§1. The notion of convergence of a muitiple series is somewhat complicated; we can consider several kinds of convergences. Here we treat mainly double sequences or double series for siraplicity's sake, but the same holds for general multiple ones.

Usually the convergence of a double sequence $s_{m n}$ is defined as follows: a double sequence
$\left\{s_{m n}\right\}_{m, n=0}^{\infty}$ converges to $s, 1 i$
for any given $\varepsilon>0$, we can find a number $l_{0}=\ell_{0}(\varepsilon)$ such that for every $m, n \geqq l_{0}$, we have $\left|s_{m n}-s\right|<\varepsilon$. The convergence of a double series
(1)

$$
\sum_{m, n=0}^{\infty} a_{m n}
$$

whose sum is s, is delined by the convergence of its partial sums
(2)

$$
s_{m n} \equiv \sum_{\mu=0}^{m} \sum_{v=0}^{n} a_{\mu \nu}
$$

to s in the above sense. we call this the P-convergence (P means the "partial sum") in this paper.

On the other hand, we say a double series (l) is A-convergent (A means the "arirangement"), if at least one of the simple series in which the original series has been arranged is convergent. ${ }^{\text {i }}$ In this case, the surn has no mean generally, because it depends on the arrangement, unless
(1) is absolutely convergent.

It is evident that these two notions coincide with each other for the series with positive terus, and that the absolutely convergent series is A - anci P - convergent. But a se-. ries which is A - and P-convergent is not always absolutely convergent as easily shown by:

Example 1.

$$
\begin{aligned}
& 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots \\
&+(-1)+\left(-\frac{1}{2}\right)+\left(-\frac{1}{3}\right)+\left(-\frac{1}{2}\right)+\ldots \\
&+ 0+0+0+0+\ldots
\end{aligned}
$$

$$
+0+0+0+0+\ldots
$$

Also these two convergences are not the same in general cases. In lact:

Example 2.

$$
\left.\begin{array}{r}
0+1+\frac{1}{3}+\frac{1}{5}+\cdots \\
+\left(-\frac{1}{2}\right)+0+0+0+\cdots \\
+\left(-\frac{1}{4}\right)+0+0+0+\cdots \\
+\left(-\frac{1}{6}\right)+0+0+0+\ldots \\
+\cdots \cdot
\end{array}\right) .
$$

is A-convergent but not P -convergent. Conversely,

Example 3.

$$
\begin{aligned}
& -1+1+2+3+4+\cdots \\
& +1+(-1)+(-2)+(-3)+(-4)+\cdots \\
& +2+(-2)+0+0+0+\ldots \\
& +3+(-3)+0+0+0+\ldots
\end{aligned}
$$

We remark that the terms of an aconvergent series are bounded, but this is not true for p -convergent series as has already been shown in Example 3. However, we have from the definition,

Lerma 1. If the double series
(1)

$$
\sum_{m, n=0}^{\infty} a_{m n}
$$

is P -convergent, there exists a nurnber ℓ such that its partial sums

$$
\begin{equation*}
s_{m n}=\sum_{\mu=0}^{m} \sum_{v=0}^{n} a_{\mu \nu} \tag{2}
\end{equation*}
$$

are uniformly bounded for m, n, provided that both suilixes m and n are $\geqq \ell$.

Corollary. Since we have

$$
\begin{align*}
a_{m n}= & S_{m n}-S_{m n-1}-S_{m-1 n}+ \tag{3}\\
& +S_{m-1 n-1} \quad(m, n \geqq 1)
\end{align*}
$$

$a_{m n}$ are also unilominy bounded for $m, n \geqq l+1$.

Dolinition 1. the minimal integer $\ell \frac{\text { satislying the conclusion oi }}{}$ Lemma 1 is calied the limit of boundedness of the series (1).
§2. For a double power series
(4)

$$
\sum_{m, n=0}^{\infty} \alpha_{m n} x^{m} y^{n}
$$

the following result is very weilknown ${ }^{2)}$:

Lemma. 2. It the terras of a double power series
(4)

$$
\sum_{m, n=0}^{\infty} \alpha_{m n} x^{m} y^{n}
$$

are unirormly bounded at $x=x_{0}$
$y=y_{0}$, or especially in (4) is A-convergent at $x=x_{0}, y=y_{0}$, then (4) converges unirormiy and absolutely in every compact subset contained in $|x|<\left|x_{0}\right|,|y|<\left|y_{0}\right|$

