
STRUCTURE OF HOMOGENEOUS CHAINS

By Tadashi OHKUMA

In the previoxis paper [3], the
author determined the structure of
discrete homogeneous chains. Con-
tinuing his study, he will show the
structure of general homogeneous
chains to some extent, in the present
paper.

In the structure theory of homo-
geneous chains, simple homogeneous
chains, which will be defined later,
seem to be fundamental, and some
attempt of the representation of ge-
neral homogeneous chains, as lexico-
graphic product of simple homogeneous
chains is suggested at the end of this
paper.

As to definitions and notations,
the same as used in [1] and in the
author's previous paper, [3] are
employed. But, for convenience, a
short note of these definitions and
the results gained from these defi-
nitions, which are used in the author's
previous paper, are stated again in §1.

In the study of the structure
of homogeneous chains, the homogeneous
intervals play an important role,
and §1 is devoted to the investiga-
tion of the homogeneous intervals
in a homogeneous chain.

In §2, homogeneous chains, which
have very special type, namely, homo-
geneous chains with unique automor-
phisms, are studied.

In §3 the structure of simple
homogeneous chains, especially that
of conditionally complete homogeneous
chains, which belongs to this cate-
gory, are determined to some extent.

Those are homogeneous chains with
very special type, but a general ho-
mogeneous chain is embedded in a lexi-
cographic product of these siuiple
homogeneous chains. The fact is shown
in the last section, §4, of this
paper.

§1. Homogeneous Intervals.

The terms used without definitions,
such as a partially ordered set,
(abbr. a poset), a chain (or a total-
ly ordered set), and an ordinal num-
ber (or a well-ordered set), ought
to be referred to [1]

U
 1

* Definition 1. If a chain
X has a transitive automorphism
group, we call X homogeneous«

Definition 2^ A subchain I. of a
chain X is called an interval of X,
if and only if,

a, b c I and a < c < b

implies e e l .

The whole chain X and a subchain
which consists of only one element
of X are intervals. The other inter-
vals are called proper»

Especially, for any pair of ele-
ments a, b of X, the set of elements
between (properly) a and b is an
interval of X, which we ca31 an open
interval (a, b). The set oϊ upper
bounds and the set of lower bounds
of an element a of X, excluding the
element a, are also called (unbounded)
open intervals, and are denoted by
(a,-) and (-, a) respectively.
When two elements a and b are adjoined
to the open interval (a, bj, we call
it a closed interval [a, bl [a, b)
denotes the interval (a, b)with adjoined
a only, (a, b], [a, - ) , and (-, a]
are similarly defined*,

(1.2) We define the following two
kinds of orders in a family of inter-
vals of a chain X»

P.I) We say that Y, contains Y
z
,

if and only if Y
λ
 is a subset oϊ Y,,

and denote the fact by Y
2
 C Y, . (Or,

we may say that Y/ is greater than
Y
t
 in the meaning of ?,].)»)

P.2) We say that Y* is less than
Y, (or Y, is greater than Yt) if and
only if a < b for any pair of a e Y^,
and b t Y, , and denote the fact by
Y^ < Y/o (Or, precisely, we say that
Y/ is greater than Y*, in the weaning
of P.2).) Especially the subset of
X, which consists of only one element
x c X is an interval of X. If x is
less than any element of the other
interval Y of X, the fact is denoted
by x < Y. The sign x > Y is similarly
defined,

Y/ and Y^ are comparable if and
only if either they are disjoint or
they coincide entirely wjth each
other*
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The adequacy of those orderings
and the condition of comparability
can be easily verified.

(loδ) Definition 3^ When an
interval Y of a homogeneous chain
X is itself a homogeneous chain, then
we call Y a homogeneous interval «>

let Y be an interval (not neces-
sarily homogeneous) of a homogeneous
chain X. We denote the automorphism
group of X by <Jx . The set of all
automorphisms of X such that

is called the characteristic group
of the interval Y. <Jr is isomorphic
to the automorphism group of the
chain Y (of. [3]) If Y 5s a homoge-
neous interval of X, then φV is
transitive within Y. We shall call
an automorphism f e <#γ , an auto-
morphism of Y, simply.

(1.4) It is well known that the
automorphism group of a chain X be-
comes a lattice ordered group, (cf.
[1], pp. 214-217) We shall see some
detail of this fact«

For a pair of two automorphisms
f , f of X, if

f (x)^ *f (
χ
)

 f o r a n
y

 x € x

then f is said to be less than Ϋ .

Let f and "f be two automorphi-
srr-s (not necessarily comparable) of
X, then by the above ordering, the
join and meet of 9 and "f can be
defined as following

ψ~ f (χ) = max ( f (x), f (x))

<P~ T(x)= min ( 9 (x), ?(x)).

Especially, for the identical map-
ping 0, the automorphism f

 w
 0,

such that

9 ̂  0 (x)= max ( ? (x), x)

is denoted by 9* > which is called
the positive part of J

 β

If 9 (x) ̂  x for any x e χ
f
 then

9 is called positive. If ? (x) > x
for any x 6 Y, Y being an interval
of X, then 9 is called positive in
Ye If 9 (x) > x for an x « X, we
shall say that f is positive at χ

o

The negative part 9" = ^ ̂  ° °-i'
 a n

automorphism ϊ> « ^x ?
 anc

*
 t n e

negativity of an automorphism 9
are similarly defined.

(1 5) Lemma 1. Let 9 ^
e a n

automorphism of a homogeneous chain
X. For instance, 9 is assumed to
be positive at a e X. Set
f ίa)- an, and Y^ = [a*, a^/ ) for
n = 0, ± 1, ± 2, .... Then Y= UτιY^
is a homogeneous interval of X, and
9 is positive in Y. When 9 is

negative at a, the result is all the
same.

Remark. If we take a displacement
θ of X such that

θ (y)

θ (z)

9 (y) for y

z for z

Y

Y

then we get a new automorphism θ
of X, and 6"*(a) = ?*(a), so the
set

U,t θ*(a), θ~'(a))

entirely coincides to Y. Hence we
may take θ in the place of 9 in
the following consideration*

Proof of the lemma
β

We denote by Y* the union of the
interval Y and its lower bounds.
Y* is not homogeneous in general.
First we shall see that for any y,
a/Λ £ y < a

Λ + / y
 there exists an

automorphism X of Y*, which maps
a^ onto y.

