NOTE ON FOURIER-STIELTJES INTEGRAL, II

By Ziro TAKEDA

l. In the preceding note {5] we
intended to prove the following clas-
sical theorem concerning Fourier-
Stieltjes integral from the stand
point of topologlcal group theory.

Theorem I (Bochner-Phillips). ILet
£(x) be a bounded measurable function
det'ined on a locally compact abelian
group G satisfying the following
condition:

5 | £ M |7 o)

=i x € p=l

1)

for every x. € G and complex num-
bers c. (#»=1,2,...n). Then f(x)
coincides almost everywhere with
the Fourier transform of a bounded
Radon measure A on the dual group
G i.e.

(2) )C(1)=j (2. T)d R a.e.
G

If f£(x) is continuous, then the
equality holds for all points.

However our argument, from the
bottom of page 60 to the top of page
61 of the preceding note, requires
that f(x) be continuous, (This is
pointed out in a letter by Prof,
R.S.Phillips, to whom the author ex-
press his best thanks for kind advice)
and so it is sufficlient only for the
Bochner Theorem, In this paper we
correct the proof f{or a bounded mea-
surable function and simultaneously
give a generalization of H.Cramér's
theorem,

2, We shall use the definitions
and the notations of the previous
note,

V : a compact neighborhood of

the unit 0 of Go

A

V : a compact neighborhood of

the unit 0 of G.

ey : a positive continuous func-
tion whose support is in V

and
]& e, dx, =
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hy : hy =e e (* shows convo-
lution).

AV(Q) ¢ Fourier~-transform of hy,
i.e v

75(1) fxz)h (x) dx.

As h (x) is positive definite and
integrable, we get

h_v(x)::jé\ (xD)4, (R) 2.

For corresponding rwnctions on @,
we take out in place of Vv,

We put fyg(x)-—-(ﬁ (x)f(x)) * hy(x),
then fy¢ ) is the'Fourier-trans-

form of a co tinuous, Aintegrable
function (x) on G and, more-

over, we get always
N
/vakux <M
G

(cefs [5; Lemma 21),

Lerma, For every g(x) ¢ L, (G),
); (x)fvv(x) dx converges to
J’g(x)f(x)dx as V and 8 converges

to O and 0 respectively.
Proof. For every g(x) ¢ I,(G) and

g, > O there exists a compact neigh-
borhood U of the unit of G such that

f{;(vx%;a)ldx <§
G

for every y ¢ U,

(Of course we can assume U = v’ .
c.fo [63po4l]). Then we can select
a surficiently small V such that
hy(x) = 0 for x & U,

As g(x) € L,(G), for any &0

there exists a compact  set K in G
such as

j |gw]de < &
G-K



while ¢((x) converges to 1 uniformly + o

on everg' compact subset in G as ¥ fﬂz)hv(‘?)7(“)“741)‘{7‘(’
converges to the unit of G[2 VII,

Lemma « ], so for every & > 0 there

exists a V such that |[gp(x) - 1|<& ff,-("]fﬁﬁwlﬁv(a)d%x-f2M/ [{g(x),hv(,),;?d,
KUV

on the compact set UK. Put golx)=
‘1 + 7(x}, then |7(x)] £ 2 since

|7£¢(x)]§j@ h () dx =/ .

LTaS

2§ M+ M-l .

heref
Then Therefore,

x)f A )dx —| 9@) fex) Ax
l J 3¢ )](W x ﬂ e { ‘J ?a)fﬁ(ﬁdl —Iga)f(x)dzlg(ﬁmﬂ &lgh)™.
4 G
IJ f ?(t)hv(y)fl\ (y x)f(yl)dz Xx—}fg(x)f(ﬂfty(a)d]&’
bt

Since & , & and ¢  are arbi-
trary constants, we have

= ' I }( PN f? (FOf(F)dydx - }L Je0f() AV(V)AJ,[,‘ }

. ’ f/ Z(")fv,;lx)dx—/ §@fdx [ o0
q G

N
feconse - el as V and V converges to the unit of
( hoip=o for y U) G and G respectively. qe€.de

Proof of Theorem., As fy{f is the
]({g(z)hv(v)ﬂvx)v‘yh -}/7(")f(1)/‘v‘7)‘17°"‘f Fourlier-transform of a bouxged mea-
Jq sure %VQ(?)dx and j{)“ve(ﬁ)l ax ¢ M

for every V and fl\, by Schoenberg's
H[j ymhm 7(3.,1)1 (7"1)4J4"; ’ theorem {5; Theorem 1]
U

Of (0 dx| £ I/(x,f) wdx
‘L;()fw(M}fM;n:gq geodx]

Let us suppose

for every g(x) € I,(G). Therefore,

by the above lemma
= u Ig(x)hv(a)/(v*x){;u -j f J<*)f<l)hv(v)4741f R
4'v Gu 'f;a)%(x)d:}é M vz IL(%JL);@)“] ,
& Teg
whence by Schoenberg's theorem
UJ;a)hsz(a&)f(a"x) “1411. feo _—_/u,i*).i;l , a.e.
&’y G
Then qe€ede
3. Next we give a generalization
A= IJUJJ(’J")““(M@J’M]"I/JLZ(IWU"VWM“’} of H. Cramér's theorem [31[4].

