By Tatsuo KAFATA

## §]. Introduction.

Let $X(t),-\infty<t<\infty$ be a continuous stationary process in wide sense; that is, $E\left(|X(t)|^{2}\right)<\infty$, the correlation function $P(u)=$ $E\{X(t+u) \overline{X(t)}\}$ is independent of $t$ and $\rho(u)$ is continuous at $u=0$. We assume throughout without loss of generality that $E\{x(t)\}=0$ Then $\quad \sigma^{2}=E\left\{|X(t)|^{2}\right\}$ is independent of $t$ and $\rho(u)$ is continuous everywhere and is represented as
(1.1)

$$
\rho(u)=\int_{-\infty}^{\infty} e^{i u \alpha} d F(\alpha),
$$

where $F(\alpha)$ is bounded nondecreasing function such that
(1.2) $F(+\infty)-F(-\infty)=\sigma^{2}$.
$F(x)$ is the spectral function
A Jarge number of papers on a stationary process has been pub]ished ${ }^{(1)}$. The object of the present paper is to develop a Fourier theory of a stationary process.
§2 deals with the fillter theory due to Blanc-lapierre. A slightly general and simpler treatment is given. $\$ 3$ concerns with the law of jarge numbers and known results are proved by Fourler analytical method, N, Wiener developped a prediction theory concerning a sample function of a stationary process. In $\$ 4$ we shall consider the problem with a stationary process itself instead oi' a sample function. The similar tormulation was considered by K . Karhunen ( ${ }^{2}$, and solved in terms of operators in Hilbert space. We follow after N. Wiener and consider the prediction of $X(t)$ in future, by a specified filtered process. The results and methods are essentially identical as $N . W i e n e r$.

In Piener theory of prediction, for a sample function $f(t)$ an average (corrolation function)
(1.3) $\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} f(t+x) \overline{f(t)} d t=\varphi(x)$
is considered, while we take the convariance $f(x)=E\{X(t+x) \overline{X(t)}\}$ instead of (1.3). If $X(t)$ is strictly stationary, then $\rho(x)$ is fidential with $\phi(x)$. But in general this is not true and to clarify this situation, we consider the harmonic analysis of $x(t+u)$. $\overline{x(t)}$. These are done in $\$ 85$ and 6 .

## §2. Filter Theory.

2.I. Iet $X(t)$ be a stationary process in wide sense and let its correlation function and spectral function be $\rho(u)$ and $F(\alpha)$ respectively. We consider a function
$K(\theta)$, which is of bounded varia-
tion in every finite interval.
If the function

$$
\begin{equation*}
\int_{A}^{B} e^{-i x \theta} d K(\theta) \tag{2.1}
\end{equation*}
$$

converges in $L_{2}$ with respect to
$F(x)$ to $G(x)$ when $A \rightarrow-\infty$,
$B \rightarrow \infty$, then we say that $K(\theta)$
$\in \mathbb{K}(-\infty, \infty)$. That is, if
(2.2) $\lim _{\substack{A \rightarrow-\infty \\ B \rightarrow \infty}} \int_{-\infty}^{\infty}\left|\int_{A}^{B} e^{-i x \theta} d K(\theta)-G(x)\right|^{2} d F(x)=0$,
then $K(\theta) \in \boldsymbol{X}(-\infty, \infty)$.
If. $K(\theta)$ is defined in $[0, \infty)$,
and

$$
\begin{equation*}
\int_{0}^{A} e^{-i x \theta} d K(\theta) \tag{2.3}
\end{equation*}
$$

Instead of (2.]), converges to $G(x)$
in $L_{2}(0, \infty)$ with respect to $F(x)$, then $K(\theta)$ is said to belong to
$\boldsymbol{K}(0, \infty)$.
(2.2) is also represented as
(2.4) $\underset{\substack{\lim _{\begin{subarray}{c}{i, m \\ B \rightarrow \infty} }}^{L_{2}(F)} \int_{A}^{B}}\end{subarray}}{ } e^{-i x \theta} d K(\theta)=G_{T}(x)$.

This is called the fourier-Stieltjes transform of $K(\theta)$
and if $X_{A}(t)$ is a process depending on a parameter $A$ and

then we write simply

$$
\lim _{A \rightarrow \infty} X_{A}(t)=X(t) .
$$

Iet ( $A, B$ ) is any interval and consider a division :

$$
\Delta: \quad A=\theta_{0}<\theta_{1}<\quad<\theta_{n}=B .
$$

If putting

$$
\sum_{n=0}^{n-1} X\left(\theta_{n}\right)\left(K\left(\theta_{k+1}\right)-K\left(\theta_{k}\right)\right)=S_{\Delta},
$$

it holds: l.i,m. $S_{\Delta}=S\left(\max \left(\theta_{k m}-\theta_{k}\right) \rightarrow 0\right)$, then $S$ is dernoted as $\int_{A}^{B} x(\theta) d K(\theta)$.

## It is easily seen that the inte-

 eral $\int_{A}^{B} x(\theta) \alpha K(\theta)$ ( $K(\theta)$ is of bounded variation in $[A, B]$ ) exists if and only if$$
\int_{A}^{B} \int_{A}^{\theta} \rho\left(\theta-\theta^{\prime}\right) d K(\theta) d \overline{K\left(\theta^{\prime}\right)}
$$

exists 。
From this fact it is evident that for any $K(\theta) \in K(-\infty, \infty)$,

$$
\int_{A}^{0} X(t-\theta) d K(\theta)
$$

always exists for any $A$ and $B$.
Theoren $]$.

$$
\text { (2.5) } \lim _{\substack{A \rightarrow-\infty \\ B \rightarrow \infty}} \int_{A}^{B} X(t-\theta) d K(\theta)
$$

exists if and only if $K(\theta) \in K(-\infty, \infty)$. (2.5) is denoted as $\mathcal{F}[X(t)]$ and is called the filtered process by $K(\theta)$

The proof of Theorem 1 is immediate from the foljowing identity.

$$
\begin{aligned}
& E\left\{\left|\int_{A}^{A^{\prime}} X(t-\theta) d K(\theta)\right|^{2}\right\} \\
& =E\left\{\int_{A}^{A^{\prime}} \int_{A}^{A^{\prime}} X(t-\theta) \overline{X\left(t-\theta^{\prime}\right)} d K(\theta) d \overline{K\left(\theta^{\prime}\right)}\right\} \\
& =\int_{A}^{A^{\prime}} \int_{A}^{A^{\prime}} \rho\left(\theta-\theta^{\prime}\right) d K(\theta) d \overline{K\left(\theta^{\prime}\right)} \\
& =\int_{-\infty}^{\infty} \int_{A}^{A^{\prime}} \int_{A}^{A^{\prime}} e^{-i\left(\theta-\theta^{\prime}\right) x} d F(x) d K(\theta) d \overline{K\left(\theta^{\prime}\right)} \\
& =\int_{-\infty}^{\infty}\left|\int_{A}^{A^{\prime}} e^{-i x \theta} d K(\theta)\right|^{2} d F(x) .
\end{aligned}
$$

Theorem 2. let $K_{1}(\theta)$ and
$K_{2}(\theta)$ be functions of $\boldsymbol{K}$ and their Fourier-Stieltjes transforms be $G_{1}(x)$ and $G_{2}(x)$ respectiveIY. And let $Y_{1}(t)$ and $Y_{2}(t)$ $\frac{\text { be filtered }}{K_{1}(\theta) \text { processesof }} \frac{x(t)}{K_{2}(\theta)}$ respectively. Then we have
(2.6) $E\left\{Y_{1}(t+u) \overline{Y_{2}(t)}\right\}=$

$$
=\int_{-\infty}^{\infty} G_{1}(x) \overline{G_{2}(x)} e^{i k x} d F(x) .
$$

Proof.
$E\left\{Y_{1}(t+u) \overline{Y_{2}(t)}\right\}$
$=E\left\{\lim _{\substack{i, m_{0} \\ B \rightarrow \infty}} \int_{A}^{B} X(t+u-\theta) d K,(\theta)\right.$

$=\lim _{\substack{A \rightarrow-\infty \\ B \rightarrow \infty \\ B \rightarrow-\infty \\ B^{\prime} \rightarrow \infty}} \lim _{A} \int_{A^{+}}^{B} E\left\{X(t+u-\theta) \overline{X\left(t-\theta^{\prime}\right)}\right\} d K_{1}(\theta) d \overline{k_{2}(\theta)}$
$=\lim _{\substack{A \rightarrow-\infty \\ B \rightarrow \infty}} \lim _{\substack{A^{\prime} \rightarrow-\infty \\ B^{\prime} \rightarrow \infty}} \int_{A}^{B} \int_{A^{\prime}}^{B^{\prime}} \rho\left(u+\theta^{\prime}-\theta\right) d K_{1}(\theta) d \overline{K_{2}\left(\theta^{\prime}\right)}$
$B \rightarrow \infty \quad B \rightarrow \infty$
$=\lim _{\substack{A \rightarrow-\infty \\ B \rightarrow \infty}} \lim _{A^{\prime} \rightarrow-\infty} \int_{-\infty}^{\infty} A F(x)$.
$=\int_{-\infty}^{\infty} e^{i \kappa x} d F(x)$.
$-\lim _{\substack{A \rightarrow-\infty \\ B \rightarrow \infty}} \underset{\substack{A^{\prime} \rightarrow-\infty \\ B^{\prime} \rightarrow \infty}}{ } \lim _{A} \int_{A}^{B} \int_{A^{\prime}}^{B^{\prime}} e^{-i \theta^{\prime} x} e^{i \theta^{\prime} x} d K_{1}(\theta) d \overline{K_{1}\left(\theta^{\prime}\right)}$
$=\int_{-\infty}^{\infty} e^{i u x} G_{1}(x) \overline{G_{2}(x)} d F(x)$.
By $(2,6)$, it is seen that
$E\left\{Y_{1}(t+u) Y_{2}(t)\right\}$ is independent of $t$. Especially $Y(t)=\mathcal{F}[X(t)]$,
the filtered process is a stationary process, which is stated in the following theorem.
 tionary process and its correjation function $P_{Y}(u)$ f.s given by
(2.7)

$$
P_{r}(u)=\int_{-\infty}^{\infty}|G(x)|^{2} e^{i \omega x} d F(x)
$$

and in particular

$$
\text { (2.8) } E\left\{|Y(t)|^{2}\right\}=\int_{-\infty}^{\infty}|\dot{T}(x)|^{2} d F(x) .
$$

$\frac{2.2}{}$ If, in the definition of $K$

- A, A ; that is jif

$$
\underset{A \rightarrow \infty}{\ell_{. i, m}^{L_{2}(F)}} \int_{-A}^{A} e^{-i x \theta} d K(\theta)
$$

exists, then $K(\theta)$ is said to belong to $K_{1}$. Theorems 1-3 are also valid if the definition of filtering is replaced by

$$
\lim _{A \rightarrow \infty} \cdot \int_{-A}^{A} X(t-\theta) d K(\theta)=\mathcal{F}\{X(t)\} \text {. }
$$

Now we put
(2.9)

$$
\begin{aligned}
l(\theta ; a, b) & =\frac{1}{2 \pi i \theta}\left(e^{+i b \theta}-e^{+i a \theta}\right) \\
& =\frac{1}{2 \pi} \int_{a}^{b} e^{i x \theta} d x
\end{aligned}
$$

Then

$$
\begin{aligned}
& \lim _{A \rightarrow \infty} \int_{-A}^{A} \ell(\theta ; a, b) e^{-i u \theta} d \theta \\
& =\left\{\begin{array}{cc}
1, & a<u<b, \\
\frac{1}{2}, & u=a, b, \\
0, & u<a, u>b .
\end{array}\right.
\end{aligned}
$$

Putting
(2.10) $L(\theta ; a, b)=L(\theta)=\int_{0}^{\theta} l(\theta ; a, b) d \theta$,
we define
(2.11) $\mathcal{F}_{a b}\{X(t)\}=\hat{l}_{A \rightarrow \infty} \lim _{-A} \int_{-A}^{A} X(t-\theta) d L(\theta)$
and consider

$$
(2.12) \quad Z(a, b)=\mathcal{F}_{a b}\{X(0)\}
$$

which is a random variable depending on an interval ( $a, b$ ). Thus for any interval $I$ whose end points are continuity points of $F(x)$, we define a random varfable Z(I) .
$Z(I)$ has, following properties whicn are easily verified by Theorem 2.
(]$\left.^{\circ}\right)$ if
if $I_{1} \cup I_{2}=I$, then

$$
Z(I)=Z\left(I_{1}\right)+Z\left(I_{2}\right),
$$

where $I_{1}$ and $I_{2}$ have no common interval, and the interval I with $I_{1}$ and $I_{2}$, has the continuity points of $F(x) \geqslant$ as jts end points.
(20) $E\left\{\left[\left.Z(I)\right|^{2}\right\}=\int_{I} d F(x)\right.$,
$\left(3^{\circ}\right)$

$$
E\left\{Z\left(I_{v}\right) \overline{Z\left(I_{2}\right)}\right\}=\int_{I_{1} \cap I_{2}} d F(x) .
$$

Now we appeal to the following lemma which is due to H.Cramér. (3)

Lemma 1. Let $Z(S)$ be a random variable defined on every continuity intervals of a spectral function $F(x)$ of a stationary process $x(t)$ If $z(S)$ satisfies the conditions (19), (ii) and (iii) above, then we can uniquely define the random variable $Z(S)$ defined on every Borel set $S$ on the real axis, such that
(I) $Z\left(S_{1} \cup S_{2}\right)=Z\left(S_{1}\right)+Z\left(S_{2}\right)$. when $S_{1} \cap S_{2}=0$,
(II) $E\left\{Z\left(S_{1}\right) \cdot \overline{Z\left(S_{2}\right)}\right\}=\int_{S_{1} \cap S_{2}} d F(x),\left(S_{1} \cap S_{2} \neq 0\right)$,

$$
=0, \quad\left(S_{1} \cap S_{2}=0\right),
$$

(III) $E\left\{|Z(S)|^{2}\right\}=\int_{S} d F(x)$.