If y = â , for some n, this state-
ment is obvious. Let ye (a,*, a^

+/
 )

β

Take an automorphism y of X such
that Y (a* ) = y, then
f (a^) < a^

+/
 = θ (a,*) and the fol-

lowing three cases are possible.

i) y (a^) = θ (a*,) for some m > n

ϋ ) f (SLTH) < 0 (a^) for any m > n

iii) "f (a
m
) > θ (aj for some m > n

β

Case i) Take the automorphism
of X such that,

T (z) = f (z) for z ̂
 a<m

.

T (z) = θ (z) for z > a^.

then T (â .) = y, and obviously τ iβ
an automorphism of the interval Y* *

Case ii) We shall prove that

y
:
 (a^) <*0'(a*) for any i > 0.

When i - 1, "/ ( a^) = y < a «.+, = Θ (aj
 Φ

Now, let the statement be proved for an

i, then



< θ « θ

Hence, the induction is accomplished,
and so every f* (a*) is contained
in Y* for any i > 0*

Set Z = U;[ r ( a j , V*' (aj),
i =• 0, ί l , ί 2 , . •., then Z c Y*,
and 5f we take the displacement T
of X such that

T (z) = y (z) for z * Z

= z otherwise,

then obviously T is an automorphism
of Y*, since Z C Y* , and T (a^) = y.

Case iii) Let m be the first
integer greater than n such that

f (a*) > θ (a,,)

that is, 'f (ai) < © (aj) for n s 4 < m.
Take a displacement f of λ such that

T (x) « y (x) for x < â .-/

T (x) * Y ~ © U ) for a^., 4 x < a ^

r (x) - θ (x) for x > â c

Since 7*^ θ (a^., ) =• 7* (SL^-J ) and

y ^ θ (a*t) = 0 (aj, T is an auto-
morphism of Y*, and Tίa^) = y*

Second, we shall see that for any
x,y 6 Yj there exists an automorphism
X of Y* such that T (x) = y.

Take an automorphism T", of Y*
such that T/ (a^) = x, and another
such that TV (a**) =

 v
> and

 s e t

r = T^ θ *"
n
 XΓ

1
 > then T(x) = y, and

since x, , τ«. , and 0 , are auto-
morphisms of Y*, so is T alsoo

Finally, we shall see that for
any x,y € Y, there exists an automor-
phism 7C of Y, which maps x to y,

If Y* denotes the union of the
interval Y and its upper bounds, it
is all the same as the above that
there exists an automorphism Ίt, of
Y+, which maps x to y

#
 Take an auto-

morphism 7Γ
A
 of Y* which maps x to

y, and set

7Π (z) = ^i(z) for z 4 x

7t (z) * π^lz) for z > x.

Then obviously it is an automorphism
of X, and 7C(z) = z for any z < Y
and it (x) « y

Hence the proof of the first part
of the lemma is established, and the
second part is obvious«,

g chain with
unique automorphisms,

(2 1) Definition 4^ If for some
pair of elements x,y of a homogeneous
chain λ, the automorphism which maps
x to y is unique, we call X a homo-
geneous chain with unlque automorphi-
sms^ or sometimes we say that the
automorphisms o£_ X are unique, or X
has unique automorphisms.

If /'or a pair of elements x, y
of a homogeneous chain X, the auto-
morphism f which maps x to y is
unique, then the automorphism which
does not displace x is unique, that
is, such an automorphism is only the
identical mapping.

Indeed, if there exists some
automorphism f which does not dis-
place x and f (a) =• b ψ a for some
a € X, then ?t (x) * f (x) s y, and
9f (a) a ? (b) Ψ J (a) since a ψ b«

Hence the automorphism which maps
x to y is not unique*

Conversely, it is similarly veri-
fied that if the automorphism which
does not displace x Is only the iden-
tical mapping, then the automorphism
which maps x to some y is also unique

β

If there exists a non-identical
automorphism ψ which does not dis-
place x, take an automorphism γ
wnich maps x to y, then the autorror-
phi sir y f Y ~' does not displace y,
and is not identical« Hence we can
conclude that if for some pair of
elements x,y € X, the automorphism
which maps x to y is unique, then
for any pair of elements of X, the
automorphism which maps one to the
other is unique

(2.2) Theorem JU_ A homogeneous
chain X has unique automorphisms if
and only if there exists no proper
homogeneous interval in X.

Proof, If X has a proper homoge-
neous interval Y then the non-identi-
cal automorphism of Y does not dis-
place any element outside of Y, so
the automorphisms of X are not unique.

Conversely if there exists a non-
identical automorphism 9 of X which
does not displace some element x of
X, then the set UΓ.-«» t ?*<*>, ?""""<&>)
for some a such that "f (a) =f a, is
a homogeneous interval by lemma 1,
which is proper since it does not
contain x

(2,5) Jn a homogeneous chain X
with unique automorphisms, if, for
a pair of automorphisms ψ and /• ,
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and for some x € X, f (x) < f (x),
then for any element y of X,
5> (y) < f (y)

Indeed, ψ (y) can not be equal
to f (y). If *(y) > f (y) for some
y €• X, then the automorphism Θ - f^Ϋ
is equal to 9 at x, but not equal
to ψ at y, hence the automorphism
which maps x to ψ (x) is not unique.

(2
O
4) We fix some element a of

X, and consider the correspondence
between the automorphisms of X and
the elements of X such that fr «—>?(a),
Then this correspondence is one-to-
one, and isotone if we regard the
automorphism group of X as a lattice
group in the meaning of (1.4),

It is easy to see that the lattice
group <?x of automorphisms of X
ie totally ordered and Archimedean,
hence the group is isomorphic to a
subgroup of the lattice ordered addi-
tive group of real numbers (cf* [1]
p.226) Since the lattice group of
automorphisms of X corresponds one-
to-one and order-preservingly to the
chain X, we can state,

Theorem 2» A homogeneous chain
with unique automorphisms is isomor-
phic to a subchain of real numbers*
More exactly, a homogeneous chain
with unique automorphisms is isomor-
phic to the ordered set made of a
subgroup of the additive group of
reaΓ numbers.