The assumption of Lemma 2 cannot be replaced by the P-convergence at $x=x_{0}, y=y_{0}$, for peconvergence does not inply the boundedness oi' the terms or (4). It seems to me that the Theoreril on p.le in the book of Proi'. M.Tsuji ${ }^{3}$ saying as follows is inexact: "II' a power series

$$
\begin{equation*}
\sum_{m_{1}, \cdots, m_{n}}^{0, \cdots, \infty} a_{m_{1} \cdots m_{n}} z_{1}^{m_{1}} \cdots z_{n}^{m_{n}} \tag{*}
\end{equation*}
$$

is convergent [which means the $P-$ convergonce in our torminology at $\quad z_{k}=z_{k}^{\circ}(\neq 0)(k=1, \cdots, n)$, then (*) converges uniformy and absolutely $\ln \left|z_{k}\right| \leqq x_{k}<\left|z_{k}^{0}\right|, \quad(k=1, \cdots, n)$, where x_{k} are arbitrary positive numbers less than $\left|z_{k}\right|$."

Indeed, the rollowing example shows that the P-convergence is not convenient lior the convergence of power series.

Example 4. Thes power serios with

$$
\begin{aligned}
& \alpha_{m n}=\left\{\begin{array}{cc}
4 & m=n=0, \\
1 & m=0, n=1 \text { and } m=1, n=0, \\
2 & m=0, n \geqq 2 \text { and } m \geqq 2, n=0, \\
-2 & m=n=1, \\
-1 & m=1, n \geqq 2 \text { and } m \geq 2, n=1, \\
0 & m, n \geqq 2,
\end{array}\right. \\
& \text { 1.e.. } \\
& \sum_{m, n=0}^{\infty} \alpha_{m n} x^{m} y^{n}=(2-y) \sum_{m=0}^{\infty} x^{m}+ \\
& \\
& +(2-x) \sum_{n=0}^{\infty} y^{n}
\end{aligned}
$$

is P -convergent (but not A -convergent)
at $x=2, y=2$ yet its absolute
convergence region is not $|x|<2$, $|y|<2$, but is $|x|<1,|y|<1$.

To avoid such cases, the absolute convergence is assumed lor Lerman 2 in the books of Bochner-martin ${ }^{2)}$ and Severi ${ }^{4}$), but iti seems to me that A-convergence is enough tor Leman 2. However, what will happen il we dare take the P -convergence to the last? We shall show in the next section, that such singular phenomenon as in Example 4 occurs only on some singular sets, or more exactly, the pointset on which (4) is P-convergent but not absolutely convergent has no inner point.

§3. Theorem. Let the power series

$$
\begin{equation*}
\sum_{m, n=0}^{\infty} \alpha_{m n} x^{m} y^{n} \tag{4}
\end{equation*}
$$

be P-convergent at every point oi a neighborhood U of a point $\left(x_{0}, y_{0}\right)$ Then (4) converges absolutely and uniformly in $|x| \leqq\left|x_{0}\right|,|y| \leqq\left|y_{0}\right|$.

Proof. Using Lemraa 2 , we may assume that $x_{0} \neq 0, y_{0} \neq 0$ and the neighborhood

$$
\begin{equation*}
U:\left|x-x_{0}\right|<r,\left|y-y_{0}\right|<\underline{r} \tag{5}
\end{equation*}
$$

has no cormion point with the planes $x=0$ and $y=0$. Yut
(6)

$$
\sigma_{m n}(x, y) \equiv \sum_{\mu=0}^{m} \sum_{v=0}^{n} \alpha_{\mu \nu} x^{\mu} y^{\nu}
$$

We shall lirst give a derinition and a lemma lor the later use.

Dorinition 2. We say that a systom or real-valued iunctions $\left\{f_{1}\left(x_{1}, \cdots, x_{n}\right)\right.$, $\left.\cdots, f_{k}\left(x_{1}, \ldots, x_{n}\right)\right\}$ delined in a set W^{\prime} of the real Cartesian n space is lower semi-continuous, il for any given real values $\gamma_{1}, \cdots, \gamma_{k}$, the point set
(7) $\quad A\left(\gamma_{1}, \cdots, \gamma_{k}\right) \equiv\left\{\left(x_{1}, \cdots, x_{n}\right) \mid\right.$

$$
\left.f_{i}\left(x_{1}, \cdots, x_{n}\right) \leqq \gamma_{i},(i=1, \cdots, k)\right\}
$$

is always closed in W.
This definition does not seem to imply the lower semi-continuity oi each component $f_{i}\left(x_{1}, \cdots, x_{n}\right)$.