By this lemma, starting from (2.12) we can define $Z(S)$ depending on any Borel set, $S$. Iet $A>0$ and consider a division

$$
-A=v_{0}<\nu_{1}<\cdots<v_{n-1}<v_{n}=A
$$

and denote $Z(s), S$ being an interval, $a<x \leqq b$ as $Z(a, b)$. Put

$$
\begin{equation*}
S_{n}(t)=\sum_{k=0}^{n-1} Z\left(v_{k}, v_{k+1}\right) e^{1 \nu_{k} t}, \tag{2.13}
\end{equation*}
$$

(2.14) $\quad X_{A}(t)=\mathcal{F}_{(-A, A)}\{X(t)\}$.

Then we have
(2.15) $E\left\{\left|S_{n}(t)\right|^{2}\right\}=\int_{-A+0}^{A+0} d F(x)$,
(2.16) $E\left\{\left|X_{A}(t)\right|^{2}\right\}=\int_{-A+0}^{A+0} d F(x)$,
(2.17) $E\left\{S_{n}\left(t_{j} \overline{X_{A}(t)}\right\}\right.$
$=\sum \int_{\nu_{k}+0}^{\nu_{k n}+o} e^{-i t x} d F(x) \cdot e^{i v_{k} t}$.
These are easily seen, for example

$$
\begin{aligned}
& E\left\{S_{n}(t) \overline{S_{n}(t)}\right\} \\
& =E\left\{\sum_{k} \sum_{j} Z\left(v_{k}, v_{k+1}\right) \overline{Z\left(v_{j}, v_{j+1}\right)} e^{i\left(v_{k}-v_{j}\right) t}\right\} \\
& =\sum_{i} \sum_{j} E\left\{Z\left(v_{k}, v_{k+1}\right) \overline{Z\left(v_{j}, v_{j+1}\right)}\right\} \cdot e^{i\left(v_{k}-v_{j}\right) t}
\end{aligned}
$$

By Theorem 2 and (II)

$$
\begin{aligned}
\left.E\left\{Z\left(v_{k}, \nu_{k+1}\right) \overline{\sum\left(\nu_{j}, v_{j+1}\right.}\right)\right\} & =0,(k \neq j) \\
& =\int_{\nu_{k}+D}^{v_{k+1}+0} d F(x),\left(k j_{j}\right)
\end{aligned}
$$

which yields (2.15). (2.16) fs obvious. (2.17) is also proved easily. (2.15), (2.16) and (2.17) show that

$$
\begin{aligned}
& E\left\{\left|S_{n}(t)-X_{A}(t)\right|^{2}\right\} \\
& =E\left\{\left|S_{n}(t)\right|^{2}\right\}+E\left\{\left|X_{A}(t)\right|^{2}\right\} \\
& \quad-2 R E\left\{S_{n}(t) \cdot \overline{X_{A}(t)}\right\} \\
& =2 \int_{-A+0}^{A+0} d F(x)-2 R \sum_{k} \int_{v_{k}+0}^{v_{m+0}+0} e^{i\left(v_{k}-x\right) t} d F(x)
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$
$\max \left(v_{k+1}-v_{k}\right) \rightarrow 0$.
That is, it. holds:

$$
\text { (2.17) l.i.m. } S_{n}(t)=X_{A}(t)
$$

Furthermore

$$
\begin{aligned}
E & \left\{\left|X_{A}(t)-X(t)\right|^{2}\right\} \\
= & E\left\{\left|X_{A}(t)\right|^{2}\right\}+E\left\{|X(t)|^{2}\right\} \\
& -2 \mathcal{R E}\left\{X_{A}(t) \overline{X(t)}\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
& E\left\{X_{A}(t) \overline{X(t)}\right\} \\
& =E\left\{\chi_{B \rightarrow \infty} ; \int_{-B}^{B} X(t-\theta) d L(\theta ;-A, A) \cdot \overline{X(t)}\right\} \\
& =\lim _{B \rightarrow \infty} E\left\{\int_{-B}^{B} x(t-\theta) \alpha L(\theta ;-A, A) \cdot \overline{X(t)}\right\} \\
& =\lim _{B \rightarrow \infty} \int_{-B}^{B} E\{X(t-\theta) \overline{X(t)}\} \alpha L(\theta ;-A, A) \\
& =\lim _{B \rightarrow \infty} \int_{-B}^{B} p(-\theta) \alpha L(\theta ;-A, A) \\
& =\lim _{B \rightarrow \infty} \int_{B}^{B} \int_{-\infty}^{\infty} e^{-i \theta x} d F(x) \cdot d L(\theta ;-A, A) \\
& =\int_{-\infty}^{\infty} d F(x) \lim _{B \rightarrow \infty} \int_{-B}^{B} e^{-i \theta x} d L(\theta ;-A, A)
\end{aligned}
$$

$=\int_{-A+0}^{A+0} d F(x)$.
Hence using (2.16), we have
$E\left\{\left|X_{A}(t)-X(t)\right|^{2}\right\}$
$=\int_{-\infty}^{\infty} d F(x)-\int_{-\infty}^{A+0} d F(x)$
which tends to $\int_{0}^{-\infty+0}$ as $A \rightarrow \infty$
Thus we have proved the
Theorem 4. The stationary process $x(t)$ can be represented as
(2.18) $X(t)=\int_{-\infty}^{\infty} e^{i t x} d L(x)$
$\frac{\text { where }}{(2.18)} Z(x)=Z(-\infty, x)$ and
(2.18) means

$$
\text { (2.19) } X(t)=\ell_{A \rightarrow \infty} \lim _{n \rightarrow \infty} X_{n}(t),
$$

$S_{n}(t) \quad$ being given by (2.13).
Here it seems worthwhile to give some remarks on the integral.

Let $g(x)$ be a function of $L_{2}(F)$; that is

$$
\int_{-\infty}^{\infty}|g(x)|^{2} d F(x)
$$

exists (in Lebesgue sense). Then we can define
(2.20) $\int_{-\infty}^{\infty} g(x) d Z(x)$
by approximating $g(x)$ in $L_{2}(F)$ by simple functions. (4) Then besides ordinary fundamental properties of integral, (2.20) has following properties, among others,
(i) $(2.21) E\left\{\left|\int_{-\infty}^{\infty} g(x) d Z(x)\right|^{2}\right\}$

$$
=\int_{-\infty}^{\infty}|g(x)|^{2} d F(x)
$$

(i1) if $S_{1}$ and $S_{2}$ are Borel sets,
and $f(x)$ and $g(x)$ are of $L_{2}(F)$, then $E\left\{\int_{S_{1}} f(x) d Z(x) \int_{S_{2}} \overline{g(x)} d \overline{Z(x)}\right\}$ $=\int_{S_{1} \cap S_{\lambda}} f(x) \overline{g(x)} d F(x)$.
(iii) if $f_{\alpha}(x)$ converges in mean
$L_{2}(F)$ to $f(x)$, then

$$
\lim _{\alpha \rightarrow \infty} . \int_{-\infty}^{\infty} f_{\alpha}(x) d Z(x)=\int_{-\infty}^{\infty} f(x) d Z(x)
$$

(iv) if $f(x), \infty$ is bounded continuous, then $\int_{-\infty}^{\infty} f(x) d Z(x)$ exists.

It is immediate that the integral. in (2.18) can also be considered as the one defined in (2.20), $g(x)$ being $e^{i t x}$

We add a following theorem.
Theorem 5. The filitered process process $\left.\mathcal{F}^{c} x(t)\right]$ by a function $x(t)$ onary $K(\theta) \in K^{\text {is }}$ represented as

$$
\text { (2.22) } \mathcal{F}_{k}\{x(t)\}=\int_{-\infty}^{\infty} e^{i t x} G(x) d Z(x)
$$

where $G(x)$ is the FourierStieltjes transform of $K(\theta)$

We have

$$
\mathcal{F}_{k}\{X(t)\}=\int_{-\infty}^{\infty} X(t-\theta) d K(\theta)
$$

$$
=\lim _{\substack{A \rightarrow-\infty \\ B \rightarrow \infty}} \int_{A}^{B} X(t-\theta: d K(\theta)
$$

$$
=\lim _{\substack{A \rightarrow-\infty \\ B \rightarrow \infty}} \int_{A}^{B} d K(\theta) l, \operatorname{i.m} \cdot l . \operatorname{l.m} \cdot S_{n}(t-\theta)
$$

$$
=\lim _{\substack{A \rightarrow-\infty \\ B \rightarrow \infty}} \lim \lim \int_{A}^{B_{n}} \sum_{0} Z\left(v_{k}, v_{k+1}\right) e^{i v_{k}(t-\theta)} \alpha K(\theta)
$$

$$
=\lim _{\substack{A \rightarrow-\infty \\ B \rightarrow \infty}} \lim \lim \sum_{0}^{n} Z\left(v_{k} \cdot v_{k+1}\right) e^{\iota v_{k} t} \int_{A}^{B} e^{-i v_{k} \theta} d K(\theta)
$$

which is by (iv)

$$
\begin{aligned}
& \lim _{A, B} \int_{-\infty}^{\infty} e^{i x t}\left(\int_{A}^{B} e^{-i x \theta} d K(\theta)\right) d Z(x) \\
& =\int_{-\infty}^{\infty} e^{i x t} G(x) d Z(x)
\end{aligned}
$$

by (jiji).
83. The Iaw of Large Numbers.
3.1. We shall prove the following known theorem.

Theorem 6. Let $x(t)$ be a stationary process with random spectral function $Z(x)$. Then

$$
\begin{aligned}
& \text { (3.1) } \operatorname{li.i.m}_{T \rightarrow \infty} \cdot \frac{1}{T} \int_{0}^{T} x(t) e^{-i \xi t} d t \\
& \quad=Z(\xi+0)-Z(\xi-0)
\end{aligned}
$$

We note that $Z(x \neq 0)$ exists, for example

$$
\begin{gathered}
E\left\{\left|Z(x+\varepsilon)-Z\left(x+\varepsilon^{\prime}\right)\right|^{2}\right\} \\
=E\left\{\mid \int_{\left.\left.\substack{x+\varepsilon^{\prime}+0 \\
x+\varepsilon+0} Z(x)\right|^{2}\right\}}^{=} \int_{x+\varepsilon+\varepsilon^{\prime}+0}^{x+\varepsilon+0} d F(x)\right.
\end{gathered}
$$

and converge to 0 as $\varepsilon^{\prime}, \varepsilon^{\prime \prime} \rightarrow 0$.
Before proving the theorem it is convenient to state a lemma.
 continuous in mean. II

$$
\begin{aligned}
& \lim _{A \rightarrow \infty} x_{A}(t)=x(t), a \leqq t \leqq b \\
& E\left\{\left|x_{A}(t)-x(t)\right|^{2}\right\} \leqq K<\infty \text {, astsb, }
\end{aligned}
$$

## then

$$
\underset{A \rightarrow \infty}{\operatorname{li.m} .} \int_{a}^{b} \varphi(t) X_{A}(t) d t=\int_{a}^{b} \varphi(t) X(t) d t
$$

the integral being taken in Riemann
The proof is imrediate by the definition of integral. The similar facts holds in Iebesgue sense which will be stated as lemma 5 in 86 in the sequel.