It is naturally surmised that a
homogeneous chain with unique auto-
morphisms is isomorphic to the chain
of integers* But the author could
net ascertain this expectation* It
is easy to see that the only discrete
homogeneous chain with unique auto-
morphisms is that of integers. The
author thinks that the following
problem is an interesting one.

Problem !_•_ Is there any homo ge-
ne ouΊΓ"cEaTn with unique automorphisms
which is dense-ih-itself?

3^ Simple homogeneous chains,

(3.1) Now we shall Investigate
some other special type of homogene-
ous chains. Simple homogeneous cha-
ins, defined later, have also a spe-
cial type, yet they seem to make
themselves a structural foundation
of general homogeneous chains, and
moreover, many important chains,
such as the chain of integers, the
chain" of rational numbers, that of
real numbers, and general condition-
ally complete homogeneous chains,
are contained in this category*

Definition 5*, A regular Interval
Z or a homogeneous chain X is an
interval of X whΓch has the following
property.

For any pair of elements x, y in
Z and for any^ automorphism f of X,

f (x) € Z implies f (y) <= Z.

Example. Let a chain X be the
ordered set of real numbers from
which the integers are taken away,
then as easily seen, the set (0, 1)
is a regular interval*

Let a chain X be discrete, then
the interval of λ, such i,nat between
two elements of it, only a finite
number of elements exist, Is a regu-
lar interval*

For any homogeneous chain, the
whole chain and the interval which
consists of only one element are
regular intervals*

Definition 6. A homogeneous chain
X is called simple, if and only if
it contains r o proper regular interval,

Examples* The chain of integers,
the chain of rational numbers, and
the chain of real numbers are sim-
ple as easily seen*

A homogeneous chain with unique
automorphisms is simple, since it
contains no proper homogeneous in-
terval, (A regular interval is al-
ways a homogeneous interval, as seen
later*)

A conditionally complete homoge-
neous chain Is simple* Indeed, any
proper interval Y of a conditionally
complete homogeneous chain X has
either its upper limit or its lower
limit* For instance, assume that Y
has its upper limit u, then for any
pair of elements a,b € Y, a < b, a
positive autoi orphi sv which maps b
to u, maps a into Y* (Obviously,
u can not be contained in Y ) Hence
Y is not a regular interval.

(3*2) Let Y be a proper interval
(not necessarily homogeneous) of
a homogeneous chain X We define
an equivalence relation between the
elements of X in the following way.
We say x ~ y (x,y e χ) j.f and only
Ix for any automorphism J of X

f (x) € Y implies *(y) evY

and f (y) e Y implies f (x) * Y.

Obviously this relation satisfies
tne axioms of equivalency*
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If x ̂  y, X < y, and f (x) < Y,
then ? (y) < Y by definition. If
further f (y) > Y, then there exi-
sts an automorphism f of X, which
maps f (x) into Y Then the posi-
tive automorphism f+ maps J (x)
into Y, and maps ? (y) out of Y, and
then J+f (x) e Y, and f* <f (y) > γ

#

This contradicts the assumption that
x ~- y On the other hand, if x > y,
and f (x) < Y, then it is obvious
that f (y) < Y Hence if x ^ y , and
9 (x) < Y, then ?(y) < Y Similarly

if x - y, and f (x) > Y, then

f (y) > Y

We shall see that a class by the
classification induced by the above
equivalence relation is a regular
interval

First, the class Z is an interval
of X

Indeed, if x ~+ y, and x < u < y,
then f (x) « Y implies t (y) * Y,
and f (x) < f (u) < f (y), and so
9 (u) e γ

β
 Hence ? (x) « Y implies

f (u) € Y

Conversely, if * (x) < Y, then
t(y) < Y, and if f (x) > Y then
f (y) > Y, and since f (x) <*(u)< ?(y),
f(u)< Y or f (u) > Y respective-

ly Hence ? (x) ̂  Y implies
ψ (u) ̂  Y. Hence x — u, and u e Z

Second, the interval Z is regular

Indeed if x,y € Z and f (x) « Z,
* (y) ̂  Z for an automorphism 5* of
X, then 9 (x) is not equivalent
to ?(y), so there exists an automor-*
phi sin *f> of X, which maps one of
f (x) and f (y) into Y, and the

other out of Y Then the automorphism
y f maps one of x and y into Y,

and maps the other out of Y But
this contradicts the assumption that

(3.3) We shall consider the case
that a homogeneous chain X is simple
and its automorphisms are not unique,,

Since, the autonorphisms of X are
not unique, there exists a proper
homogeneous interval Y in X (Theo-
rem 1) Since X is simple, for any
pair of elements of λ, one is not
equivalent to the other with respect
to the equivalence relation concerning
to the interval Y (3,2) (Otherwise,
each of the equivalent classes is a
proper regular interval•) In other
words, for any pair of elements
x, y e X, (except the case x = y )
there exists an automorphism 9 of
X, such that

either f (x) \ Y and f (j) * Y

or f (x) « Y and f (y) \ Y

We consider the following three
cases o

Case i) For any pair oϊ elements
x,y in Y, there exists an automor-
phism f of X such that 9 (x) « Y
and 9 (y) \ Y, and exists another
autoporphlsm 'f of X such that
f(x) K Y and -y-(y) * Y.

Case 11) For some pair of ele-
ments x,y € Y, x < y, and for any
automorphism 9 of X, f (y) e v
implies f (x) e v.

Case iii) For some pair of ele-
ments x,y € V, such that x < y, and
for any automorphism ? of X,

f (x) 6 Y implies J>(y) € Y.