Lemraa 3. Let a system of functions $\left\{f_{1}\left(x_{1}, \cdots, x_{n}\right), \cdots, f_{k}\left(x_{1}, \cdots, x_{n}\right)\right\}$ delined in an open set W, be lower semi-continuous. Suppose that each component is non-negutive and inite
at every point of W. Then there exists an open subset of W in whicn $f_{2}\left(x_{1}, \ldots, x_{n}\right) \quad(i=1, \cdots, k)$ are bounded.5)

Prool. Putting

$$
\begin{array}{r}
A_{\gamma} \equiv A(\gamma, \cdots, \gamma)=\left\{(x) \mid f_{i}(x) \leqq \gamma,\right. \\
\quad(i=1, \cdots, k)\}, \\
(\gamma=1,2,3, \cdots),
\end{array}
$$

these sots are all closed and we have

$$
W=\bigcup_{y=1}^{\infty} A_{\gamma}
$$

by our hypotheses. In non or the Ay $(\gamma=1,2, \ldots)$ has inner points, A_{y} is nowhere dense and then W is a point-set ol first-category, contradicting that W is a non-empty open set. Hence there must exist a γ such that A_{γ} has inner points, which proves our I,emma //

We now return the prool of our Theorem and proceed on. For every point $(x, y) \in U$, we denote by $\ell(x, y)$ the limit of boundedness of $\sum \alpha_{m n} x^{m} y^{n}$, and put
(8) $M(x, y) \equiv \sup \left\{\left|\sigma_{m n}(x, y)\right|\right.$;

$$
\text { for } \quad m, n \geqq \ell(x, y)\} \text {. }
$$

By our assumptions. $\ell(x, y)$ and $M(x, y)$ are non-negative and finite at every point (x, y) in (5). Next we shali show that the system of functions $\{\ell(x, y)$,
$M(x, y)\}$ is lower semi-continuous in the sense of Deilnition 2. In fact, take two positive numbers β and γ and put

$$
\begin{gathered}
\text { (7) } A(\beta, \gamma) \equiv\{(x, y) \mid \ell(x, y) \leqq \beta, \\
\text { and } M(x, y) \leqq \gamma\} .
\end{gathered}
$$

We remark that $\ell \leqq \beta$ is equivalent to $\ell \leqq[\beta]$ where [] means the Gauss notation, for ℓ takes only the integrai values.
Taking a sequence $\left\{\left(x_{\lambda}, y_{\lambda}\right)\right\}_{\lambda=1}^{\infty} \in A(\beta, \gamma)$
converging to a point (ξ, η)
in U, these assumptions (7), (8)
tell us that

$$
\begin{gathered}
\left|\sigma_{m n}\left(x_{\lambda}, y_{\lambda}\right)\right| \leqq \gamma \\
\text { for every } \quad m, n \geqq[\beta] \\
\lambda=1,2, \ldots
\end{gathered}
$$

But since all $\sigma_{m n}(x, y)$ are polynomials of x, y, and since γ does not depend upon m, n
and λ, we have, by tending λ to

$$
\left|\sigma_{m n}(\xi, \eta)\right| \leqq \gamma,
$$

for every $m, n \geqq[\beta]$.
This means that $\ell(\xi, \eta) \leqq[\beta] \leqq \beta$ and $M(\xi, \eta) \leqq \gamma$, which proves that (7) is closed in U./

Therefore our systern of I'unctions $\{\ell(x, y), M(x, y)\}$ satisilies the conditions of Lemma 3 in a open set

$$
\text { (9) } W \equiv\left\{(x, y) \left\lvert\, \begin{array}{ll}
\left|x-x_{0}\right|<r, & |x|>\left|x_{0}\right| \\
\left|y-y_{0}\right|<r, & \left.|y|>\left|y_{0}\right|\right\}
\end{array}\right.\right.
$$

and, by Lerama 3, we have an open neighborhood
(10) $V:\left|x-x_{1}\right|<\rho,\left|y-y_{1}\right|<\rho$
contained in W, in which $\ell(x, y)$ and $M(x, y)$ are bounded. Thus, we have obtained a positive integer l, and a positive number M such that
(11) $\left|\sigma_{m n}(x, y)\right|<M$

$$
\text { for } m, n \geqq \ell \text {, and } \quad(x, y) \in V \text {, }
$$

and then we have fror (3), (6), (9) and (10),
(12) $\left|\alpha_{m n}\right|<4 M /\left|x_{1}\right|^{m}\left|y_{1}\right|^{n}$,

