By Hiroshi NOGUCHI

1. The following theorem has been proved by Borsuk [1]. Let f be a mapping defined on an n-dimensional sphere S^n into Euclidean n-dimensional space R^n . Then there exists a point p on S such that

$$f(p) = f(p^*)$$

where p^* denotes an antipodal point of p .

The object of the present paper is to prove the following analogies of Borsuk's theorem in the case n=2(in the case n=1, they are trivial).

2. THEOREM 1. Let S be an 2dimensional sphere center Z in Euclidean 3-dimensional space R^3 and let f be a mapping defined on S into Euclidean 2-dimensional space R^2 . Then there exist two points p, g on S such that the vectors zp, zg are perpendicular and

$$f(p) = f(q)$$

PROOF. (It is based on the method of Kakutani [2]). Let us consider S as a sphere of radius 1 in 3space \mathbb{R}^3 , with the origin Z =(0,0,0,0) of \mathbb{R}^3 as a center. Let us put $\beta^{\circ} = (1,0,0), \quad \beta^{\circ} = (0,1,0).$ Let further $G = \{\sigma\}$ be the group of all rotations of \mathbb{R}^3 around its origin Z.

For any $\sigma \in G_1$, consider the vector in \mathbb{R}^2 defined by $\overline{f(\sigma(p^2))}f(\sigma(p^2))$. In order to prove our theorem, it suffices to show that there exists a rotation $\sigma \in G$ such that $f(\sigma(p^2)) = f(\sigma(p^2))$. We assume the contrary, and shall draw a contradiction from it. By assumption, for any $\sigma \in G_1$, the vector $\overline{f(\sigma(p^2))}f(\sigma(p^2))$ is not zero. Let us take an unit vector in \mathbb{R}^2 from the origin parallel to $\overline{f(\sigma(p^2))}f(\sigma(p^2))$ and put $F(\sigma)$ =the end point of this unit vector. Then $\sigma \to F(\sigma)$ is a mapping of G_1 into S^1 . Let ℓ be the straight line x = y. z=o and H be the subgroup of G consisting of all rotations around the line ℓ . We may denote elements of H by G_{θ} ($0 \le \theta \le 2\pi$), where θ denotes the angle of rotation around the axis ℓ measured in such a sense that

$$\tilde{\sigma_{\pi+\theta}} = \tilde{\sigma_{\theta}} \tilde{\sigma_{\star}}$$
, where $\tilde{\sigma_{\star}}$ denotes $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

By the above, we show easily $F(\sigma_{\pi+\theta}) = -F(\sigma_{\theta})$. (for any $x \in R^2$, -x be a symmetry of x about the origin). Then the fact stated above means that F maps H onto S¹. If we consider H as a S¹, by Eorsuk [1], F is the antipodal mapping of S¹ in self and its degree m is not zero.

Let \ll be the increment of the angle of the vector $\overline{ZF(\sigma_{\theta})}$ in \mathbb{R}^2 when θ runs from 0 to 2π . Then \ll must be of the form : $\ll = 2m\pi$. Hence as θ runs from 0 to 2π twice time continuously, the total increment of the angle of $\overline{ZF(\sigma_{\theta})}$ is $4m\pi$.

On the other hand, 2 H is homotopic to zero on G . Then F(2H)is homotopic to zero on S'. This is, however, impossible since the total increment of the angle of $ZF(\sigma_0)$ is $4m\pi \neq 0$. Q.E.D.

In the proof, the fact that p_i° and p_i° are perpendicular is not only essential but also we can replace it by the arbitrary different points p_i^{\prime} and p_i^{\prime} which subtend the angle θ at Z, $o < \theta < \pi$. Combined it with Eorsuk's theorem in the case n=2, we have the following,

THEOREM 2. Let S be an 2-dimensional sphere center Z in Euclidean 3-dimensional space R^3 and let f be a mapping defined on S into Euclidean 2-dimensional space R^2 and let θ be a given angle such that $o < \theta < 2\pi$. Then there exist two points p and g on S such that ϕ and g subtend the angle θ at Z and

$$f(p) = f(g)$$

Remark. By using Stiefel's manifold $V_{3,2}$ [3] and Eilenberg's theorem [4], we can prove the above theorems. But this method is not different from the above.

3. Theorem 3. Let S be an 2-dimensional sphere center Z in Euclidean 3-dimensional space \mathbb{R}^3 and let f be a mapping defined on S into an orientable 2-dimensional manifold M with the genus ± 0 and θ be a given angle such that $\theta \leq \theta \leq 2\pi$. Then there exist two points β and f on S such that β and f subtend the angle θ at Z and

$\underline{f(p)} = f(g)$

PROOF. For any mapping $1: S \rightarrow M$, since $\pi_2(M) = 0$, we have a homotopy $f_t : S \rightarrow M$, $0 \le t \le l$ such that

 $f_i(x) = f(x)$ for all $\chi \in S$

 $f_{n}(x) =$ one fixed point m of M.

The universal covering space of M is \mathbb{R}^2 and \mathcal{G} denotes the projection \mathcal{G} : $\mathbb{R}^2 \longrightarrow M$.

Using the covering homotopy theorem [5], we have a homotopy f_t^* : $S^2 \rightarrow R^2$, $o \leq t \leq /$, such that

 $gf_t^* = f_t$ for all t.

Especially we have $gf_i^* = f_i = f$

By Theorem 2 there exist two points p, g on S such that p and g subtend the angle θ at Z and $f^*(p) = f^*(g)$. Hence we have $\mathfrak{R}^{*(p)} = \mathfrak{g}f^{*(g)}$ i.e. f(p) = f(g) $\mathcal{G}, \mathcal{F}, \mathcal{D}.$

- (*) Received Oct. 6, 1952.
- K.Borsuk; Drei Satz uber die ndimensionale euklidischer Sphare, Fund. Math., 20 (1930), pp.177-190.
 S.Kakutani; A proof that there
- [2] S.Kakutani; A proof that there exists a circumscribing cube around any bounded closed convex set in R³, Ann. of Math., 43(1942), pp. 739-741.
- [3] E.Stiefel; Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten, Comm. Math. Helv. 8(1935-36), pp.305-353.
- [4] S.Eilenberg; Uber ein Problem von H.Hopi, Funa. Math., 28(1937), pp.58-60.
- 28(1937), pp.58-60.
 [5] S.Filenberg; The classification of sphere bundles, Ann. of Math., 45(1944), pp.294-311.

Waseda University Tokyo.