Y has either upper or lower bounds,
since Y is a proper interval. When
Y is lower unbounded, the case is
ii) When Y is upper unbounded, the
case is ill). Even when Y is both
upper and lower bounded, we have no
reason to exclude the case ii) and
iii), for the present

β

In the case ii), there exists an
autororphism *ψ of X such that
γ(x) e Y, and f (y) > Y, since X

is simple We shall see that for any
element u,v € Y, u < v, there exists
an automorphism θ of X such that
θ (u) e Y and β(v) > Yo

First we can see that i f %{%)< ¥,
for an automorphism 7C of X then

^My) < Y Indeed, i f 7C(y) > Y,
then there exists an automorphism

X of X, which maps X(y) into Y,
then the autororphism T~ 7£ 9 where

T " is the negative part of T ,
maps y into Y and iraps x out of Y
This contradicts the condition of
case 11),

Take an automorphism PΓ of X,
which maps u to x, and set w * X (v) β

If w > y, then
n ( ^ ) ^ ( w ) > / (y) > Y, and
jy (u) β y (x) β γ

β
 Hence the auto-

morphism θ » y>χ is suitable for
our purpose

If w < y, then we shall see that
for any automorphism T of X,
T (u) \ Y implies X (v) ̂  Y

Indeed, if for an automorphism X of
X, T(u) > Y, then T (v) > Y, since
T(u) < T (v). If T(u) < Y, then
V X-'U) < Y, hence X X"'(y) < Y,

and then T r'(w) < r T'(y), and so
T(v) < Y Hence, if w < y, then
T(u) ̂  Y implies τ(v) \ Y for any



X € Of* . In other words, if
T(v)€ y, then Z (u) e Y. Hence,

there must be an automorphism β of
X, such that θ (u) € Ύ , and θ (v) K Y.

(3.4) By above consideration,
WΘ can assert that, in case i) and
ii) , for any pair of x, y 6 Y, there
exists an automorphism Θ * °f* ,
which maps the less element into Y
and the greater element into the
upper bounds of Y« In case iii), by
similar consideration, for any pair
o£ elements u, v e Y, there exists
an automorphism which maps the greater
element into Y, and the less element
into the lower bounds of Y

Now we shall see that every bounded
open interval in Y is isomorphic to
another one in Y For instance, we
assume that it is the case i) or ii)
The case iii) can be similarly treated,

First of all, for any three ele-
ments x,y and z in Y, Y being a homo-
geneous proper interval of a homo-
geneous chain X, if x < y < z, then
the interval (x, z) is isomorphic to
the interval (y, z).

Indeed, there exists an automor-
phism 9 of X, which maps z into
the upper bounds of Y and maps y and
x into Y (we assume that the case
is ii) or 111)) •/ Then, since Y is
a homogeneous interval of X, there
exists an automorphism y- of Y,
(which fixes any element outside of
Y), which maps 9 (x) onto f (y)*
Hence the automorphism θ = f-'y f
maps the interval (x, z) onto the
interval (y,z)* This shows that the
interval (x, z) is isomorphis to the
interval (y, z )

β

Second, we shall prove that an
open interval (x, y) in Y is isomor-
pnic to another one (u, v)»

Indeed, since the interval Y is
homogeneous, there exists an automor-
phism 9 of Y, which maps v onto
y Then x ^ f (u) < y = f (v), or
f (u) < x < y - f (v)* In both

case, the open interval ( ?(u), ? (v))
is isomorphic to the open interval
(x, y). Hence (u, v) is isomorphic
to (x, y), and the statement is pro-
ve d

(5«>5) We have just proved that
every bounded open interval in a
proper homogeneous interval Y of a
simple homogeneous chain X, whose
automorphisms are not unique, is iso-
morphic to one another* In other
words, those bounded open intervals
in Y is isomorphic to a definite
chain T

The chain T has following proper-
ties;

Tl) Any (bounded or unbounded)
open interval in T is isomorphic to
T itself,

T2) If by T
+
, the chain 1 ® T,

where 1 is an adjoined element, and
$ is the ordinal sum (ef [1] p 9),

is denoted, then

T3) T is homogeneous.

Tl) and T2) are obvious* We shall
verify T3)

Since, for any x, and y in T,
the open intervals (-, x ) , (-, y),
(x, - ) , and (y, -) are isomorphic
to T, there exist an isomorphism 9
iron. (-, x) to (-, y), and an isomor-
phism y from (x, -) to (y

f
 - ) •

Then the mapping θ , such that

e(z) « <t (z), for z € (-, x)

θ(z) U ) , for z € (x,-)

is an automorphism of T, which maps
x to y,

T4) Every Interval ϋ of T, which
has neither the greatest element nor
the least element in U, is a homoge-
neous interval of T

Indeed, for any pair of elements
x,y of U, there exist two elements
u,v e ϋ, such that u < x,y < v
But since the interval (u,v) is ho-
mogeneous ((T3)), there exists an
automorphism of the interval (u, v),
which maps x to y and this automor-
phism is also an automorphism of TJ

O

T5) Let P be the regular ordi-
nal number (cf [8] ρp 130~135) which
is cofinal to the chain T, and let
£• be the dual of a regular ordinal

number, which is co-initial to^ the
chain T; then obviously ( /> , f- ) is
the element-character (cf (2] pp.
134-137) of T, and following identi-
ties hold,

( τ
+
)

and ( * f )
where Φ and ° denote the ordinal
sum and ordinal product, respec-
tively* The proof of T5) is easy.
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Definition 7* We call the chain
T, which has tEo property Tl), a
totally homogeneous chain.

Remark 1* The properties T2) -
T5) are induced Γroκ the property
Tl).

Remark 2. Such a chain is what
Is called a homogeneous chain by F.
Hausdorff (cf. [2] p.173) But on
account of the change of the defi-
nition of homogeneity, we use the
new term. When such a chain is also
conditionally complete, it is called
a
 homogeneous linear continuum, and
we shall make use of this term lat-
ter.

(3.6) Now we shal] prove that
any bounded open interval (x,y)
in X is isomorpnic to T. (The nota-
tions X, Y and T are the same as the
previous propositions*)

We define tfre following equivalence
relation: for a pair of elements
x,y € X, χ

w
y , if the open interval

(x, y) or (y, x), according to
x < y, or x > y respectively, is
isomorphic to T. Then, assuming that
x #α> x, this relation satisfies the
axioms of equivalency, since the
transitive law is valid by the pro-
perties Tl) and T2) of T Sach
equivalent class is an interval by
Tl). And obviously, one of these
classes contains the homogeneous
interval Y, and hence this class con-
tains at least two elements*

We shall see that each class is
a regular Interval* Indeed, if
x,y € ϋ, U being one of the equivalent
classes, for instance, that which
contains Y, and 9 (x) e U, and
9 (y) * U for some f ejfx , then

the interval ( ?(x), $\J))
9
 (or

the interval ( f(y), f (x)) is isomor-
phic to the interval (x, y) (or the
interval (y,x)), and hence to the
chain T, since x is equivalent, to
y. On the other hand, ( 9 (x), ?(y))
(or ( f (y), f (x))) can not be iso-
morphic to T, since f(y) is not con-
tained in the equivalent class ϋ
which contains f (x)« This is a con-
tradiction.