$$
\text { for } m, n \geq \ell+1
$$

where $\left|x_{0}\right|<\left|x_{1}\right|$ and $\left|y_{0}\right|<\left|y_{1}\right|$.
Next we consider the mixed terms $m \leqq l, n>l$ or $m>l$, $n \leqslant \ell$ - Putting
(13) $\left\{\begin{array}{l}p_{n}(x) \equiv \sum_{m=0}^{\ell} \alpha_{m n} x^{m}, \\ q_{m}(y) \equiv \sum_{n=0}^{\ell} \alpha_{m n} y^{n},\end{array}\right.$
we have irora (6),

$$
\left\{\begin{array}{l}
p_{n}(x) y^{n}=\sigma_{l n}(x, y)-\sigma_{l n-1}(x, y) ; \\
q_{m}(y) x^{m}=\sigma_{m l}(x, y)-\sigma_{m-1}(x, y),
\end{array}\right.
$$

for $m, n \geqq 1$, and so by (11),

$$
\begin{aligned}
& \left|p_{n}(x)\right|<2 M /\left|y_{1}\right|^{n} \\
& \text { for } n \geqq \ell+1, \quad \text { in }\left|x-x_{1}\right|<\rho ; \\
& \left(q _ { n } (y) \left|<2 M /\left|x_{1}\right|^{m}\right.\right. \\
& \text { for } m \geqq \ell+1, \quad \text { in }\left|y-y_{1}\right|<\rho .
\end{aligned}
$$

Now, by the Cauchy's coerlicientestimation, we easily have:

Lemma 4. If a polynomial

$$
p(x) \equiv \sum_{i=0}^{\ell} a_{i} x^{i}
$$

is $|p(x)|<1$ in a circle $\left|x-x_{1}\right|<\rho$, we have $\left|a_{i}\right|<C$, where C is a constant depending only on l, ρ and $\left|x_{1}\right|$ -

Froof. Putting

$$
p(x)=\sum_{j=0}^{\ell} f_{j}\left(x-x_{1}\right)^{j}
$$

we have

$$
\left|f_{j}\right| \leqq \frac{1}{\rho^{j}}
$$

and then

$$
\begin{aligned}
& \left|a_{i}\right|=\left|\sum_{k=0}^{l-i} f_{i+k}\binom{2+k}{i}\left(-x_{1}\right)^{k}\right| \\
& \leqq(l+1) \cdot l!\cdot \frac{\max \left(\left|x_{1}\right|^{l}, 1\right)}{\min \left(\rho^{l}, 1\right)}
\end{aligned}
$$

Applying Lerma 4 to (13) with (14) we have

$$
\left|\alpha_{m n}\right|<C \cdot 2 M /\left|y_{1}\right|^{n}
$$

for $m \leqq \ell, n>\ell ;$
$\left|\alpha_{m n}\right|<C \cdot 2 M /\left|x_{1}\right|^{m}$
for $m>\ell, n \leqq \ell$.

The terras with $m, n \leqq \ell$ in (4) are only finite numbers, and so, summing up (12) and (15), we rinally obtain the estimation

$$
\begin{equation*}
\left|\alpha_{m n}\right|<K /\left|x_{1}\right|^{m}\left|y_{1}\right|^{n} \tag{16}
\end{equation*}
$$

for all $m, n=0,1,2, \cdots$, where $\left|x_{0}\right|<\left|x_{1}\right|$ and $\left|y_{0}\right|<\left|y_{1}\right|$. Therefore the original power series (4) converges absolutely and unitiormly in $|x| \leqq\left|x_{0}\right|,|y| \leq\left|y_{0}\right|$ by Lemma 2, which proves our Theorem completely.

This paper was done under the
"Kagaku-konkyû Zyoseihozyokin", (Grand in Aid for the Miscelianeous Scientific Research).
(*) Received Oct. 13, 1952.
(1) W.F.Osfood: Lehrbuch der Fiunktionentheorie, II 1 (1923) Leipzig and Berlin; and H. Behnke- P.Thullen: Theorie der Funktionen mehrerer komplexer Veränderlichen, (1934) Berlin.
(2) See for example, S.Bochner W.T.Martin: Several complex variables, (1948) Princetion, p.30.
(3) M.Tsuji: Ta-hukuso hensû kansûron. (Theory or Iunctions of several complex variables), (1935) Tokyo.
(4) F.Severi (transiated intc Japanese by S.Iyanaga): Severi ta-hens 0 kuiseki kansûron kôgi, (Lectures on the theory of analytic lunctions or several variables by Severi), (1936) Tokyo.
(5) Cf. S.Bochner - W.T.Martin, 2), p.139, Theorem 3.

Department of Mathematics, Saint Paul University, Tokyo.