We shall prove the theorem. Let
$u(x, \xi)=0 \quad(x \neq \xi), k(x, \xi)=1 \quad(x=\xi)$. We have

$$
\begin{aligned}
& E\left\{\left|\frac{1}{T} \int_{0}^{T} x(t) e^{-i \xi t} d t-\int_{-\infty}^{\infty} u(x, \xi) d Z(x)\right|^{2}\right\} \\
& =E\left\{\left\lvert\, \frac{1}{T} \int_{0}^{T} e^{-i \xi t} d t \int_{-\infty}^{\infty} e^{i t x} d Z(x)\right.\right. \\
& - \\
& \left.-\left.\int_{-\infty}^{\infty} u(x, \xi) d Z(x)\right|^{2}\right\}
\end{aligned}
$$

(Lemma 2 is used)

$$
\begin{aligned}
=E & \left\{\left\lvert\, \int_{-\infty}^{\infty}\left(\frac{1}{T} \int_{0}^{T} e^{i t(x-\xi)} d t\right) d Z(x)\right.\right. \\
& \left.-\int_{-\infty}^{\infty} u(x, \xi) d Z(x) \mid\right\}^{2}
\end{aligned}
$$

Here the inversion of the order of integral is legitimate as easjly verified. The above is
$E\left\{\left|\int_{-\infty}^{\infty}\left\{\frac{e^{i T(x-\xi)}-1}{i T(x-\xi)}-u(x, \xi)\right\} d Z(x)\right|\right\}$
(3.2) $=\int_{-\infty}^{\infty}\left|\frac{e^{i T(x-\xi)}-1}{i T(x-\xi)}-u(x, \xi)\right|^{2} \alpha F(x)$
by (1) in $\leqslant 2, \quad F(x)$ being the spectral function of $x(t)$. since the integrand of (3.2) converges to zero boundedly, (3.2) tends to zero which is to be proved.

Next we shall discuss the convergence of

$$
\int^{\infty} \frac{x(t)}{t} e^{-i \xi t} d t
$$

Theorem 7. If for some $\varepsilon>0$,

$$
\text { (3.3) } \int_{0}^{\varepsilon} \frac{F(\xi+x)-F(\xi-x)}{x} \log \frac{1}{x} d x<\infty,
$$

then

$$
\text { (3.4) } \operatorname{l.i.m.~}_{T \rightarrow \infty} \int_{1}^{T} \frac{x(t)}{t} e^{-i \xi t} d t
$$

exists. Especially if for some $\alpha>0$,
(3.5) $F(\xi+x)-F(\xi-x)=O\left(x^{\alpha}\right)$, as $x \rightarrow+0$,

## then (3.4) exists.

Proof. We shall prove in the case $\xi=0 \quad$. We have

$$
\begin{aligned}
& \int_{1}^{T} \frac{x(t)}{t} d t=\int_{1}^{T} \frac{d t}{t} \int_{-\infty}^{\infty} e^{i t x} d Z(x) \\
& =\int_{-\infty}^{\infty}\left(\int_{1}^{T} \frac{e^{i t x}}{t} d t\right) d Z(x) \\
& =\int_{-\infty}^{\infty} d Z(x) \int_{1}^{T} \frac{\cos t x}{t} d t+i \int_{-\infty}^{\infty} d Z(x) \int_{1}^{T} \frac{\sin t x}{t} d t \\
& (3.6)=J_{1}+i J_{2}
\end{aligned}
$$

say. Since $\int_{1}^{T} \frac{\sin t x}{t} d t$ conver-
ges boundedly as $T \rightarrow \infty$, it also converges in $L_{2}(F)$, and hence by (iii) in §2, l.i.m. J $\mathrm{J}_{2}$ exists.

Next we have

$$
J_{1}=J_{1}(T)=\int_{-\infty}^{\infty} d Z(x) \int_{x}^{x T} \frac{\cos t}{t} d t
$$

and

$$
J_{1}(T)-J_{1}\left(T^{\prime}\right)=\int_{-\infty}^{\infty} d Z(x) \int_{x T^{\prime}}^{x T} \frac{\cos t}{t} d t
$$

Hence by (2.2.J)

$$
\begin{aligned}
& E\left\{\left|J_{1}(T)-J_{1}\left(T^{\prime}\right)\right|^{2}\right\} \\
& =\int_{-\infty}^{\infty}\left|\int_{x T^{\prime}}^{x T} \frac{\cos t}{t} d t\right|^{2} \alpha F(x) \\
& =\int_{|x| \leqq \varepsilon}+\int_{|x|>\varepsilon}=J_{11}+J_{12}
\end{aligned}
$$

say, $\mathcal{E}$ being any positive number. Since, for $|x|>\varepsilon, \int_{x T^{\prime}}^{x T} \frac{\cos t}{t} d t$ converges boundedly to zero, we have
(3.T) $\underset{T . T^{\prime} \rightarrow \infty}{\text { l.m. }} J_{12}=0$.

We have

$$
\begin{aligned}
J_{11}= & \int_{0}^{\varepsilon} d F(x)\left|\int_{x T^{\prime}}^{x T} \frac{\cos t}{t} d t\right|^{2} \\
& +\int_{-\varepsilon}^{0} d F(x)\left|\int_{x T^{\prime}}^{x T} \frac{\cos t}{t} d t\right|^{2} \\
= & \int_{0}^{\varepsilon} d\{F(x)-F(-x)\} \cdot\left|\int_{x T^{\prime}}^{x T} \frac{\cos t}{t} d t\right|^{2}
\end{aligned}
$$

which is, by integration by parts

$$
\begin{align*}
&\{F(\varepsilon)-F(-\varepsilon)\} \cdot\left(\int_{\varepsilon T^{\prime}}^{\varepsilon T} \frac{\cos t}{t} d t\right)^{2} \\
&-\lim _{x \rightarrow 0}\{F(x)-F(-x)\}\left(\int_{x T^{\prime}}^{x T} \frac{\cos t}{t} d t\right)^{2} \\
&3.8)-2 \int_{0}^{\varepsilon}\{F(x)-F(-x)\} d x \cdot  \tag{3.8}\\
& \cdot \int_{x T^{\prime}}^{x T} \frac{\cos t}{t} d t\left(\frac{\cos x T}{x}-\frac{\cos x T^{\prime}}{x}\right)
\end{align*}
$$

The first term converges to zero as $T \rightarrow \infty$, and the second term is zero, since $F(x)$ j.s continuous at $x=0$, which is a consequence of the condition (3.3), f'or

$$
\begin{aligned}
\int_{x T^{\prime}}^{x T} & \frac{\cos t}{t} d t \\
& =O\left(\int_{x T^{\prime}}^{x T} \frac{d t}{t}\right) \\
& =O\left(\log \frac{T}{T^{\prime}}\right)
\end{aligned}
$$

Further if we consider

$$
\begin{aligned}
K= & \int_{0}^{\varepsilon}\{F(x)-F(-x)\} \int_{x T}^{\infty} \frac{\cos t}{t} d t \cdot \frac{\cos x T^{\prime}}{x} \\
& =\int_{0}^{\frac{1}{T}}+\int_{\frac{1}{T}}^{\varepsilon} \\
& =K_{1}+K_{2}
\end{aligned}
$$

say, then

$$
\begin{aligned}
K_{i} & =\int_{0}^{\frac{1}{T}}\{F(x)-F(-x)\} \int_{x T}^{1} \frac{\cos t-1}{t} d t \cdot \frac{\cos x T^{\prime}}{x} d x \\
& +\int_{0}^{\frac{1}{T}}\{F(x)-F(-x)\} \log \frac{1}{x T} \frac{\cos x T^{\prime}}{x} d x \\
& +\int_{0}^{\frac{1}{T}}\{F(x)-F(-x)\} \int_{1}^{\infty} \frac{\cos t}{t} d t \frac{\cos x T^{\prime}}{x} d x
\end{aligned}
$$

and noticing that $\int_{\xi}^{1}(\cos t-1) / t \cdot d t=O(1)$, uniformly in $0<\xi<1$, the first term of $K_{1}$ is

$$
\int_{0}^{\frac{1}{r}}\{F(x)-F(-x)\} \cdot O\left(\frac{1}{x}\right) d x=O(1)
$$

as $T \rightarrow \infty$ by (3.3)
and the second term is

$$
\begin{aligned}
& O\left\{\int_{0}^{\frac{1}{T}}\{F(x)-F(-x)\} \frac{1}{x} \log \frac{1}{x} d x\right\} \\
& \quad+O\left(\log T \cdot \int_{0}^{\frac{1}{T}} \frac{F(x)-F(-x)}{x} d x\right) \\
& =O\left(\int_{0}^{\frac{1}{T}}\{F(x)-F(-x)\} \frac{1}{x} \log \frac{1}{x} d x\right)
\end{aligned}
$$

also by (3.3), and furthermore the last term of $K$, is also

$$
\begin{aligned}
& o\left(\int_{0}^{\frac{1}{T}}\{F(x)-F(-x)\} \frac{1}{x} d x\right) \\
& =o(1)
\end{aligned}
$$

Hence we have
(3.9) $K_{1}=0(1)$, as $T \rightarrow \infty$.

Next

$$
\begin{aligned}
K_{2}= & \int_{\frac{1}{T}}^{\varepsilon}\{F(x)-F(-x)\} \int_{x T}^{\infty} \frac{\cos t}{t} d t \\
& \cdot \frac{\cos x T^{\prime}}{x} d x \\
= & O\left\{\int_{\frac{1}{T}}^{\varepsilon}\{F(x)-F(-x)\} \frac{d x}{x}\right\}
\end{aligned}
$$

Since $x T>1$, which is arbitrarily small by taking $\varepsilon$ small. Corbining this wf. th (3.8) we have
(3.10) $K=o(1)$,
by letting $\quad T \rightarrow \infty$ and then $\varepsilon \rightarrow 0$.
The similar integrals arising in the last term of (3.8) are also treated quite similarly and we can prove that ( 3.8 ) converges to zero as $T, T^{\prime} \rightarrow \infty \quad$ which results with (3.7),

$$
E\left\{\left|J_{1}(T)-J_{1}\left(T^{\prime}\right)\right|^{2}\right\} \rightarrow 0
$$

3.2. We shall now prove the

Theorem 8o If $x(t)$ is a stationary process, then
(3.11) $\lim _{T \rightarrow \infty} . \frac{1}{\pi} \int_{-T}^{T} \frac{\sin A(t-x)}{t-x} X(t) d t$

$$
=\int_{-A}^{A} e^{i \times \lambda} d Z(\lambda)
$$

$Z(\lambda)$ being the random spectral function of $x(t)$ and it is assumed
$\frac{\text { that at the discontinulties of the }}{\text { spectral function } F(\lambda), Z(\lambda)}$
is defined as

$$
\begin{aligned}
Z(\lambda) & =\frac{1}{2}\{Z(\lambda+0)+Z(\lambda-0)\} \\
& =\frac{1}{2} \ell_{\substack{ \\
\varepsilon \rightarrow 0 \\
\varepsilon \rightarrow 0}}\{Z(\lambda+\varepsilon)+Z(\lambda-\varepsilon)\} \\
I & =\frac{1}{\pi} \int_{-T}^{T} \frac{\sin A(t-x)}{t-\pi} X(t) d t
\end{aligned}
$$

which is by Lemma 1

$$
\begin{aligned}
& =\frac{1}{\pi} \int_{-T}^{T} \frac{\sin A(t-x)}{t-x} d t \int_{-\infty}^{\infty} e^{i t \lambda} d Z(\lambda) \\
& =\int_{-\infty}^{\infty} d Z(\lambda) \frac{1}{\pi} \int_{-T}^{T} \frac{\sin A(t-x)}{t-x} e^{i t \lambda} d t .
\end{aligned}
$$

Since

$$
\frac{1}{\pi} \int_{-T}^{T} \frac{\sin A u}{u} e^{i \lambda u} d u \rightarrow \begin{cases}0, & |\lambda|>A \\ \frac{1}{2}, & |\lambda|=A \\ 1, & |\lambda|<A\end{cases}
$$

and

$$
\begin{aligned}
& \left|\frac{1}{\pi} \int_{T}^{T+x} \frac{\sin A u}{u} e^{i u \lambda} d u \cdot e^{i x \lambda}\right| \\
& \quad \leqq \frac{1}{\pi} \int_{T}^{T+x} \frac{d u}{u} \\
& \quad=\frac{1}{\pi} \log \left(1+\frac{x}{T}\right)
\end{aligned}
$$

we have, by (iii) of 2.2

$$
\lim _{T \rightarrow \infty} I=\int_{-A}^{A} e^{i x \lambda} d Z(\lambda)
$$

From Theoren 8, following Theorems 9 and 10 are easily obtained.