Theorem 2. Let g, (x) (w e W) be
4 a directed set of continuous, positive
M |3(31)“?wlhv(7)"‘1‘? £ M| hylody definite, integrable function which
UG converges to 1 uniformly on every
compact set in G and g,(0)= 1 for all
=M, w ¢ W. Then a measurable function
f{x) is representable as (2) if and

only if ']1/,,( j(xi‘ Su(x)f(x)ax

B :IJ J,?(I) hv(y)’((y’x)f(z-/,) 4 dx can be defined and i
KU
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f| ﬁ(f)’]di‘ <M

for every w, where M is a constant.

Prcof. Necessity,

and roreover we obtain

As gy(x) is
a continuous, positive definite and
integrable function, its Fourier-
trans{iorm hw(x) is a non-negative,
continuous and integrable function

75 (0 {(x,f)hw(f)ﬁ, ¢(o) = / hyl$)d2 =/ ,
w A
4 G

It £(x) be representable as (2),

we can assume without loss of gene-
rality that f(x) be continuous and
satisfies (1). Then g _(x)f(x) satis-
or every

X, € G and complexsnumbers c,

fies (1) too, because

( x=1,2,...,n)

c,fw 04) £(2)
M=)

£ Ma | ;./; c,.faa;i)h,(i)dga,”

Leg

N

g '

ReG A

=/ ) cJ CO) L MDY /
A

MI\ »L“'f ,‘ Cn (1;1,2«?)’ hw(i}“]
A

<My | J oo )] s
G

Therefore, @#,(x)f(x) is integrable
and coincides everywhere with the
Fourier-transform of a bounded Radon
measure on G, hence #y(x)f(x) is the
Fourier-transform of a 1ntegrable,

¥ (%) and by
the same argument as the proof of
(5; Lemma 2], we can conclude

< M,

continuous function

f 1@k

% Surfieijency. By assumption

Pw

€ L,(G) and n¥@I,é~N, whence
?x)f(x) coincides almost evervwhere

with the Fourier transform of Y’ (%),

therefore, [f#g(x)f(x)
While gy(x) converges

L

£ M a.e.
o 1 uniformly
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on every compact set in G, hence
lf(x)] M a.e.

Put fyp(x) = (Bg+L) * hy where

hy(x) is the function derined at the
top of §2. Then fvw(x) is the Fourier

transform of *//W!(ﬁ) defined by
fan(R) = fu(R)gy(R), wnile

fmw(z)d:? 4/)%(1) $<M

since [dV(QV‘ <

Hence by the same argument as §2,
we get

/;mfw A — /;(z)fmdx
4 4

and

‘/ i(x){u)dx_’ é M wa/lt '/(X;Q)jﬁ)dxj
& = Teq g

for every g(x) € L,(G). So the
theorem is clear, qe.€.d.

Corollary (H.Crarér), Iet #(x)
be a continuous, positive definite,
integrable function defined on the
real line and Y (t) be a non-negative
function which satisfies the following
two conditions:

oo

(3) ¢(x)=/ e Yy ar

4) 9‘(0) =/ f(t)&t =

Then a measurable function f(x) is
representable as

Feo =/ e dFw) a.e.

by a function F(t) of bounded varia-
tion if and only if

=73z | € P (e dx

00

can be defined and

/{%«(t}ldt M
tor all o< 8§ </
Proof, Clearly #(J x) is a conti-

nuous, positive definite, integrable
function., We show that #( § x) con-



verges to 1 uniformly on every closed
interval [~ , L ] as § -0 . As

(t) is integrable, for any £>o
there exist am > O such that

| ivelat +£!V’(t)w < 5
while

l ?S(Jx) ‘/l _ l/ eita’xwf)dt -/ pl)dt }
¢ [le“&-/)%ahu.

1f we define 4 so small that

then ,eitmé‘_/“% v 11”5/4'72&;
- m 00
175(5‘)"/]4 */ */Ieiw‘—/l%«w
— =-m "
é—%—.‘;-{ = € fMXGEl,QJ

Hence #( 4 x) converges to 1 uniformly
on the interval [-2 , § ] as J— 0.

Then the conclusion of the corollary

follows from the above theorem,

4, In this last section we give
a proof of a proposition which is
used in the proof of [5; lemma 2],

Proposition. Let f be a continu-
ous function on a compact subset K
in a locally compact abelian group
G, then f can be extended to a con-
tinuous almost periodic functiocn on
G°

Proof. lLet H be the universal
Bohr compactification of G in the
sence of [1] (c.f. also [6; pp.137-
138]1), then G is represented in a
dense subgroup in H. We denote this
representation by § . Then B (K)
is a cloged compact set in H and £
defines a continuous function on

6(K) such that g( 8 (x)) = f(x) for
x € K.

6 -

As H is a compact space, H is
a normal space, so g can be extended
continuously over H. Iet h be such
a extended function, then the func-
tion k(x) defined by k(x)= h( 6 (x))
(x e G) gives a desired almost peri-
odic function, qe.e.do
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