Thus we have proved that the equi-
valent class is a regular interval,
but, since X is simple by assumption,
each class must be a non-proper inter-
val of X, and especially the class
which contains Y must entirely coin-
cide with the whole chain X. This
proves that for every pair of ele-
ments x, y € X; x < y, the interval
(x, γ) is isomorphic to To

Hence we have the following
Theorem,

Theorem 3» For every pair of
elements x, and y in a simple homo-
geneous chain, whose automorphisms
are not unique, the open interval
(x, y) (assuming that x < y) 1s
isomorphi c to a definite totally
homogeneous chain.

(3.7) We shall say that the total-
ly homogeneous chain T associates to
the simple homogeneous chain X~^whose
automorphisms are not unique.

Let W/ be the regular ordinal
number, which is cofina] to the
chain X, and let W^ be the dual of a
regular ordinal number, which is
coinitial to the chain X. Obviously,
W/ is, at the greatest, the first
ordinal number °̂*» , with the type
of which, no subchain of T can con-
tained in T, and VΪ* is, at the grea-
test, the dual <£• of the first
ordinal number, with the dual type
of which, no subchain of T can con-
tained in T, T being the totally
homogeneous chain ?/hich associates
to X.

We consider the following four
cases«

Cl) W/ is less than "** , and
is (dually) less than <*>„.

C2) W, is equal to <*>μ , and
W

λ
 Is (dually) less than

G3) W/ is less than ^- , and
#2 is eqiial to &*

C4) Φ, is equal to *̂ w , and
H

t
 is equal to <Z, .

In the first case Cl), X JLs iso-
morphic to the chain (W, Φ W j

β
T

f
,

as easily seen. On the other hand,
we can take a subchain S

1
 of T

χ

which is isororphic to (W, θ W
Λ
)

0

Then the minimal interval S of T,
which contain S

f
 (S consists of a31

elements which exist between in some
pair of elements in S

f
) is obviously

isomorphic to (W, Φ Ψ
A
 ) ° T*, and

hence isomorphic to X. In other
words, X is siomorphic to a subchain
of T.

In the case 02), the unbounded
open interval (-, x) of X, for some
x « X, is Isomorphic to an interval
S of X, similarly as in the case Cl)
And hence the chain X is isomorphic
to the chain S © ( "£v T*). In the
case 03), the result is similar, and
we can get the following Theorem*

- 7 -



Theorem 4
#
 For any simple homoge-

neous chaIn~T, there exists a totally
homogeneous chain T, which associates
to X, and X is isomorphic to one of
the following four representations.

Cl) S

C2) S Φ (

C3) (£,•

C4) ( £>j Φ

T )

θ S

u) o

where «*Ĵ  is the first ordinal num-
ber with the type of which no sub-
chain of T can be contained in T, <£„
is the dual ofthe first ordinal number,
with the dual type of which no sub-
chain of T can be contained in T,
and S is an interval of T, dependent
on X.

(3.8) If a chain X is a condi-
tionally complete homogeneous chain,
then the problem stated at the last
of chapter 2 is easily resolved.

Theorem 5^ A conditionally com-
plete homogeneous chain X with unique
automorphisms is isomorphic to the
chain of integers.

Proof. We embed the chain X
into the additive group of real num-
bers (Theorem 2 ) , Take an element
x of X and a non-identical automor-
phism f of X, then the set
J « { ̂ (x)} is isomorphic to the
chain of integers

 o

If for any y « X, and the unique
automorphism f such that J (x) * y,
there exists an integer m such that
^ ( x ) e J, then it is easy to see
that X is isoporphic to either the
chain of integers or the chain of
rational numbers, the later can not
be complete.

If IOΓ some element y of X, and
the unique automorphism 7" such that
J (x) « y, any yix) is not con-

tained in J, then it is easy to see
that the set K * f */**• f ̂ (x)) where
m, n are integers, is dense in the
chain of real numbers« Hence the
chain X is also dence in the ordered
additive group of real numbers, but
since X is conditionally complete,
X must entirely coincide with the
chain of real numbers, whose automor-
phisms are not unique. Hence the
proof is accomplished.

(3.9) If the conditionally com-
plete homogeneous chain X is dense-
in-itself, and hence its automorphisms
are not unique, then X is always sim-
ple (cf. the Example of Definition 6).
Hence X is associated with a totally
homogeneous chain T, which πust be also
conditionally complete* A condition-

- 8

ally complete totally homogeneous
chain is so-called a homogeneous linear
continuum (cf. the Hemark of Definition

In a homogeneous chain, every
point has the same character (cf.
[2] pp. 142-147) as that of another.
In a conditionally complete homoge-
neous chain, which is dense-in-itself,
the definite point-character is ob-
viously ( **j , u> ) where eυ is the
first infinite ordinal number, and
u> is its dual. Since there exists

no gap in T, the first ordinal num-
ber, with the type of which no sub-
chain of T can be contained in T,
and the dual of the first ordinal
number, with the dual type of which,
no subchain can be contained in T,
are 2 and δ

Λ
, respectively,

where 2. and S are the first un-
countable ordinal number and 5 ts dual
respectively, Moreover, every
Interval in T, which has no greatest
element nor least element in it, is
an open interval. Hence, in this
case, Theorem 4 can be stated as the
following

Theorem 6^_ A conditionally coir-
plete homogeneous chain X is either
isomorphic to the chain of integers,
or its every bounded open interval
is isopίOrphic to a definite homogene-
ous linear continuum T.

In the later case, the condition-
ally complete homogeneous chain X
is isomorphic to one of the following
four representations.

Cl) T

C2) T Φ (£2 T
4
)

C3) Q T
 +

C4) (δ« Ω )« T*

where T is the homogeneous linear
continuum associating to the chain
X, and Q and S are the Γirst un-
countable ordinal number and its
dual, respectively.

4. General homogeneous chains.

(4.1) To investigate the struc-
ture of general homogeneous chains,
we shall study the behaviours of
regular intervals in a general homo-
geneous chain.

Let Y be a regular interval in a
genera? homogeneous chain X. We de-
fine an equivalence relation between
elements of X. We say x ~ y, if and

only if, for any automorphism f of
X,

f (x) € y implies f (y) e Y.