Theorem 9.

$$
\text { (3.12) } Z(\lambda)-Z(0)
$$

$$
\begin{aligned}
& \quad=\frac{1}{2 \pi} \lim _{T \rightarrow \infty} \cdot \int_{-T}^{T} \frac{1-e^{-i t \lambda}}{i t} x(t) d t . \\
& \text { Theorer: 10. Putting }
\end{aligned}
$$

$$
D_{A} X(t)=\underset{T \rightarrow \infty}{l . i . m} \cdot \frac{1}{\pi} \int_{-T}^{T} \frac{\sin A(t-x)}{t-x} X(t) d t,
$$

we have

$$
\begin{equation*}
D_{A} D_{B} X(t)=D_{C} X(t), c=\min .(A, B) \tag{3.13}
\end{equation*}
$$

Further we sha] state
Theorem 31. The necessary and surficient condition ror that the spectrum of the spectral. function
$F(x) \quad$ of a stationary process
$x(t)$, is bounded, is that
(3.14) $\quad D_{A} X(t)=X(t)$
for some $A>0$.
If (3.3.4) holds, then using (3.11)

$$
E\left\{|x(t)|^{2}\right\}=E\left\{\left|D_{A} x(t)\right|^{2}\right\}
$$

$$
=E\left\{\left|\int_{-A}^{A} e^{i t \lambda} d Z(\lambda)\right|^{2}\right\}=\int_{-A}^{A} \alpha F(x)
$$

Since $E\left\{|X(t)|^{2}\right\}=F(+\infty)-F(-\infty)$,
wo have
$F(+\infty)-F(-\infty)=F(A)-F(-A)$
so that the spectrum of $F(x)$
is contained in ( $-A, A$ ) -
If the spectrum of $F(x)$ is bounded, then there exists $A$ such that $F(+\infty)=F(A), F(-\infty)=F(-A)$. And since

$$
\begin{aligned}
& E\left\{\left|\int_{-\infty}^{\infty} e^{i+\lambda} d Z(\lambda)\right|^{2}\right\}=\int_{A}^{\infty} d F(\lambda)=0 \\
& E\left\{\left|\int_{-\infty}^{-A} e^{i t \lambda} d Z(\lambda)\right|^{2}\right\}=\int_{-\infty}^{-A} d F(\lambda)=0
\end{aligned}
$$

we have
$X(t)=\int_{-\infty}^{\infty} e^{i t \lambda} d Z(\lambda)=\int_{-A}^{A} e^{i t \lambda} d Z(\lambda)$.
We shall, lastly, add a remark that $D_{A} X(t)=x(t)$ is equivalent to

$$
D_{A} \rho(t)=\rho(t),
$$

$\rho(t)$ being the correlation function of $X(t)$.
§4. Wiener's prediction theory and the Fourier Stieltjes transtorm.
4.1. Let $K(\theta)$ be a function of $\overline{K(0, \infty)}$ defined in 2.1. Suppose throughout that $x(t)$ is a stationary process and $Z(x), F(x)$ are the random spectral function and the spectral function of $x(t)$ as before. We consjder the problem to predict $X(t+\alpha),(\alpha>0)$ by the values before $t$ of the riltered process by $K(\theta)$. The following arguments are essential.jy due to N.Wiener (5), but the formulation is different in some points. The class of $K(\theta)$ is slightly general than wiener's. He considered $K(\theta)$ of bounded variation in
( $0, \infty$ ) . This generalization is nore natural for his theory, and our procedure is more simple in some points.

We begin with the following fact.
Theorem J.2. Iet $\alpha>0$ and the Fourier-Stie].tjes transforr of $k(\theta)$ be $G(x)$ (in the sense in 2.1 ). Then we have
(4.1) $E\left\{\left|X(t+\alpha)-\int_{0}^{\infty} X(t-\theta) d K(\theta)\right|^{2}\right\}$

$$
=\int_{-\infty}^{\infty}\left|e^{i \alpha x}-G(x)\right|^{2} d F(x)
$$

Proof. $\int_{0}^{A} e^{-i \theta x} d K(\theta)$ converges in mean $L_{2}(F)$ to $G(x)$. This we denote as

$$
\ell_{A \rightarrow \infty}^{L_{2}(F)} \int_{0}^{A} e^{-i \theta x} d K(\theta) .
$$

We have

$$
\begin{aligned}
& E\left\{\overline{X(t+\alpha)} \int_{0}^{\infty} X(t-\theta) d K(\theta)\right\} \\
= & E\left\{\overline{X(t+\alpha)} \lim _{A \rightarrow \infty} \cdot \int_{0}^{A} X(t-\theta) d K(\theta)\right\}
\end{aligned}
$$

$$
=\lim _{A \rightarrow \infty} E\left\{\overline{X(t+\alpha)} \int_{0}^{A} X(t-\theta) d K(\theta)\right\}
$$

$$
=\lim _{A \rightarrow \infty} \int_{0}^{A} E\{\overline{x(t+\alpha)} x(t-\theta)\} d K(\theta)
$$

$$
=\lim _{A \rightarrow \infty} \int_{0}^{A} \int_{-\infty}^{\infty} e^{-i(\theta+\alpha) u} d F(u) d K(\theta)
$$

$$
=\lim _{A \rightarrow \infty} \int_{-\infty}^{\infty} e^{-i \alpha u} d F(u) \int_{0}^{A} e^{-i \theta u} d K(\theta)
$$

$$
=\int_{-\infty}^{\infty} e^{-i \alpha u} d F(u) \underset{A \rightarrow \infty}{l_{2}(F)} \int_{0}^{A} e^{-i \theta u} d K(\theta)
$$

(4.2)

$$
=\int_{-\infty}^{\infty} e^{-i \alpha u} G(u) d F(u)
$$

$$
\begin{aligned}
& E\left\{|X(t+\alpha)|^{2}\right\} \\
& \left.-2 \mathcal{R E} \overline{X(t+\alpha)} \int_{0}^{\infty} X(t-\theta) d K(\theta)\right\} \\
& +E\left\{\left|\int_{0}^{\infty} X(t-\theta) d K(\theta)\right|^{2}\right\}
\end{aligned}
$$

which is, by Theorem 3, and (4.2)

$$
\begin{align*}
& \int_{-\infty}^{\infty} d F(x)-2 \not x \int_{-\infty}^{\infty} e^{-i \alpha x} G(x) d F(x)  \tag{4.3}\\
& \quad+\int_{-\infty}^{\infty}|G(x)|^{2} d F(x) \\
& =\int_{-\infty}^{\infty}\left|e^{i \alpha x}-G(x)\right|^{2} d F(x) .
\end{align*}
$$

Lemma 3. Suppose that there exiwhich is the Fourier-stieltjes transform of a fiunction of $K(0, \infty)$ such that for a positive number $\propto$, itholds

$$
\begin{aligned}
& \int_{-\infty}^{(4-4)} e^{i \tau x} H(x) d F(x)=\int_{-\infty}^{\infty} e^{i \tau x} e^{i \alpha x} d F(x) \\
& \text { for a] } \quad \tau>0 \quad .
\end{aligned}
$$

Then, for the Fourier-Stiejtjes trans-
form $G(x)$ of any function of

$$
\begin{aligned}
& \text { (4.5) } \int_{-\infty}^{\infty} H(x) \overline{G(x)} d F(x) \\
& =\int_{-\infty}^{\infty} e^{i \alpha x \frac{}{G(x)}} d F(x)
\end{aligned}
$$

and consequently

$$
\begin{aligned}
& \text { (4.6) } \int_{-\infty}^{\infty}|H(x)|^{2} d F(x) \\
& =\int_{-\infty}^{\infty} e^{-i \alpha x} H(x) d F(x) \\
& =\int_{-\infty}^{\infty} e^{i \alpha x} \overline{H(x)} d F(x) \\
& =R \int_{-\infty}^{\infty} e^{-i \alpha x} H(x) d F(x) .
\end{aligned}
$$

Proof. Let

$$
H(x)=\operatorname{licim}_{A \rightarrow \infty}^{L_{2}(F)} \int_{0}^{A} e^{-i \theta x} d L(\theta)
$$

$G(x)=\underset{A \rightarrow \infty}{L_{2}(f)} . \int_{0}^{A} e^{-i \theta x} d K(\theta)$,
$L(\theta), K(\theta) \in K(0, \infty)$.

The left hand side of (4.5) is

$$
\begin{aligned}
& \int_{-\infty}^{\infty} H(x) d F(x) \underset{A \rightarrow \lim _{2} m_{2}}{ } \cdot \int_{0}^{A} e^{i \theta x} d \overline{K(\theta)} \\
& =\lim _{A \rightarrow \infty} \int_{0}^{A} d \overline{K(\theta)} \int_{-\infty}^{\infty} H(x) e^{i \theta x} d F(x)
\end{aligned}
$$

which is, by (4.4)

$$
\begin{aligned}
& \lim _{A \rightarrow \infty} \int_{0}^{A} d \overline{K(\theta)} \int_{-\infty}^{\infty} e^{i \theta x} e^{i a x} d F(x) \\
& =\int_{-\infty}^{\infty} e^{i \alpha x} d F(x) \lim _{A \rightarrow \infty}^{L_{2}(F)} \int_{0}^{A} e^{i \theta x} d \overline{K(\theta)} \\
& =\int_{-\infty}^{\infty} e^{i \alpha x} \overline{G(x)} d F(x)
\end{aligned}
$$

This is (4.5). (4.6) are:immediate since the left hand side of (4.6) is real.

Now we put
(4.7) $J(G)=\int_{-\infty}^{\infty}\left|e^{i \alpha x}-G(x)\right|^{2} d F(x)$.

And we shall prove the following theorem.

Theorem 3.3. if $G(x)$ is the Fourier-Stieltjes transrorm of a is the function in ( 4.4 ), then

$$
\text { (4.8) } J(G) \geqq J(H) \text {. }
$$

The equality holds if and only if

$$
G(x)=H(x) \text { almost everywhere }
$$

with respect to measure function $F(x)$

Proof. By (4.3), we have

$$
\begin{aligned}
& J(G)=\int_{-\infty}^{\infty} d F(x)-2 R \int_{-\infty}^{\infty} e^{-i \alpha x} G(x) d F(x) \\
&+\int_{-\infty}^{\infty}|G(x)|^{2} d F(x)
\end{aligned}
$$

and

$$
J(H)=\int_{-\infty}^{\infty} d F(x)-2 R \int_{-\infty}^{\infty} e^{-i \alpha x} H(x) d F(x)
$$

$$
+\int_{-\infty}^{\infty}|H(x)|^{2} d F(x)
$$

which is, by Lemma 2 ,

$$
\int_{-\infty}^{\infty} d F(x)-\int_{-\infty}^{\infty}|H(x)|^{2} d F(x)
$$

Hence we have

$$
\begin{equation*}
J(G)-J(H)=\int_{-\infty}^{\infty}|H(x)|^{2} d F(x) \tag{4,9}
\end{equation*}
$$

$$
-2 R \int_{-\infty}^{\infty} e^{-i \alpha x} G(x) d F(x)+\int_{-\infty}^{\infty}|G(x)|^{2} d F(x)
$$

Using (4.5), we get

$$
\begin{aligned}
& J(G)-J(H)=\int_{-\infty}^{\infty}|H(x)|^{2} d F(x) \\
& -2 R \int_{-\infty}^{\infty} G(x) \overline{H(x)} d F(x)+\int_{-\infty}^{\infty}|G(x)|^{2} d F(x) \\
& =\int_{-\infty}^{\infty}|H(x)-G(x)|^{2} d F(x)
\end{aligned}
$$

from which the conclusions of our theorem are obvious.

The above discussions are settled into the following theorem.

