$ $j x^{* b} j \xi=j x^{+b} \xi=j x^{* \theta}=j j x^{\theta}=x^{\theta}=x^{b} \xi$ and $\tau\left(x^{*} y\right)=\left(y^{\theta}, x^{0}\right)=\left(y^{a} \xi, x^{a} \xi\right)=\left(\left(x^{*} y\right)^{a} \xi, \xi\right)$. That is, τ is a trace of ol (cf.Th. 1 of (3]).

REMARK 1. In the previcus proof we have that $e_{\alpha}^{a} \rightarrow I$ strongly.
 Hence any semi-trace τ of a $D^{*-a l g e b r a ~}$

 ol satisfies(t) $t\left(\left(e_{\alpha} x-x\right)^{\dagger}\left(e_{\alpha} x-x\right)\right)_{\alpha} 0$ for all $x \in a$
which is stronger than the condition:

> there exists a subsequence
> (f) $\left\{e_{\alpha n}\right\}<\left\{e_{\alpha}\right\}$ depending on each $x \in \mathcal{S u c h} \in \operatorname{suat}$
> $\left.t\left(1 e_{\alpha, n} x\right)^{*} e_{\alpha n} x\right) \xrightarrow{ }\left(x^{*} x\right)(n \rightarrow \infty)$
which is a condition or semi-trace (cf. §l of [4]). But the conaltion
(\ddagger) must be assumed in the definition of seri-trace. For, (\ddagger) is necessary in the proof of the fact that the twosided representation corresponding to a semi-trace is proper (cf. Th. 2 of [3]) and the properness is used in the proof of $e_{\alpha}^{a} \rightarrow I$.

REMARK 2. Prop., 1 implies that if G is a unimodular iocally compac group, then $B(G)=W(G)$ if and only if G is discrete.

Now we show a theorem of Godement (Th. 7 of [l]) in the following case.

PROPOSITION 2. τ is a Iinite pure semi-trace of 0 if and only if it is pure trace.

Proof. We prove the part of "only if", since the converse has been proved in the previous paper (Th. 1 of [3]). Let $\left\{x^{2}, x^{6}, j, f y\right\}$ be the corresponding representation of o . Since it is irreducible, ${ }^{(3)}$ $w^{a} \cap w^{b}=\{\lambda I\}$. Furthermore, since W^{a} is of finite class, A^{4} is scalar operator ror any $A \in W^{a}$. Let \mathcal{Z} be central manifold of $\mathrm{fr}_{\text {(i.e. }}(\mathrm{j} \in \mathbb{Z}$ if and only in $x^{a} 5=x^{5} 5$ for all $x \in \Omega$). By Lemma 3 and the prooi of Prop. 1 of [3], we can find a vector $0 \neq v \in \mathscr{L} \cap Z$, Clearly $v^{a} \in W^{a} \cap W^{b}$ and v^{a} is scalar $=\lambda I(\lambda \neq 0)$. Thererore $v=\lambda I^{\theta}$. Since $e_{\alpha}^{a} \vec{\alpha} I$ strongIy, so is $e_{\alpha}^{b} \rightarrow I$ and $e_{\alpha}^{b} I^{\bullet}=e_{\alpha}^{\theta} \rightarrow I^{\ominus}$ strongiy. Thus we have that τ is a trace. From the irreducibility of $\left\{x^{a}, x^{b}, j, y_{y}\right\}$ it follows that τ is a pure trace.