Then that x ~ x and that x ̂  z
follows from x ~ y and y ~ z are
obvious. Let x ~ y, and assume that
for some automorphism f of X,
f (x) < Y and f (y) 6 y. Take an

automorphism f of X, which maps
fix) into Y

β
 Then |f(x) = u f Y,

and so ^ ( y ) = v 6 ϊ, by the defi-
nition of x ~ y But then
f-'(u) - ? ix) \ Y, T'(v) >?(?) « Y,

and u,v e y. This contradicts the
regularity of Y Hence x — y implies
y ~ x.

(4.2) We shall call the each
equivalent class, a oo-claas of Y.
Y itself ia a co-class of T,

Indeed, any element in Y is equi-
valent to the other element of Y by
the regularity of Y On the other
hand an element in Y is not equivalent
to an element out of Y, since the
condition of equivalency does not
hold for the identical mapping.

Let Y/ and Yι be co-classes of
Y. We shall show that if an autoiror-
phism ? of X maps an element x of
Y, into Yt, then f maps Y, entirely
onto Y

x

Indeed, if ? (x) « u « YΛ, and
9 (y) - v \ Y*, for some x,y e Y,,
then u is not equivalent to v, hence
there exists an automorphism "f
of X such that f (u) « Y, and
-f (v) K Y Then f f (x) * Y, and
"ff (y) < Y This contradicts the
assumption; x ~ y.

Hence t maps Y/ into Y
x
, but

since f'(u) = x e Y, , u e Y
z
, 9~

ι

maps Yjt into Y, . Hence f maps Y,
entirely onto Y^. This proves the
statement.

Since f gives an isomorphism
from Y/ to Y.t, the co-classes are
lsororphic to one another.

Especially if Y, a γ
Λf
 then we

see that for any pair of elements
x»y * ΐt

 a n d f o r a n
7 automorphism

f of X, 9 (x) « Y, Implies
f (y)

 e
 Yι In other words, each co-

class of Y is a regular interval.

Moreover, for any pair of elements
x
*y € Yι> there exists an automor-
phism f of X, wh5ch maps x to y.
But then 9 maps Y, onto Y, itself,
hence Y, is itself a homogeneous
Interval of X. Especially Y is so.
Hence a regular interval of X Is a
homogeneous interval.

(4.3) The co-classes of Y are
mutually disjoint, and the union
of all co-classes agrees with the
whole chain X.

If we define an ordering in the
meaning of PS), (1.2), between those
co-classes, then the set <x - {Y^j
of all co-claases Y

f
 of Y, becomes

a chain (1.2).

Let 9 be an automorphism of X,
then f maps one co-class Y, onto
another co-class Ŷ ,. Hence naturally*
this mapping f is regarded as an

one-valued mapping of the chain «
of co-classes, and this mapping
?•• Yf-*Y».» ?(Yf) is obviously one-to-
one and order-preserving in (X ,
hence f is regarded as an automor-
phism of << Moreover, the homo-
genuity of * follows from the homo-
geneity of X. Hence we can assert

Theorem 7
β
 If Y is a regular

interval of~~X, then Y is a homogeneous
interval of X, and there exists a
homogeneous chain oί with which X
is represented as a ordinal product:

X « y.

(4.4) If a regular interval Y
of X Intersects some other homogene-
ous interval Z of X, then one of them
contains the other.

Indeed, if neither of them con-
tains the other, then there exists
three elements x ^ Y ^ Z ^ y f i Y - ^ Z ,
and z e γ« r\ Z, where the prime de-
notes the complement set. Then since
Z is horogβneous, there exists a
f « <g* such that f (y) * z, and
f (x) = x. But this contradicts

the regularity of Y» Hence the state-
ment is proved.

If a regular interval Y contains
another regular interval Z of X, then
every co-class of Z is contained by
some co-class of Y, and every co-
class of Y contains some co-class of
Z.

Indeed, Z c v implies ?(Z) c ^ (Y)
for any f e f

x
 , (4.3), and this

verifies both statements.

Moreover, for any pair of regular
intervals Y and Z, some co-class of
Y must intersect with Z Hence some
co-class of Y either contains Z or
is contained in Z

If we regard the set *
 β
 {Y'/>}

of a]1 co-classes of Y, as a division
of X, and call ot a regular division
of X, then for any pair of regular
division of X, one of there must be a
refinement of the other.

(4.5) Definition θ. The hyper-
index chain flt* of a Homogeneous
chain X is the set of all regular
divisions of X. The index chain
Λ of X is the set of all regular

divisions which have the next finer
regular sub-division.

Of course, σt Is a subset of

We introduce an ordering into Λ.*
 β

We say * < f , ex , p * 01* , if
and only if £ is finer than *
Then, by (4.4), σt* becomes a chain.

01 Js naturally a subchain of βt* .

(4.6) We denote the set of all
regular intervals which contains! some
x * X, by 0L* defining the order
in the meaning of P.I) (1.2).

For any regular division <x « Λ ,
there exists a regular Interval
Y e !X , which contains x Hence

 Λ

the correspondence A * : « -* Y« M-x.
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is one-to-one, and i t is easily
seen that this correspondence Δ x
is a dual-order-isomorphism from oι*
to σι% . Hence the order-type
of <x£ does not depend on the choice
of x e X.

(4.7) WΘ shall see that for any
subset £.* of 0l*x ,

are also regular intervals
β

and

Indeed, if u,v e ί\
and <P (u) « Λ Y« , f e) , # , then,
since each interval Y« is regular,
f (v)e Y« for any Y« e & £ ,

hence ?(v) βfl Y* This shows that
Λ ϊ « , Y

Λ
6 ^ is regular*

If U,V € UY« , Y* 6 & \
then there exists a Yp « ,&,* ,
which contains u, and exists a
¥> € *δΛ > which contains v. But
since x Y<» ^ Y^ , one of Y<> and
Yr contains the other (4*4). Assume
Yr- c Yp » then u,v β γ ? •

We shall see that if f (u) « U Y« ,
then ? (v )€ ϋ YΛ . Indeed, if
x e 9> (γ p) then ?(YP) * Y? , since

f (Y?) is a co-class of Yf * In this
case 9 (v) e 9 (??) * Yf « U Yf If
x ^ f (Yp)» then there exists a
Ys e &J , which contains 9 (u)«
But then, S>(u) * Y* rsf(Yf). and
Yf < ? (Y?), since x * φίY,,). Hence

9 (Yd) c γ s , and so
3>(v) e <J> (γ ? ) c Y$ c U Y« * Hence
t (u) 6 U Y« implies ? (v) * U Y«,

and so V Ŷ  is a regular interval*
(4.8) For any pair of elements

x,y e X, the intersection sm. ^^
of all regular intervals, which con-
tain both x and y, is a regular inter-
val, and this is the minimal regu3ar
interval which contains both x and

On the other hand, the union ̂*/JF
of all regular intervals which con-
tain x and do not contain y, is a
regular interval, and this is the
maximal regular interval, which con-
tains x and does not contain y<>

It is easily seen that Kx,}
is properly contained in

 /
7Πx,^ ,

and that there exists no regular
interval which contains Λ x ^
and is contained in 'flί*,* , pro-
perly.