Theorem 14. J.f there exists $H(x)$ which satisfies (4.4) in Jemma 2

$$
\begin{aligned}
H(x)= & l_{A \rightarrow \infty}^{L_{2}(F)} \lim _{A \rightarrow \infty}^{A} \int_{0}^{-i \theta x} d L(\theta), \\
& L(\theta) \in \mathbb{K}(0, \infty),
\end{aligned}
$$

$\frac{\text { then the error }}{\text { predict } \times(t+\alpha),} J(\alpha) \quad$ when we $\int_{0}^{\infty} X(t-\theta) d K(\theta) \quad$, is minimum
when $K(\theta)=L(\theta) \quad$.
4.2. Throughout this section, we $\overline{s e t}$ a further assumption after N.Wiener ( ${ }^{(6)}$ that the spectral function $F(x)$ of $X(t)$ is absolutel. $y$ continuous and such that

$$
\text { (4.10) } \int_{-\infty}^{\infty} \frac{\left|\log F^{\prime}(x)\right|}{1+x^{2}} d x<\infty
$$

If we put $F^{\prime}(x)=\Phi(x)$, then by the well-known theorem of Paley and Wiener ( ${ }^{7}$ ), there exists a function王(x) such that

$$
(4.14) \quad \Phi(x)=|\Psi(x)|^{2}
$$

and the Fourier transform in $L_{2}$ of $\boldsymbol{\Psi}(x)$
(4.12) $\Psi(t)=\lim _{\substack{A \rightarrow-\infty \\ B \rightarrow \infty}}^{L_{2}} \frac{1}{\sqrt{2 \pi t}} \int_{A}^{B} \Psi(x) e^{i x t} d x$
is such that

$$
\Psi(t)=0,(t<0)
$$

Moreover we assume that, there exists a function $L(\theta) \in \mathbb{R}(0, \infty)$ such that
(4.13)

$$
\begin{aligned}
& \operatorname{lit}_{\substack{A \rightarrow-\infty \\
B \rightarrow \infty}}^{L_{2}, \int_{0}} \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}}\left(\int_{A}^{B} \Psi(x) e^{i x(t-\theta)} d x\right) d L(\theta) \\
& =\psi(t+\alpha), \quad(t>0) \\
& =0, \quad(t<0) .
\end{aligned}
$$

The left hand side of (4.12) actually exists. For if we put
(4.14) $H(x)=l_{c \rightarrow \infty}^{L_{2}(f)} \int_{0}^{c} e^{-i x \theta} d L(\theta)$,
then, since $H(x) \in L_{2}(F)$
and hence $H(x) \Psi(x) \in L_{2}(-\infty, \infty)$,
the Fourier transform

$$
\lim _{\substack{A \rightarrow-\infty \\ B \rightarrow \infty}}^{\lim _{A}} \int_{A}^{B} H(x) \Psi(x) e^{i x t} d x
$$

exists and this is



## (4.15)

$$
=\lim _{\substack{A \rightarrow-\infty \\ B \rightarrow \infty}}^{L_{2}} \int_{0}^{\infty} a L(\theta) \int_{A}^{B} \Psi(x) e^{i x(t-\theta)} d x .
$$

Lemma 3. If there exists a function $H(x)$ such that (4.13) and (4.14) hold, then $H(x)$ satisfies the condition (4.4).

Proof. By (4.15) and (4.13).
$\underset{\substack{i, m^{2}+\infty \\ B \rightarrow \infty}}{\operatorname{Lin}_{2}} \int_{A}^{B} H(x) \Psi(x) e^{i x t} d x$

$$
=\sqrt{2 \pi} \psi(t+\alpha), \quad t>0, \alpha>0 .
$$

Therefore, for any positive number $\tau$,

$$
\begin{aligned}
& \int_{-\infty}^{\infty} e^{i \tau x} H(x) \alpha F(x) \\
& =\int_{-\infty}^{\infty} e^{i \tau x} H(x) \Psi(x) \overline{\Psi(x)} d x
\end{aligned}
$$

which equals, by Parseval relation, to

$$
\int_{-\infty}^{\infty} \psi(t+\pi+\alpha) \overline{\psi(t)} d t
$$

which is, ggain by Parseval relation

$$
\begin{aligned}
& \int_{-\infty}^{\infty} e^{i(\tau+\alpha) x} \Psi(x) \overline{\Psi(x)} d x \\
& =\int_{-\infty}^{\infty} e^{i(\tau+\alpha) x} d F(x)
\end{aligned}
$$

Theorem J.5. If (4.10) holds and there exists a function $L(\theta) \in K(0, \infty)$ Which satisfijes (4.13), then $J(G)$ attains its minimue value when and $\frac{\text { only when }}{G(x)} \frac{\text { is the Fourier- }}{\text { Stieltjes transiorm } H(x)}$
Cexcept possibly in a set of $L(\theta)$ measure zerol. Moreover in this case
(4.16) $J(H)=\int_{0}^{\infty}|\psi(t)|^{2} d t$.

We have only to prove the latter part. By (4.7),

$$
\begin{aligned}
& J(H)=\int_{-\infty}^{\infty}\left|e^{i \alpha x}-H(x)\right|^{2} \Phi(x) d x \\
& \quad=\int_{-\infty}^{\infty}\left|\Psi(x) e^{i \alpha x}-H(x) \Psi(x)\right|^{2} d x .
\end{aligned}
$$

The Fourier transforms of $f(x) e^{i \alpha x}$ and $H(x) E(x)$ are $\psi(t+\alpha)$ and $\xi(t)=\psi(t+\alpha)$ $(t>0),=o(t<0)$ respectively. Hence by Parseval rolation, we have

$$
\begin{aligned}
J(H) & =\int_{-\infty}^{\infty}|\psi(t+\alpha)-\xi(t)|^{2} d t \\
& =\int_{-\infty}^{\infty}|\psi(t+\alpha)|^{2} d t=\int_{-\infty}^{0}|\psi(t+\alpha)|^{2} d t \\
& =\int_{0}^{\infty}|\psi(t)|^{2} d t
\end{aligned}
$$

which is to be proved.
Lastly we add a remark that, under the assumptions of Theorem ].5, $H(x)$ car be written as
(4.17) $H(x)=\frac{1}{\Psi(x) A \rightarrow \infty} \operatorname{li,im}_{\sqrt{L},}^{L_{2}} \frac{1}{\sqrt{\pi}} \int_{0}^{A} \psi(t+\alpha) e^{-i t x} d t$.

This is obvious from the proof oi' Lemma 3.
§5. A class of stationary
processes.
5.1. Let $X(t)$ be a contnous stationary process and let its spectral and random spectral. Functions be $F(x)$ and $Z(x)$ respectively, so that

$$
\begin{equation*}
x(t)=\int_{-\infty}^{\infty} e^{i t \alpha} d Z(\alpha) \tag{5.1}
\end{equation*}
$$

Consider divisions $D_{i}$ of $(-\infty, \infty)$ :

$$
D_{i}: \quad-\infty \leqq \alpha_{i, 1}<\alpha_{i, 2}<\cdots<\alpha_{i, n-1}<\alpha_{i, n} \leqslant \infty
$$

and put

$$
\begin{aligned}
& Z\left(\alpha_{1, k+1}\right)-Z\left(\alpha_{i, k}\right)=Z\left(\alpha_{i, k}, \alpha_{i, k+1}\right)=\Delta Z\left(\alpha_{i, k}\right), \\
& Z(-\infty)=0, Z(\infty)=F(\infty)-F(-\infty)
\end{aligned}
$$

Suppose that $E\left\{|X(t)|^{8}\right\}<C, C$ being independent of $t$, and that there exists a constant $M$ such that for any divisions $D_{i}(i=1,2, \cdots, 8)$,

$$
(5.2)
$$

$\sum_{\substack{p, q, r, s, i, j, k, l}}\left\{E\left\{\mid \Delta Z\left(\alpha_{1 p}\right) \Delta Z\left(\alpha_{2 q}\right) \Delta Z\left(\alpha_{3 \gamma}\right) \Delta Z\left(\alpha_{i s}\right)\right.\right.$.

$$
\leqq M<\infty
$$

We denote the class of such $x(t)$
as S Similar class has he an
introduced by Blanc-laplerre $(7)^{7}$.

$$
\begin{aligned}
& \text { I. et } E\left\{|x(t)|^{4}\right\}<\infty \\
& E\left\{x\left(t+h_{1}\right) x\left(t+h_{2}\right) \frac{\text { and }}{x\left(t+h_{3}\right)} \frac{\left.x\left(t+h_{4}\right)\right\}}{}\right.
\end{aligned}
$$

$$
\begin{equation*}
=\varphi\left(h_{1}, h_{2}, h_{3}, h_{4}\right) \tag{5.3}
\end{equation*}
$$

is independent of $t$ for every $h_{1}$,
$h_{2,} h_{3}$, and $h_{4}$. In this case $x(t)$ is said the stationary process of the fourth order. following
theorem is essentially due to BlancLapierre ( ${ }^{8}$ ).

Theorem 16. Leet $x(t) \in S \quad$. $\frac{\text { Then in order that }}{\text { stationary process or the } 4 \text { is a }} \times$ order It is necessary and sufficient that
 point with any of hyper-p]anes

$$
\text { (5.4) } x+y-z-w=0
$$

$(x, y, z, w$ are current coorsdinates), then

$$
\begin{aligned}
\text { (5.5) } \quad & E\{(Z(\alpha+\Delta \alpha)-Z(\alpha)) \cdot(Z(\beta+\Delta \beta)-Z(\beta)) \\
& \cdot(\overline{Z(\gamma+\Delta \gamma})-\overline{Z(\gamma)}) \cdot(\overline{Z(\delta+\Delta \delta)}-\overline{Z(\delta)})\} \\
= & 0 .
\end{aligned}
$$

Before proving the theorem, we shall show that
(5.6) $x\left(t+h_{1}\right) x\left(t+h_{2}\right) \overline{x\left(t+h_{3}\right)} \overline{x\left(t+h_{4}\right)}$
$=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i t(\alpha+\beta-\gamma-\delta)} e^{i\left(h_{\alpha} \alpha+h_{2} \beta-h_{\alpha} \gamma-h_{4} \delta\right)}$. $\cdot d Z(\alpha) d Z(\beta) d \overline{Z(\gamma)} d \overline{Z(\delta)}$.
holds with probability I. The right side is defined as
$\begin{aligned} & \ell . i \cdot m . \sum_{i, j k, \ell} e^{i t\left(\alpha_{i}+\beta_{j}-\gamma_{k}-\delta_{l}\right)} \\ & \cdot e^{i\left(h_{1} \alpha_{i}+h_{2} \beta_{j}-h_{3} \gamma_{k}-h_{4} \delta_{l}\right)}\end{aligned}$

$$
\begin{equation*}
\text { - } \Delta Z\left(\alpha_{i}\right) \Delta Z\left(\beta_{j}\right) \overline{\Delta Z\left(\gamma_{k}\right)} \Delta \overline{Z\left(\delta_{l}\right)} \tag{5,7}
\end{equation*}
$$

which exists by the condition (5.2)
by the sirilar arguments as in the proof of existence of Riemann-
Stieltjes integral. The equality of
$(5,6)$ can be shown as follows.
(5.8) $\left.E\left\{\mid x\left(t+h_{1}\right) x\left(t+h_{2}\right) \overline{x\left(t+h_{3}\right.}\right) \overline{x\left(t+h_{4}\right.}\right)$

$$
\left.-\sum_{i} \sum_{j} \sum_{k} \sum_{l} \mid\right\}
$$

(the summand is the one in (5.7))

$$
\begin{array}{r}
\leqq E\left\{\left|x\left(t+h_{1}\right) \sum_{j} \sum_{k} \sum_{l}-\sum_{i} \sum_{j} \sum_{k} \sum_{l}\right|\right\} \\
+E\left\{\mid x\left(t+h_{1}\right) x\left(t+h_{2}\right) \sum_{k} \sum_{l}\right. \\
\left.-x\left(t+h_{1}\right) \sum_{j} \sum_{k} \sum_{l} \mid\right\}
\end{array}
$$

$+E\left\{\mid x\left(t+h_{1}\right) x\left(t+h_{2}\right) \overline{x\left(t+h_{3}\right)} \cdot \sum_{l}\right.$

$$
\left.-X\left(t+h_{1}\right) x\left(t+h_{2}\right) \sum_{k} \sum_{l} 1\right\}
$$

$+E\left\{\mid x\left(t+h_{1}\right) x\left(t+h_{2}\right) \overline{x\left(t+h_{3}\right)} \overline{x\left(t+h_{4}\right)}\right.$

$$
\left.-x\left(t+h_{1}\right) x\left(t+h_{2}\right) \overline{x\left(t+h_{3}\right)} \cdot \sum_{\ell} l\right\}
$$

In which, for example $\sum_{k} \sum_{l}$

$$
\begin{array}{r}
\sum_{k} \sum_{l} e^{i t\left(-\gamma_{k}-\delta_{l}\right)} \cdot e^{i\left(-h_{3} \gamma_{k}-h_{l} \delta_{l}\right)} \\
\cdot \Delta \overline{Z\left(\gamma_{k}\right)} \Delta \overline{Z\left(\delta_{l}\right)}
\end{array}
$$

other summations are easily analogi2ed. For example, the second term of the right side of (5.8) is not greater than, by Schwarz inequality,
(5.9)

$$
\begin{aligned}
& {\left[E\left\{\left|X\left(t+h_{1}\right) \sum_{k} \sum_{l}\right|^{2}\right\}\right]^{\frac{1}{2}}} \\
& \cdot\left[E\left\{\left|X\left(t+h_{2}\right)-\sum_{j}\right|^{2}\right\}\right]^{\frac{1}{2}}
\end{aligned}
$$

The former factor is

$$
\leqq E\left\{\left|X\left(t+h_{1}\right)\right|^{4}\right\}^{\frac{1}{4}} \cdot\left\{E\left|\sum_{k} \sum_{l}\right|^{4}\right\}^{\frac{1}{4}}
$$

which is bounded by (5.2). The second factor tends to zero as the division is made indefinftely minute. Other terms of the right side of (5.8) are similarly shown to vanish in the limit. Hence we obtained that
$\sum_{i} \sum_{j} \sum_{k} \sum_{l}$ tends in $L_{1}$-mean to $x\left(t+h_{1}\right) \times\left(t+h_{2}\right) \overline{x\left(t+h_{3}\right)} \overline{x\left(t+h_{4}\right)}$.
But sin'ce Q.i,m. $\sum_{i} \sum_{\}} \sum_{k} \sum_{l}$ (in $L_{2}$-mean $E\left\{\cdot\left|\left.\right|^{2}\right\}\right)$ exist, this is equal to $x\left(t+h_{1}\right) x\left(t+h_{2}\right) \frac{1}{x\left(t+h_{3}\right)} \frac{1 s}{x\left(t+h_{4}\right)}$ with probabil.ity 1 , which proves (5.6).