REKARK 3. Concerning the concept of pure trace of $D^{*}-a l g e b r a ~ w e ~$ show the following (a general form of a theorem of Godement - Th. 9 of [1]). Iet τ be a trace of a D^{*} algebra ol with $\|\tau\|=1$. If we put $\tau_{y}(x)=T(x y)$ for ail x and $y \in O$ and let $\left\{x^{a}, x^{b}, j, f y\right\}$ presentation of or . Then $\mathscr{b}^{a}=w^{a}$ (by Prop. 1) and $\tau(x)=\left(x^{a} \xi, \xi\right)$ where ξ is the normalizing vector oí ${ }^{\prime}$ (i.e. $\xi^{2}=I$). Put $\left(T_{y}\right)^{\#(x)}$ $=\left(x^{a} \xi, y^{* a \xi} \xi\right)$. Then we have that τ is pure trace (= character) of d if and only if $\left(\tau_{y}\right)$ 需 $(x)=\tau(x) \tau(y)$ for all $x, y \in \Omega$. For, if τ is pure, $T(A)=(A \xi, \xi)$ is pure trace on W^{2} and hence $T(A B)=T(A) T(B)$ for ail $A, B \in W^{a} \cap W^{b}$ and $A^{4}=T(A) I$. Therefore $y^{a k}=T\left(y^{a}\right) I=\left(y^{a} \xi, \xi\right) I$. While $\left(\tau_{y}\right)^{\prime \prime}(x)=\left(x^{a} \xi, y^{* \Omega 4} \xi\right)=\left(y^{a k} x^{a} \xi, \xi\right)$ $=\left(x^{0} \xi, \xi\right)\left(y^{\circ} \xi, \xi\right)=-\tau(x) \tau(y)$.
Conversely, if $\left(\tau_{y}\right)^{*}(x) \xlongequal{\rightleftharpoons} \tau(x) \tau(y)$
for ali $x, y \in O \quad, \cdots$ then $\left(\tau_{y}\right)^{* \prime}\left(x^{*} z\right)$ $=\tau\left(x^{*} z\right) \tau(y)$, and its aleft side $=$ $\left(\left(x^{*} z\right)^{a} \xi, y^{*+\xi} \xi\right)=\left(z^{a} \xi, y^{*+\alpha} x^{a} \xi\right)$
and the right side $=\left(z^{\alpha} \xi, \tau\left(y^{*}\right) x^{a} \xi\right)$. Since the both sides are equal for all x, y and $z \in \Omega, y^{24}=\tau(y) I$ Let P be projection onto the centrai manifold \mathbb{Z}. For any $v \in \mathcal{Z}$, there exist $x_{n} \in \Omega$ such that $\mid x_{n}^{*}-v i \rightarrow 0(n \rightarrow \infty)$. Hence $P x_{n}^{\theta} \rightarrow P v=v$ - Since for all $x \in J^{n} p x^{0} \in \mathscr{L}$ and $\left(p x^{\theta}\right)^{a}=x^{-4}$ cf. the proof of Prop. 1 of [3], $\left(p x^{0}\right)^{a}$ $=\tau(x) I, P x^{0}=\tau(x) \xi$ and the conter of \mathfrak{G} is scalar, $1 . e_{0}=\{\lambda \xi\}$ Thus "the center or" $\mathcal{G}^{a H}=w^{a} \cap w^{b}\left(=w^{a k}\right)$ is $\{\lambda I\}$, and τ is pure. The proposition obtained in this remark contains the first part of Prop. 2 of [4] as a special case.

FOOTNOTFS

(1) In a separable D^{*}-aigebra, the decomposition of arbitrary seniltrace into a syster oí pure semitraces in the form ol direct integrai over the real line has been shown in the previous note [3] using the reduction theory of von Neumann. Recently I.E.Segal has been published his decomposition theory "Decomposition of Operator Algebras. I and II, Mem. Amer. Math. Soc., IY5I". If we apply his theory, th. I ot [4] may be shown in a most general form (in separable case). The precise discussion may be stated in the following in which we ray prove that, in Th.I of [4] ail $\omega \in \Omega$ are characters of A which is. not always separable.
(2)-For any $A \in \mathcal{L}^{a}$, let the corresponding bounded element (ϵ B) denote A^{9}.
(3) It is known that for semitrace or trace of a D^{*}-algebra being pure, it is NASC that the corresponding two-sided representation is irreducible respectively (cf. [3]).

REFERENCES

[l] R.Goderent, kénoire sur la théories des caractères dans les groupes localement compact unimodulaire, Journ. Math. pure et appi. 30 (1950), pp. 1-110.
[2] I.E.Segal, Irreducible representations or operator algebra, Buil. Amer. Math. Soc. 48 (1947), pp.73-88.
[3] H.Umegaki, Deconposition theorems of operator algebra and their applications, Jap. Jcur. of Math. 22 (i952).
[4] \qquad , Uperator algebra of Cnite class, Kodai Math. Seminar Reports, No.4, (i952), pp.123-129。

Department of Mathematics, Tokyo Institute oi Technciogy.
(*) Received hay 7, 1953.

[^0]: 2. Let π be a $D^{*}-a l g e b r a ~ w i t h ~$ the approximate identity $\left\{e_{\alpha}\right\}$, let τ be a semi-trace of O and let $\left\{x^{a}, x^{b}, j, f y\right.$ be the corresponding representation of ol . Moreover let