*,*

Definition ^ For a pair of re-
gular intervals trt , vc. such that
1TL D 7L , if there exists no regular
interval which properly contains
71 , and is properly contained in
77C , then we call the pair ί iff- , Ή 3

the simple pair of regular intervals
0

Especially, the pair [ fL*.*, 7t*.} ]
where iκ*,+ is the minimal regular
interval which contains both x and y,
and Ίln?t is the maximal regular
interval which contains x and does
not contain y, is a simple pair, which
we call the simple pair defined by

of X.

(4.9) The set of all regular
intervals nrt « 0Lχ , which cover
some TL c Λx is denoted by 0t * .
Since the correspondence Δ X from

01* 'to OL\ i s a dual isororphism,
&x gives also a dual isomorphism

from Λ to a* k

If [ it , 7t ), <m. , m. € 0ί% ,
is a simple pair, then TL is A re-
gular interval of the homogeneous
chain ΉL » Hence there exists a
homogeneous chain Id, by which fR- is
represented as an ordinal product:

HI (Theorem 7)

y, p
we call the simple pair
the pair [x, yj of eleme

If 'TΠi is a co-class of TΓC ,
and ini is a co-class of /7t such
that <n, c fK, , then for an auto-
morphism f of X, such that 9>f'n)=9T/#
<f (9tt) a 77i, Hence the automorphism

f gives an isomorphism from the
chain of all co-classes of *7t in /wt ,
to the chain of all co-classes of σt,
in nrrtr • In other words, i f '7rt,
is represented as on, » N J/cί ,
then N is isororphic to ίί. Hence If
we denote the chain M by /nγ/rL ,
then we can assert:

If <X is a regular division in
the index-chain OL of λ, then for
any regular interval m. e <χ ,
and any regular interval ft. which
is covered by TTL , the homogeneous
chain /7n/m is isomorphic to a de-
finite chain X*

Definition 10. We shall call the
above chain λ<χ , the factor chain of
X, which corresponds to a regular
division o< In the index chain ot
of X.

(4.10) We shall see that every
factor chain of X is a simple homo-
geneous chain.

We have already seen that every
factor chain Is homogeneous.
(Theorem 7)

We shall prove that the chain
M as fft/n , where it c nn € o( € OL
and 7L is covered by tn. , is a
simple chain.

Indeed Jfi is the chain of co-clas3es
of 7L in /ίfL . If there should
exist a proper regular interval L
in Iβ, then the union C of co-classes
in L, would become an Interval of

TΠ. . If for an automorphism f
of 47t , an element x of X, Is mapped
in £ , then the co-class n, of 7C ,
which contains x is mapped entirely
onto a co-class Tt*. , which is con-
tained in X . But since f indu-
ces an automorphism of M, any co-class-
es Ύl/>e L of TL must be mapped
* n X , as the set L of these co-
classes Tlf is a regular Interval
of M. Hence any element in £, is
mapped in £, , that i s , Z is a
regular interval of σn, . This
is obviously a proper interval of
nn. , and properly contains /7t , since

L is proper interval of W Ihis con-
tradicts the assumption that TO. covers
7L . Hence the chain M must be sim-
ple.
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The factor chain λ* is isoiπorphlc
to this ί/«, by the definition, he'nce
every factor chain is a simple homo-
geneous chainβ

(4.11) We number the elements of
X with ordinal numbers T < to

e
 ,

where u>
t
 is a suitable ordinal

number, for instance, the Initial
ordinal number with the power of the
chain X, and denote the element num-
bered with r b y x ( τ ) .

We have already seen that for any
simple pair [ m.

 f
 it ] the chain

M a. '"yVε. is lsoir.orphic to the factor
chain X* , where o< is the regular
division which consists of all co-
classes of Φc « We choose from each
factor chain X

Λ
 an element

 #
Y
0
<
/ 0
 ,

and define an isomorphism Φ<m.
from '

rr
y<rt to X K in such a way that

the co-class of fC , which contains
the element of X, numbered with the
least ordinal number within m. ,
is mapped onto the chosen element
y*,t> of Xβr . Since the factor

chain X K is homogeneous, such an
isomorphism can be always selected*

(4.12) For each x e X, we shall
define a function Ϊ

Λ
 o£ ot , which

selects for each « e OL , an ele-
ment y* * fχ(") € Xx For each
« c <n. , there exists a regular inter-
val on.* e (X. , which contains x, and
a regular interval <n. «• which is
covered by oft^ , and contains x
Set

fχ(«

We shall see that the set
Όf

κ
 - { * « OL I fx Cβί) + *f*,o } ( { o< I p)

denotes the set of all elements
which satisfy the condition P) satis-
fies the descending chain condition*

Take any subset E of Df< , and
set Λ

X
(B) « {Δ

x
Ce()\ o< eE J

where Δx is the dual isomorphism
from OL* to 0L\ , which was de-
fined in (4.6), We denote the union
of the regular intervals fΐL

Λ
 in

ΛJC(E), by £ i then there exists
the least ordinal number X with
which an element x in £ is numbered*
oc ( X ) is contained in some *Λ «

* ^ac(E) . If another regular in-
terval <*£<»:= Δ * (0> » ? «E
contains nτι« , then since Ύn.$
covers some τε

f
 e OL*

X
 , mt^ must

be contained also in σι
9
 « Hence

71$ contains x( τ ) „ But T is the
least ordinal number with which an
element in £ is numbered, hence by
the definition of function f

x
 ,

f*(f)
 β
 f?,o This contradicts the

assumption that ? e E
 c
 Dί»

Hence 'ίTtoί is the maximal regular
interval in Δ

x
 (E), that is >

o< ss Δ « Cm.* ) is the least regu-
lar division in E

Φ
 Hence any subset

of T)f
Λ
 has the least element.