Now we shall prove Theorem 16. Let ( 5.5 ) hold for hyper, rectangles with no common points with every hyper-plane (5.4).
(5.10)

$$
\begin{aligned}
& \text { 10) } \left.\left\{x\left(t+h_{1}\right) x\left(t+h_{2}\right) \overline{x\left(t+h_{3}\right.}\right) \overline{x\left(t+h_{4}\right)}\right\} \\
& =E\left\{\text { l.i.m. } \sum_{i, j, k, Q}\right\}
\end{aligned}
$$

$\sum_{i, j, k, e} \quad$ being the sum in (5.7),

$$
=\lim E\left\{\sum_{i, j, k, l}\right\}
$$

$$
\begin{align*}
=\lim & \sum_{i, j, k, l} e^{i t\left(\alpha_{i}+\beta_{j}-\gamma_{k}-\delta_{l}\right)}  \tag{5.14}\\
& \cdot e^{i\left(h_{1} \alpha_{i}+h_{2} \beta_{j}-h_{3} \gamma_{k}-h_{4} \delta_{l}\right)} \\
& \cdot E\left\{\Delta Z\left(\alpha_{i}\right) \Delta Z\left(\beta_{j}\right) \overline{\Delta Z\left(\gamma_{k}\right)} \overline{\Delta Z\left(\delta_{l}\right)}\right\}
\end{align*}
$$

In which $E\{$ - $\}$ is zero if the hyper rectangles with sides $\Delta \alpha_{1}$,
$\Delta \beta_{j}, \Delta \gamma_{k}, \Delta \delta_{\ell}$ has no comon point with' $(5.4)$. And the difference between (5.11) and

$$
\begin{array}{r}
(5.12) \sum_{i, j, k, l} e^{i\left(h_{1} \alpha_{i}+h_{2} \beta_{j}-h_{3} \gamma_{k}-h_{k} \delta_{e}\right)} \\
\cdot E\left\{\Delta Z\left(\alpha_{i}\right) \Delta Z\left(\beta_{j}\right) \Delta \overline{Z\left(\gamma_{R}\right)} \Delta \overline{Z\left(\delta_{l}\right)}\right\}
\end{array}
$$

is easily seen to be zero. Hence ( 5.10 ) is (5.12) which is independent of $t$ 。

Conversely let (5.10) be indepen-
dent of $t$ for all real numbers $h_{1}, h_{2}, h_{3}$ and $h_{4}$ : Then (5.11) and (5.12) are equal for a.1
$B^{t}, C$ For sufficiently large $A$
over $\left|\alpha_{i}\right|>A,\left|\beta_{j}\right|>B, \quad\left|\gamma_{k}\right|>C$
and $\left|\delta_{2}\right|>D$ are arbitrarily
smal., which is the consequence of
(5.2). Using this fact and appro-
xinating the trapesoidal. functions

$$
\begin{aligned}
g(\alpha) & =1, \quad\left(\alpha^{(1)}<\alpha<\alpha^{(2)}\right), \quad(1) \\
& =0 \quad\left(x>\alpha^{(2)}+\varepsilon, \quad x<\alpha^{(1)}-\varepsilon\right)
\end{aligned}
$$

by $\sum_{v} c_{v} e^{i h_{1}^{(v)} \alpha}$, we can prove
that
(5.13) $\lim \sum_{i, j, k, l}\left(e^{i t\left(\alpha_{i}+\beta_{j}-\delta_{m}-\delta_{l}\right)}-1\right)$.

- $\left.E\left\{\Delta Z\left(\alpha_{i}\right) \Delta Z\left(\beta_{j}\right) \Delta \overline{Z\left(f_{k}\right.}\right) \Delta \overline{Z\left(\delta_{k}\right)}\right\}$

$$
=0
$$

where $\sum_{(1)}^{\prime}$ denotes to take the sum over $\gamma^{(1)}<\alpha_{k}^{(1)}<\alpha_{i}<\alpha^{(2)}$, and $\beta^{(1)} \delta^{(1)}<\beta_{j}<\beta_{l}^{(2)}<\delta^{(2)}$.
$\delta^{(1)}, \delta^{(2)}, \alpha^{(2)}$ are $\beta^{(1)} \operatorname{arbitrary}^{(2)} ; \gamma^{(1)}, \gamma^{(1)} ;$ numbers. (5.13) can be represented as

$$
\begin{aligned}
& \int_{A^{(1)}}^{\infty(a)} \int_{\beta^{(1)}}^{\beta^{(2)}} \int_{\gamma^{(1)}}^{\gamma^{(2)}} \int_{\delta^{(1)}}^{\delta^{(2)}}\left(e^{i t(\alpha+\beta-\gamma-\delta 3}-1\right) \\
& \cdot E\{d Z(\alpha) d Z(\beta) d \overline{Z(\gamma)} d \overline{Z(\delta)}\} \\
& =0
\end{aligned}
$$

from which it easjly results that if the hyper-rectangle with sides $\left(\alpha^{(1)}, \alpha^{(2)}\right)$
and $\left.\left(\beta^{(1)}, \delta^{(1)} \beta^{(2)}\right) \delta^{(2)}\right)$ has no commen ${ }^{\prime}$
point with' $\alpha+\beta-T-\delta=0$, then

$$
\begin{gathered}
E\left\{\Delta Z\left(\alpha^{(1)}, \alpha^{(2)}\right) \cdot \Delta Z\left(\beta^{(1)} \cdot \beta^{(2)}\right) \Delta Z\left(\gamma^{(1)} \gamma^{(2)}\right)\right. \\
\left.\cdot \Delta Z\left(\delta^{(1)}, \delta^{(1)}\right)\right\}=0
\end{gathered}
$$

which is to be proved.
5.2. We shall now consider the
harmonic analysis of $x(t+k) \overline{X(t)}$
( $K$ being fixed). Iet us suppose
throughout that a continuous sta-
tionary process $x(t) \in S$ is turther a stationary process of the 4 th order.

We first remark:
$\frac{\text { Lemma } 3 .}{\text { mean of the } 4 \text { th order that is }}$
$\lim _{h \rightarrow 0} E\left\{|x(t+h)-x(t)|^{4}\right\}=0$.
We have

$$
\begin{aligned}
= & E\left\{|X(t+h)-X(t)|^{4}\right. \\
= & E\left\{|X(t+h)-X(t)| \cdot|x(t+h)-X(t)|^{3}\right\} \\
\leqq & {\left[E\left\{|x(t+h)-X(t)|^{2}\right\}\right]^{\frac{1}{2}} } \\
& \cdot\left[E\left\{|x(t+h)-x(t)|^{6}\right\}\right]^{\frac{1}{2}} \\
\leqq & C_{1}\left[E \left\{\left.|x(t+h)-X(t)|^{2}\right|^{\frac{1}{2}}\right.\right. \\
& \cdot\left(\left[E\left\{|x(t+h)|^{6}\right]^{\frac{1}{2}}+\left[E\left\{|x(t)|^{6}\right\}\right]^{\frac{1}{2}}\right)\right. \\
\equiv & C_{1}\left[E\left\{|X(t+h)-x(t)|^{2}\right\}\right]^{\frac{1}{2}} \\
& \cdot\left(\left[E\left\{|x(t+h)|^{8}\right\}\right]^{\frac{3}{8}}+\left[E\left\{|x(t)|^{8}\right\}\right]^{\frac{3}{8}}\right)
\end{aligned}
$$

$$
\leqq C_{2}\left[E\left\{|x(t+h)-x(t)|^{2}\right\}\right]^{\frac{1}{2}}
$$

( $C_{1}, C_{2}$ being constants)
which tends to zero as $h \rightarrow 0$.
Now if we consider $x(t+u) \overline{x(t)}$ then this is a continuous stationary process of the 2nd order, $t$ being a parameter, and so we have
(5.14) $x(t+u) \overline{x(t)}=\int_{-\infty}^{\infty} e^{t v} d W(v)$,
where $W(v)=W(v, u)$ j.s the random spectral function.

Theorem 17.
(5.15) $W(v)=\iint_{\beta-\alpha \leqq v} e^{i \beta u} d \overline{Z(\alpha)} d Z(\beta)$,
and if $u=0$, then
(5.16) $W(v)=\int_{-\infty}^{\infty} Z(v+\alpha) d \overline{Z(\alpha)}$,
and furthermore
(5.17) $\quad E\{W(v)\}=\int_{-\infty}^{\infty} e^{i \alpha u} d F(a), v>0$

$$
=0, \quad v<0,
$$

$F(x)$ being the spectraj func$\operatorname{tinn} o f x(t) \quad$.

Proof. Using the spectral representation of $X(t)$, we have
$\overline{X(t)} \times(t+u$.

$$
\begin{gathered}
=\int_{-\infty}^{\infty} e^{-i \alpha t} \alpha \overline{Z(\alpha)} \int_{-\infty}^{\infty} e^{i(t+u) \beta} d Z(\beta) \\
=l . i . m \sum_{i} \sum_{j} e^{i t\left(\beta_{j}-\alpha_{i}\right) e^{i \beta_{j} u}} \\
\cdot \Delta \overline{Z\left(\alpha_{L}\right)} \Delta Z\left(\beta_{j}\right)
\end{gathered}
$$

which is seen by the fact
$\left.E\left\{\mid \Sigma e^{-i \alpha i t} \Delta Z\left(\alpha_{i}\right)\right\}^{2}\right\}\left\langle M\right.$ and $(5,2),\left\{\alpha_{i}\right\}$,
$\left\{\beta_{j}\right\}$ are arbitrary divisions of $(-\infty, \infty)$, and further is verjfied to be

$$
\int_{-\infty}^{\infty} e^{i t v} d\left(\int_{\beta-\alpha<v} e^{i \beta u} d \overline{Z(\alpha)} d Z(\beta)\right)
$$

Hence we have
$W(v)=\iint_{\beta-\alpha<v} e^{i \beta u} d \overline{Z(\alpha)} d Z(\beta)$,
ich 1 s $(5.3 .5)$. If $u=0$, then
(5.18) W(v)

$$
=\operatorname{l.i.m} \sum_{i, j}^{\prime \prime} \Delta \overline{Z\left(\alpha_{i}\right)} \Delta Z(\beta j)
$$

where $\sum_{i, j}^{\prime \prime}$ means to sum up $\left.\Delta \overline{Z\left(x_{i}\right)}, \Delta Z\left(\beta_{j}\right)\right)$ wi. th respect to $i, j$
such that the hyper-rectangle with
sices $\left(\alpha_{1}, \alpha_{i+1}\right)$, ( $\left.\beta_{j}, \beta_{j+1}\right)$
is contained in the hajf-space $\beta-\alpha<\nu \quad$, Then (5.17) is

$$
\text { l.i.m. } \sum_{\alpha_{i}} \sum_{\xi_{j}\langle\nu} \cdot \Delta \overline{Z\left(\alpha_{i}\right)} \Delta_{j} Z\left(\xi_{j}+\alpha_{i}\right)
$$

