1. The rollowing theorem has been proved by Borsuk [I] - Let f be a mapping derined on an n-dimensional sphere S^{n} into Euclidean n-dimensional space R^{n}. ? ?hen there exists a point p on S such that

$$
f(p)=f\left(p^{*}\right)
$$

where p^{*} denotes an antipodal point
of p
The object of the present paper is to prove the following analogies of Borsuk's theorem in the case $n=2$ (in the case $n=1$, they are trivial).
2. THEOREM 1. Let S be an 2dimensional sphere center z in Euclidean 3 -dimensional space R^{3} and let f be a mapping delifned on
S into Euclidean 2-dimensional space R^{2}. Then there exist two points p, q on S such that the
vectors $z p, z q$ are perpendicular and

$$
f(p)=f(q)
$$

PROOF. (It is based on the rethod of Kakutani [2]). Let us consider
S as a sphere of radius 1 in 3 space R^{3}, with the origin $Z=$ ($0,0,0$, o1' R^{3} as a center. Let us put $p_{1}^{\circ}=(1,0,0), \quad p_{2}^{\circ}=(0,1,0)$. Let further $G=\{\sigma\}$ be the Eroup of all rotations ol R^{3} around its origin Z.

For any ${ }^{2} \sigma \in G$, consider the
d l^{\prime} ined by $\overline{f\left(\sigma\left(p^{\circ}\right)\right) f\left(\sigma\left(p^{\circ}\right)\right)}$ vector in R^{2} delined by $\overline{f\left(\sigma\left(p_{1}\right)\right) f\left(\sigma\left(p_{2}^{\prime}\right)\right)}$ - In order to prove our theorem, it surices to show that there exists a rotation $\sigma \in G$ such that $f\left(\sigma\left(p_{1}^{\circ}\right)\right)=f\left(\sigma\left(p_{2}^{\circ}\right)\right)$ - Ne assume the contrary, and shall draw a contradiction from it. By assumption, for any $\sigma \in G$, the vector $\left.\overline{f\left(\sigma\left(p_{1}^{\circ}\right)\right) f\left(\sigma\left(P_{2}^{\circ}\right)\right.}\right)$ is not zero. Let us take an unit vector in R^{2} from the origin parallel to $\overline{f\left(\sigma\left(p_{1}^{\circ}\right)\right) f\left(\sigma\left(P_{2}^{\circ}\right)\right)}$ and put $F(\sigma)=$ the enc point 01° this unit vector. Then $\sigma \rightarrow F(\sigma)$ is a mapping of G into S^{l}.

Tet ℓ be the straight line $x=y$. $z=0$ and H be the subgroup of G consisting of all rotations around the line l. We ray denote eiements of H by $\sigma_{\theta} \quad(0 \leqq \theta \leqq 2 \pi)$, where θ denotes the angle of rotation around the axis ℓ measured in such a sense that

$$
\sigma_{\pi+\theta}=\sigma_{\theta} \sigma_{*} \quad, \text { where } \sigma_{*} \text { denotes }\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

By the above, we show easily $F\left(\sigma_{\pi+\theta}\right)=$
$-F\left(\sigma_{\theta}\right)$. (jor any $x \in R^{2},-x$ be a symatry of x about the origin). Then the fact stated above means that F maps H onto S^{\prime}. If we consider H as a S^{\prime}, by Eorsuk [1], F is the untipocal mapping of S^{\prime} in seli and its deeree m is not zero.

Let x be the increment of the angle or the vector $\frac{\operatorname{ZF}\left(\sigma_{\theta}\right)}{}$ in R^{2} when θ runs iron 0 to 2π. Then α must be of the form : $\alpha=2 m \pi$. Hence as θ runs riom 0 to 2π twice time continuously, the iotai increment of the angle of $\overrightarrow{Z F\left(\sigma_{\theta}\right)}$ is $4 m \pi$ -
on the other hand, e H is homotopj. c to zero on G. rihen $F(2 H)$ is homotopic to zero on S^{1}. This is, however, impossible since the total increment of the angle or $\overrightarrow{Z F\left(\sigma_{\theta}\right)}$ is $4 m \pi \neq 0$. Q.F.D.

In the proor, the lact that p_{1}^{0} and p_{2}^{0} are perpendicular is not only essential but also we can replace it by the arbitrary dillerent points p_{1}^{\prime} and P_{2}^{\prime} which subtend the angle θ at $Z, 0<\theta<\pi$. Combined it with Borsuk's theorem in the case $n=2$, we have the rollowing,

THEOREM 2. Let S be an 2 -diniensional spnere center $\frac{Z}{2}$ in Euclidean 3-dimensional space R^{3} and lat f be a mapping deinined on S into Euclidean 2-dimensional space R^{2} and let θ be a given angle such that $0<\theta<2 \pi$. Then there exist two points F and g on S such that p and g subtend the angle

$$
f(p)=f(g)
$$

Remark. By using Stielel's manifold $V_{3,2}$ [3] and Eilenverg's theorem [4] ${ }^{3,2}$, we can prove the above theorens. But this method is not different from the above.
3. Theorein 3. Let S be an $\frac{\text {-dimensional sphere center }}{}$ Euclidean 3 -dinensional space $\frac{i n}{R^{3}}$ and let f be a mapping derined on S into an orientable 2-dimensional manilold M with the genus $\neq 0$ and θ be a given angle such that $\frac{0<\theta<2 \pi \quad \text { Then there exist two }}{\text { points } p \text { and } g \text { on } S \text { such that }}$
P and q subtend the angle θ
at Z and

$$
f(p)=f(g)
$$

PROOF. For any mapping $i: S \rightarrow M$, since $\pi_{2}(M)=0$, we have a homotopy $f_{t}: S \rightarrow M, 0 \leq t \leq l$ such that

$$
\begin{array}{r}
f_{1}(x)=f(x) \text { for ail } x \in S \\
f_{0}(x)=\text { one lixed point } m \text { of } M .
\end{array}
$$

The universal covering space ol M is R^{2} and g denotes the projection $g: R^{2} \rightarrow M^{\prime}$.

Using the covering homotopy theorem [5] , we have a honotopy f_{t}^{*} : $S^{2} \rightarrow R^{2}, 0 \leqq t \leqq 1$, such that

$$
g f_{t}^{*}=f_{t} \quad \text { for all } t
$$

Especiaily we have $g f_{1}^{*}=f_{1}=f$
By Theorem 2 there exist two points
$p, 8$ on S such that p and q subtend the angle θ at Z and $f^{*}(p)=f^{*}(q)$. Hience we have $g *^{*}(p)=g f^{*}(g)$ i.e. $\quad f(p)=f^{\prime}(q)$ Q..E.D.
(*) Received Oct. 6, i952.
[1] K.Borsuk; Drei Satz uber die ndinensionale eukildischer Sphare, Fund. Math., 20 (1930), pp.177-190.
[2] S.Kakutani; a prool that there exists a circunseribing cube around any bounded ciosed convex set in R^{3}, Ann. of Math.; $43(1942)$, pp. 739-741.
(3] E.Stiefel; Richtungsfelder und Fernparallelismus in n-dinensionalon Mannigitaltigkeiten, Comm. Math. Helv. 8(1935-36), pp.305-353.
[4] S.Eilenbers; Uber ein Problen von H. Hopl', Funa. Math., 28(1937), pp.58-60.
[5] S.Eilenverg; The classification or sphere bundies, Ann. Ol' Math., 45(1944), pp.294-311.

Waseda University nokyo.