Now let x,y 6 X, x < y, and let
fsc and f j be functions defined
above- corresponding respectively to
x and to y* Then there exists a
simple pair [ 1K. , Ή. ] defined by the
pair [x, y] (cf. Definition 7) and

for p « A-^ (-m), f«{*) < »e
since the co-class of m. which con-
tains y, is greater than the co-
class of ?ί , which contains x, in
the chain M » "y^ . Moreover, p
is the least element in the set

Indeed, if for a simple pair [ σn
lt

 r
rt,]

t

1K, , ̂ , 6 Olic » W>, contains mt
properly, then obviously 'TC, con-
tains 71 properly. But since m. is

the maximal regular interval which
contains x and does not contain y,
σt, contains both x and y Hence

for Y * Δi' C77C,), i
Λ
cγ) = *ιtr)

that is, for any / < ? , fx(/) = f^ί^).
This shows that <? is the least ele-
ment in the set Df

Λ
, ̂

 β
 It is

similarly seen that the correspon-
dence x —* £χ is one-to-one.

(4*15) Definition 11. Let OL be
a poset, and I'or each <x € OL ,
there be a corresponding poset X* .
Let f*,o be a fixed element in X

Λ

The lexicographic product TT
Λ(&L
 χ

-
< %:„,„>

is defined as the set of all func-is defined as the set of all func-
tions f which select for each <X e OX.
a Jrf =f(«O e Xβ, and rake the sets8
 f

satisfy the descending chain condi-
tion, where f < g means that for every
o<eθL such that f(<*) # g(#), there

exists an p < <X such that ( ) (

This definition is a slight exten-
tion of that of the maximal product
by F. Hausdorff (cf. [2] pp

β
l 47-161),

and the following statements are
easily proved*

The axioms of order are satisfied
without any restrictive condition on
the posets concerning, such as the
descending chain condition on the
index set σt

 β

If we denote the set f* | f (<x) * g(«ϊ}
by D f

t
g , and the set of all minimal

element of D by min(D), then f < g
is equivalent to that £(*) < g(<x)
for any o( € mίn{Ώf

 t
g )«

If any factor set Xtt , in the
lexicographic product X « Πot«.

Λ
 \<Ju,o>

is homogeneous, then the order type
of the resultant system X does not
depend on the choice of the fixed
element ^^,0 !n X , and in this
case the sign < y*,o > in the lexi-
cographic product can be omitted*
Abreover in this case that each fac-
tor set is homogeneous, the resultant
poset is also homogeneous*

If any factor set X* is a homo-
geneous chain, and the index set OL
is a chain, then the resultant poset
is also a homogeneous chain*

(4*14) The following theorem
follows from the propositions in
(4<J2), directly*

Theorem iB̂  For any homogeneous
chain X> there exists a homogeneous
chain X which is represented as a
lexicographic product IT***. X<* of
simple homogeneous chains X«ι , xefli ,
and X can be embedded in it as a
subchain:
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X C X : Γ I CCOL X«

where OL is a chain isomorphic to
the index chain of X, and each X*
is isoirorphic to a factor chain
of X.

In this decomposition it is easily
seen that the regular interval in
X corresponds to the set of functions
f 6 χ

f
 such that the values of f (<x ),

<* e # , are definite, where &
is a segment of Ot «

(4.15) At first the author ex-
pected that the conjecture in the
following problem would be correct.

Problem 2^ Does the identity

X = ΠoteoL X«

hold, for any homogeneous chain X,
and for its index chain <t , and
the factor chains X « ?

This problem seems to be equiva-
lent to the following one.

Problem 3. For any homogeneous
chain, doesThβre exist a minimal
proper regular interval?

But the author could not decided
whether those expectations would be
correct or false, and the identity
in the Problem 2 is confirmed only
in the following case.

Theorem 9« If in a homogeneous
chain X, for any family of regular
intervals with the finite-intersection-
property, the regular intervals in
it have a non-void intersection, then
the chain X is a lexicographic pro-
duct of its factor chains:

nβ
Proof. We need only to prove that

for any function f in the lexicogra-
phic product Π o ( t Λ X*, there exists
an x e X, which corresponds to f.

LβLt f e π « &0L X * . For a
f e Df = f « I /(*) Φ *?*,©}
we shall define a regular interval

WLQ in the regular division £
Let $ι be the minimal element of
D* (remark that the D* sat is f ies the
descending chain condition.), and
select as om., , the regular interval

in, e $t , which contains x( l )
(4.11), and l e t Ήt be the regular
interval covered by /?Λ/ , such that

Θm,Cn,) m { (?,) (4.11). If IOΓ
any element £* in Df less than a

f̂  € Of, the simple pair [ irt?,, i t ^
is defined in such a way that <m.e c Tt
for V < £ , then Λ ^p ' is non-
void regular interval by assumption,
hence Π tLfv intersects sor.e co-
class nrtf^ in p,* * Df But
since any 71Q» contains / W t ^ ,
^ c o n t a i n s irtβM, . We select as
the regular interval in it/?* which

Λ Ίtf» contains the element numbered
with the least ordinal number in
(\ 'TLfw , and set 7L(ŝ  * Λ^^
Thus we can inductively select a
simple pair [ Wlfa, 'nfl/">Ί ί > O Γ

p^ € Df . r\7L^, fa. * Of
i s non-void. If Π ^ / L consists
of only one element x, then set
x(f) « x. If ί\ it-it/*. i s yet a
proper interval, then set x(f) =
where X is the least ordinal num-
ber, with which an element in Π Tt^^
is numbered* (I t i s easi ly seen that
the former or the latter case occurs,
when Df i s cofinal to at or not,
respectively.)

Then, as easi ly seen, this cor-
respondence f —> x(f) 6 X, is the
converse one of the correspondence
x — * fjr, defined in (4.32). Hence
the mapping x ~—> f* ranges a31 over
Tl*toL X Λ % and the proof is accom-
plished.
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