(In which the meanings of $\sum_{j_{j}<v}$ ' and $\Delta_{j} Z\left(\xi_{j}+\alpha_{i}\right) \quad$ are easily $y$
understood $)$

$$
\begin{array}{r}
=\ell_{i} m, \sum_{\xi_{j}<v} \Delta_{j}\left(\sum_{\alpha_{i}} \Delta Z\left(\alpha_{i}\right),\right. \\
\left.\cdot Z\left(\xi_{j}+\alpha_{i}\right)\right)
\end{array}
$$

which is seen to be

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d \xi\left(\int_{-\infty}^{\infty} Z(\xi+\alpha) d \cdot \overline{Z(\alpha)}\right) \\
& =\int_{-\infty}^{\infty} Z(v+\alpha) d \overline{Z(\alpha)}
\end{aligned}
$$

Next by an analogous expression as (5.18)

$$
\begin{aligned}
& E\{W(\nu)\} \\
& =E\left\{\text { li.m. } \sum_{i, j}^{\prime} e^{i \beta_{j} k} \Delta \overline{Z\left(\alpha_{i}\right)} \Delta Z\left(\beta_{j}\right)\right\}
\end{aligned}
$$

(5.19)

$$
\begin{aligned}
=\lim \sum_{i, j} & e^{i \beta_{j} u} \\
& \cdot E\left\{\Delta \overline{Z\left(\alpha_{i}\right)} \cdot \Delta Z\left(\beta_{j}\right)\right\} .
\end{aligned}
$$

By II in 2.1., assuming $\nu>0$ and taking $\alpha_{i}=\overline{\beta_{i}}$,
$E\{W(v)\}$

$$
\begin{aligned}
& =\lim \sum_{i} e^{i \alpha_{i} u}\left(F\left(\alpha_{i+1}\right)-F\left(\alpha_{i}\right)\right) \\
& =\int_{-\infty}^{\infty} e^{i d u} d F(\alpha) .
\end{aligned}
$$

If $\nu<0$, then in $\sum_{i, j}^{\prime}$ in


$$
E\{W(v)\}=0 .
$$

Thus we have proved the theorem.
Now applying the law of large number, Theorem 6, to the stationary process $\bar{X}(t) \times(t+u)-p(u) \quad(u$ being taken as a constant), we have

Theorem 18.
(5.20). $\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \overline{X(t)} x(t+u) d t$ $=W(+0)-W(-0)$.
where $W(\nu) \quad$ is the one in
Thoorer 17.
The existence of the right hand side of (5.20) is obvious since
$W(v)$ is a randor spectral function.

Theorem 19. We have
(5.21) $\underset{T \rightarrow \infty}{\lim _{T \rightarrow \infty}} \frac{1}{T} \int_{0}^{T}|x(t)|^{2} d t$ $=\lim _{\nu \rightarrow+0} \int_{-\infty}^{\infty}\{Z(\alpha, v)-Z(\alpha-\nu)\} d \overline{Z(\alpha)}$
(5.22) $=\lim _{h \rightarrow 0} \frac{1}{2 h} \int_{-\infty}^{\infty}|Z(\alpha+h)-Z(\alpha-h)|^{2} d \alpha$.
(5.21) is a special case of Theorem 18. The proof of (5.22) shall be postponed to the latter section 6.2.

Theorem 20.
(5.23) $\operatorname{lim.m.~}_{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \overline{x(t)} x(t+u) e^{-i \xi t} d t$

$$
=W(\xi+0)-W(\xi-0)
$$

This is easily seen as in theorem 18.

We shall further add a remark that
(5.24) $E\{W(+0)-W(-0)\}=\rho(x)$,
(5.25) $E\{W(\xi+0)-W(\xi-0)\}=0$,

$$
(\xi \neq 0)
$$

These are al.so special cases of Theorem J.e and 20. For
$E\{W(+0)-W(-0)\}$

$$
\begin{aligned}
& =E\left\{\operatorname{limim}_{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \overline{x(t)} x(t+u) d t\right\} \\
& =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} E\{\overline{x(t)} x(t+u)\} d t \\
& =\rho(u) .
\end{aligned}
$$

Similarly we have

$$
\begin{aligned}
& E\{W(\xi+0)-W(\xi-0)\} \\
& =E\left\{\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \overline{x(t)} x(t+u) e^{-i \xi t} d t\right\} \\
& =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} E\{\overline{x(t)} x(t+u)\} e^{-i \xi t} d t \\
& =\rho(u) \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} e^{-i \xi t} d t=0,(\xi \neq 0) .
\end{aligned}
$$

86. Concentration of a random spectral function.
6.1. Iet $X(t) \in S \quad$. Since
$E\left\{\int_{-\infty}^{\infty} \frac{|x(t)|^{2}}{1+t^{2}} d t\right\}=\int_{-\infty}^{\infty} \frac{E\left\{|x(t)|^{2}\right\}}{1+t^{2}} d t$

$$
=\sigma^{2} \int_{-\infty}^{\infty} \frac{d t}{1+t^{2}}<\infty
$$

we have
(6.1) $\quad \int_{-\infty}^{\infty} \frac{|x(t)|^{2}}{1+t^{2}} d t<\infty$
with probability 1 。(9) Hence $X(t) \frac{\sinh t}{t}$
has, for fixed $h>0$, a Pourier transform in $L_{2}(-\infty, \infty)$ with probabil.jty 1". We shaj] prove the Fourier transforr to be $(\pi / 2)^{1 / 2}\{Z(\alpha+h)$

$$
-Z(\alpha-h)\}, \quad Z(\alpha) \text { being }
$$

the random spectral function or $X(t)$. Sefore it, it is convenient to state a lemma.

Lemma 5. Suppose that $\varphi(t) \in L(-\infty, \infty)$ and

$$
\text { (6.2) } \lim _{A \rightarrow \infty} X_{A}(t)=X(t)
$$

boundedly in mean $-\infty<t<\infty$

$$
\begin{aligned}
& \text { (6.3) } \operatorname{li,im}_{A \rightarrow \infty} . \int_{-\infty}^{\infty} \varphi(t) X_{A}(t) d t \\
& =\int_{-\infty}^{\infty} \varphi(t) X(t) d t .
\end{aligned}
$$

From assumptions, we have
(6.4) $E\left\{\left|X_{A}(t)-x(t)\right|^{2}\right\} \leq K$,
$K$ being a constant independent of $t$, and
(6.5) $\lim _{A \rightarrow \infty} E\left\{\left|x_{A}(t)-x(t)\right|^{2}\right\}=0$.

Now

$$
\begin{aligned}
& E\left\{\left|\int_{-\infty}^{\infty} \varphi(t)\left\{X_{A}(t)-X(t)\right\} d t\right|^{2}\right\} \\
& \leqslant E\left[\{ \int _ { - \infty } ^ { \infty } | \varphi ( t ) | d t \} \cdot \left\{\int_{-\infty}^{\infty}|\varphi(t)|\right.\right.
\end{aligned}
$$

$$
\left.\left.\cdot\left|x_{A}(t)-x(t)\right|^{2} d t\right\}\right]
$$

$=\int_{-\infty}^{\infty}|\varphi(t)| d t \cdot \int_{-\infty}^{a}|\varphi(t)| E\left\{\left|X_{A}(t)-X(t)\right|^{2} d t\right.$.

By (6.4) and (6.5), the second integral of the last term converges to zero.
 $\left(\frac{2}{\pi}\right)^{1 / 2} X(t) \cdot \frac{\sinh t}{t}$
is $Z(\alpha+h)-Z(\alpha-h), h>0$
And with probabi]ity 1, we have
(6.6) $\frac{1}{\pi h} \int_{-\infty}^{\infty} \overline{X(u)} X(t+u) \frac{\sinh u}{u} \cdot \frac{\sinh (t+u)}{t+k} \cdot d u$ $=\frac{1}{2 h} \int_{-\infty}^{\infty} e^{i t \alpha}|Z(\alpha+h)-Z(\alpha-h)|^{2} \alpha \alpha$,
espectally
(6.7) $\frac{1}{\pi h} \int_{-\infty}^{\infty}|x(t)|^{2} \frac{\sin ^{2} h t}{t^{2}} d t$

$$
=\frac{1}{2 h} \int_{-\infty}^{\infty}|Z(\alpha+h)-Z(\alpha-h)|^{2} d \alpha
$$

with probability 1 .
The right hand side of (6.7) can be considered as the mean concentration of the random spectral function $z(a)$ and we denote as $C(h)$.

Proof. Lat $F(x)$ be the spectral. function of $x(t)$.

$$
\operatorname{l.i.m.m.~}_{A \rightarrow \infty} \int_{-A}^{A} e^{i t \alpha} d Z(x)=X(t)
$$

holds boundealy, sfince
$E\left\{\left|\int_{-A}^{A} e^{i t \alpha} d Z(\alpha)\right|^{2}\right\}=\int_{-A}^{A} d F(x) \leq \sigma^{2}$,
$E\left\{|X(t)|^{2}\right\}=\sigma^{2}$.

Therefore by Lemma 5 ,

$$
\begin{aligned}
& \frac{1}{\sqrt{2 \pi}} \int_{-T}^{T} X(t) \frac{\sinh t}{t} e^{-i x t} d t \\
& =\operatorname{l.i.m}_{A \rightarrow \infty} \frac{1}{\sqrt{2 \pi}} \int_{-T}^{T} \frac{\sinh t}{t} e^{-i x \nmid} d t . \\
& =\lim \cdot \frac{1}{\sqrt{2 \pi}} \int_{-A}^{A} d Z(\alpha) \int_{-T}^{T} \frac{\sinh t}{t} e^{i t(\alpha-x)} d t
\end{aligned}
$$

which is denoted as

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d Z(\alpha) \int_{-T}^{T} \frac{\sinh t}{t} e^{t(\alpha-x)} d t
$$

Put

$$
D(\alpha, x)=\left\{\begin{array}{lc}
1, & x-h<\alpha<x+h \\
\frac{1}{2}, & \alpha=x-h, x+h \\
0, & \text { otherwise }
\end{array}\right.
$$

Then $\frac{1}{\pi} \int_{-T}^{T} \frac{\sinh t}{t} e^{i t(\alpha-x)} d x$
converges bounded] to $D(\alpha, x)$
as $T \rightarrow \infty$.
$E\left\{\left\lvert\, \sqrt{\frac{\pi}{2}} \int_{-\infty}^{\infty} d Z(a)\left\{\frac{1}{\pi} \int_{-T}^{T} \frac{\sin h t}{t} e^{i t(\alpha-x)} d t\right.\right.\right.$ $\left.-D(\alpha x)\}\left.\right|^{2}\right\}$
$=\frac{\pi}{2} \int_{-\infty}^{\infty} \left\lvert\, \frac{1}{\pi} \int_{-T}^{T} \frac{\operatorname{senh} t}{t} e^{(t(a-x)} d t\right.$
$-\left.D(a, x)\right|^{2} d F(x)$.

If $x \pm h$ is continuity points of $F(\alpha)$, then the above integral. tends to zero.

Furthermore

$$
\begin{aligned}
& \int_{-\infty}^{\infty} E\left\{\left\lvert\, \sqrt{\frac{1}{2 \pi}} \int_{-T}^{T} X(t) \frac{\sinh t}{t} e^{-i x t} d t\right.\right. \\
&\left.-\left.\int_{-\infty}^{\infty} D(\alpha, x) d Z(\alpha)\right|^{2}\right\} d x \\
&=\frac{\pi}{2} \int_{-\infty}^{\infty} d F(\alpha) \int_{-\infty}^{\infty} \left\lvert\, \frac{1}{\pi} \int_{-T}^{T} \frac{\sinh t}{t} e^{i t(\alpha-x)} d t\right. \\
&-\left.D(\alpha, x)\right|^{2} d x
\end{aligned}
$$

$$
=\int_{-\infty}^{\infty} d F(\alpha) \int_{|t|>T} \frac{\sin ^{2} h t}{t^{2}} d t \rightarrow 0
$$

as $T \rightarrow \infty$.
Hence with probability 1 ,

$$
\int_{-\infty}^{\infty} 1 \sqrt{\frac{1}{2 \pi}} \int_{-T_{n}}^{T_{n}} X(t) \frac{\operatorname{anch} t}{\tau} e^{-i x t} d t
$$

$$
-\left.\int_{-\infty}^{\infty} D(\alpha, x) d Z(x)\right|^{2} d x
$$

tends to zero as $n \rightarrow \infty$ for some sequence $T_{n} \rightarrow \infty$. On the other hand $X(t) \frac{\text { anht }}{t}$ is known to have a Fourfer transform (in $L_{2}$ ) with probabiljity $]$ and hence the Fourier transform is

$$
\int_{-\infty}^{\infty} D(\alpha, x) d Z(\alpha)=Z(x+h)-Z(x-h)
$$

Thus the former part is proved. (6.6) is a result of Parseval relation.
6.2. The object of this section is to prove the following theorem concerning the concentration

$$
C(h)=\frac{1}{2 h} \int_{-\infty}^{\infty}|Z(\alpha+h)-Z(\alpha-h)|^{2} d \alpha
$$

$$
\begin{aligned}
& X \text { being a stationary process of } \\
& S \text {. }
\end{aligned}
$$

Theorer 23.
(6.8) $\underset{h \rightarrow \infty}{\operatorname{lim.i.m}^{i} C}(h)=|X(0)|^{2}$,
(6.9) $\underset{h \rightarrow+0}{\lim .} C(h)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}|X(t)|^{2} d t$.
(6.9) is nothing but (5.21) in Theorem 19 which is not yet proved.

The proof of $(6.8)$ is not difficult.

$$
\begin{aligned}
& \text { We have now } \\
& E\left\{\left.\left|\frac{1}{\pi h} \int_{-\infty}^{\infty}\right| x(t)\right|^{2} \frac{\sin ^{2} h t}{t^{2}} d t-\left.|x(0)|^{2}\right|^{2}\right\} \\
& =E\left\{\left|\frac{1}{\pi h} \int_{-\infty}^{\infty}\left\{|x(t)|^{2}-|x(0)|^{2}\right\} \frac{\sin ^{2} h t}{t^{2}} d t\right|^{2}\right\} \\
& \leq E\left\{\frac{1}{\pi} \int_{-\infty}^{\infty}\left\{|x(t)|^{2}-|x(0)|^{2}\right\}^{2} \frac{\sin ^{2} h t}{h t^{2}} d t\right\}
\end{aligned}
$$

$(6,10)$

$$
=\frac{1}{\pi} \int_{-\infty}^{\infty} E\left\{\left(|X(t)|^{2}-|X(0)|^{2}\right)^{2}\right\} \frac{\sin ^{2} h t}{h t^{2}} d t
$$

Since

$$
\begin{aligned}
& E\left\{\left(|X(t)|^{2}-|X(0)|^{2}\right)^{2}\right\} \\
&= E\left\{(|x(t)|-|x(0)|)^{2}(|x(t)|+|x(0)|)^{2}\right\} \\
& \leqq E\left\{\left(|x(t)-x(0)|^{2}\right)(|x(t)|+|x(0)|)^{2}\right\} \\
& \leqq {\left[E\left\{|x(t)-X(0)|^{4}\right\}\right]^{\frac{1}{2}} } \\
& \cdot\left[E\{|x(t)|+|x(0)|\}^{4}\right]^{\frac{1}{2}} \\
& \leqq {\left[E\left\{|x(t)-x(0)|^{4} \mid\right]^{\frac{1}{2}}\right.} \\
& \cdot\left\{8 \cdot E\left\{|x(t)|^{4}+|x(0)|^{4}\right\}\right] \\
& \leqq C \cdot\left[E\left\{|X(t)-X(0)|^{4}\right\}\right],
\end{aligned}
$$

by Lemma 3, this tends to zero as $t \rightarrow 0$. Hence $E\left\{|x(t)|^{2}-|x(0)|^{2}\right\}$
is continuous at $t=0$. Thus by the well known property of Fejér's integral, (6.10) converges to zero, which proves (6.8).

Next we shall prove (6.9) by Theorem 19 (5.20)

$$
\begin{aligned}
& \ell_{T} i_{T} \operatorname{mim}_{\infty} \frac{1}{T} \int_{0}^{T}|X(t)|^{2} d t \\
& \quad=\lim _{v \rightarrow+0} \int_{-\infty}^{\infty}\{Z(\alpha+\nu)-Z(\alpha-\nu)\} d \overline{Z(\alpha)}
\end{aligned}
$$

The right hand side is

$$
\lim _{v \rightarrow+0} \int_{-\infty}^{\infty} d \overline{Z(\alpha)} \int_{\alpha-v}^{\alpha+v} d Z(\beta)
$$

(6.11)

$$
=\lim _{v \rightarrow+0} \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(v ; \alpha, \beta) d \overline{Z(\alpha)} d Z(\beta)
$$

where

$$
\begin{array}{rlrl}
\mathrm{pe} \\
p(v, \alpha, \beta) & =1, \quad & \quad \alpha-v \leqq \beta \leq \alpha+\nu, \\
& =0, \quad \begin{array}{ll}
\text { otherwise },
\end{array}
\end{array}
$$

while

$$
\begin{aligned}
C(v) & =\frac{1}{2 v} \int_{-\infty}^{\infty}|Z(\gamma+v)-Z(\gamma-v)|^{2} d \gamma \\
& =\frac{1}{2 v} \int_{-\infty}^{\infty} d \gamma\left|\int_{\gamma-v}^{\gamma+v} \alpha Z(\beta)\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2 v} \int_{-\infty}^{\infty} d \gamma \int_{\gamma-v}^{\gamma+v} d z(\beta) \int_{\gamma-v}^{\gamma+v} d \overline{Z(\alpha)} \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} q(v ; \alpha, \beta) d \overline{Z(\alpha)} d Z(\beta) d \gamma
\end{aligned}
$$

$$
\begin{aligned}
& \text { (6.12) } \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} q(\nu ; \alpha, \beta, \gamma) d \gamma\right) d \overline{Z(\alpha)} d Z(\beta), \\
& \text { where }
\end{aligned}
$$

where

$$
\begin{array}{rlrl}
q(v ; \alpha, \beta, \gamma) & =\frac{1}{2 v}, & \gamma-v \leqq \alpha \leq \gamma+v, \\
& \gamma-v \leqq \beta \leq \gamma+v, \\
& =0, & & \text { otherwise } .
\end{array}
$$

## We have

$$
\begin{aligned}
\gamma(v ; \alpha, \beta) & =\int_{-\infty}^{\infty} q(v ; \alpha, \beta, \gamma) d \gamma \\
& =1-\frac{|\alpha-\beta|}{2 v},|\alpha-\beta| \leqq 2 v
\end{aligned}
$$

$$
=0 \text {, otherwise. }
$$

Therefore (6.11) and (6.12) shows that

$$
\begin{aligned}
& \text { (6.14) } \underset{\substack{\operatorname{lom}_{v \rightarrow+0}}}{ }\left(\underset{\substack{l_{T \rightarrow \infty}, m_{0}}}{ } \frac{1}{T} \int_{0}^{T}|x(t)|^{2} d t\right. \\
& =\lim _{v \rightarrow+0} \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\{\gamma(v ; \alpha, \beta)-p(v, \alpha, \beta)\} \alpha \overline{Z(\alpha)} d Z(\beta) .
\end{aligned}
$$

$\gamma(\nu ; \alpha, \beta)$
depend only on $\nu$ and $\alpha(\nu ; \alpha, \beta)$
we put $\alpha-\beta$ we put

$$
\begin{aligned}
& l(v ; \alpha-\beta) \\
& \quad=\gamma(v ; \alpha, \beta)-p(\nu ; \alpha, \beta) .
\end{aligned}
$$

(6.14) is

$$
\begin{aligned}
& \lim _{v \rightarrow+0} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \ell(v ; \alpha-\beta) d \overline{Z(\alpha)} d Z(\beta) \\
= & \lim _{v \rightarrow+0} \int_{-\infty}^{\infty} \ell(v ; y) d\left(\int_{-\infty}^{\infty} \overline{Z(\beta+y)} d Z(\beta)\right) \\
= & \lim _{v \rightarrow+\infty} \int_{-\infty}^{\infty} l(v ; y) \& W_{1}(y) .
\end{aligned}
$$

Here $W_{i}(y)$ is the one putting $u=0$ in $w(y)$ in Theorem 17, and is the random spectra]. function of $|x(t)|^{2}$. If $G(x)$ is the spectral runction of $|x(t)|^{2}$ then

$$
\begin{aligned}
& E\left\{\left|\ell_{v \rightarrow+0} . m_{-\infty}^{\infty} \ell(v ; y) d W_{1}(y)\right|^{2}\right\} \\
& = \\
& \lim _{v \rightarrow+0} E\left\{\left|\int_{-\infty}^{\infty} \ell(v ; y) d W_{1}(y)\right|^{2}\right\} \\
& (6,15) \\
& = \\
& =\lim _{v \rightarrow+0} \int_{-\infty}^{\infty}|\ell(v ; y)|^{2} d G(y)
\end{aligned}
$$

where

$$
\begin{aligned}
\ell(v ; y) & =-\frac{|y|}{2 v}, \quad|y| \leqq v \\
& =1-\frac{|y|}{2 v}, \quad v<|y| \leqq 2 v \\
& =0, \text { otherwise. }
\end{aligned}
$$

Hence (6.15) becomes

$$
\begin{aligned}
\lim _{v \rightarrow+0}\{ & \int_{-v}^{v} \frac{|y|^{2}}{(2 v)^{2}} d G(y) \\
& \left.+\int_{2 v 2|y| \geq v}\left(1-\frac{|y|}{2 v}\right)^{2} d G(y)\right\} \\
(b .1 b)= & \lim _{v \rightarrow 0}\left\{\frac{1}{4 v^{2}} \int_{2}^{y} y^{2} d(G(y)-G(-y))\right. \\
& +\int_{v}^{2 v}\left(1-\frac{y}{2 v}\right)^{2} d(G(y)-G(-y))
\end{aligned}
$$

But

$$
\frac{1}{v^{2}} \int_{0}^{v} y^{2} d(G(y)-G(-y))
$$

$$
\begin{equation*}
=\left[\frac{y^{2}}{v^{2}} H(y)\right]_{0}^{\nu}-\frac{2}{v^{2}} \int_{0}^{v} y H(y) d y \text {, } \tag{6.17}
\end{equation*}
$$

$$
H(y)=G(y)-G(-y) .
$$

Letting $\nu \rightarrow+0$, (6.17) tends to $H(+0)-H(+0)=0$. The second integral in (6.16) does not exceed $\int_{v}^{2 v} d(G(y)-G(-y))=H(2 v)-H(+0)=0$ which tends to zero and the theorem is proved.

Lastly I express my hearty thanks to Mr. K. Takano who kindly read the manuscript and gave many valuable remarks.

This paper is sponsored by Japanese union of scientists and engineers.

## References

(I) [1] A. Branc-Lapierre et R. Brard, Les functions aléatoires stationaires et la loi grands nombres, Bull. de Ja soc. math. de France, t. 74, (1946).
[2] A. Branc-I,apierre, Remarques sur lianalyse haxmonique des functions alfatoires, Revue Scientifique 85 Année, lo271040
[3] H. Cramér, On the theory of stationary processes, Ann. of Math., s. 2, 41 (1940).
[4] H. Cramér, On harmonic analysis in certain functional spaces, Arkiv of mat. astron. och Iysik, 28 (1942).
[5] J. L. Doob, Time series and harmonic analysis, Proce of the lst Barkeley Symposium on Math. Stat. and Prob.
[6] K. Karhunen, Uber lineare Methoden in dor Wiahrs cheinlichkeitsrechnung, Ann. Ac. Sci. Fennicae, 37 (1347).
[7] K. Karhunen, Ober die Struktur stationärer zuralliger Funktionen, Arkiv for Math. 1 (1949).
[8] A. Khintchine, Korrelationstheorie der stationaren stochastichen prozesse, Math. Ann. 109 (1934).
[9] M. Loeve, Functions aléatolres du second ordre, Notes in P. Lévy, Processus stochastigues et mouvement Brownieu, Paris (1948).
[10] N. Wiener, Extrapolation, interpolation and smoothing of stationary time series, New Vork, (1949).
(2) K. Karhunen, (1), [6] [7].
(3) H. Cramér, A contribution to the theory of stochastic processes, Proc. 2na Barkeley Symposium, (1951).
(4) ci: K. Karhunen, (1), [6].
(5) N. Winer, (1), [10].
(7) R.E.A.C. Paley and N, Winer, The Fourier transforms in the complex domain, Amer. Math. Col. XIX. Chap. 1.
(8) A. Bianc-Lapierre, (]), [2].
(9) Since $X(t)$ is mean continuons, it is a measurable function of $(t, \omega)$, $\omega$ being an element of a probability rieid a domain of $x(t)$.
(*) Received June 10,1953 .

