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It has recently been solved by
K.Iwas&wa C1J the problem of line-
arization oΓ an abstract groups*
In this note we shall investigate
the problem of linearization of
topological βroups. We say that
a topcloglcal group G can be line-
arizecj, if we can introduce such a
linear order in G that G becomes
a linearly ordered group and that
the topology of G is equivalent
to the intrinsic topology by this
order• Then, using the concept
of an ordered ring we characterize
the field of real numbers and the
ring of integers.

1. Since the linearly ordered
groups are at most one-dimensional,
we restrict ourselves to topolo-
gical groups whose dimensions are
at most one.

Theorem 1. A one-dimensional
topological group G can be line-
arised if and only if G satisfies
the following conditions:

1) the component C of the unit
Is open and isomorphlc to the ad-
ditive group of real numbers with
the usual topology,

2) the set corresponding to
the positive numbers in C is self-
con Jugate in G,

3) G/C can be linearized as
an abstract group.

Remark. In the above conditions
we can replace 1) by the following:
G is a non-compact, locally con-
nected, locally compact and con-
nected topological group satisfing
the first countability axiom Ccf
[23 Theorem 3.33 . If G satisfies
the condition 1) and G is an abe-
lian group without elements of
finite order, then G/C satisfies
the condition 3) In fact it is
sufficient to prove that G/C has no
element of Unite order L3] and if
there exists some integer TV such
that iχX « H for an element X,
where E is a unit element and X
an element of Cτ/C, then, since X
is a coset of G by C, any element

oX' X can be represented in the
form ΐc, -h c,

 f
 χ

t
 $ C

and ci e c. By the assumption,
we have -n *« -t τι cj. e c, i.e.,

τι*j e C. On the other hand C
is isomorphic to the aαditive group
of real numbers and so for any
integer n and any element ̂c
there exists always only one ele-
ment H- such that •*% * oc
Hence by the assumption that G has
no element of finite order, ar

A

belongs to C. This is a contra-
diction.

Proof of Theorem 1. Necessity,
The condition 1) and 2) follows
from Theorem 3 3 in Ϊ2] and C is
isorrorphic to the additive ^roup
R of real numbers. Hence all ele-
ments corresponding to the posi-
tive numbers of R are positive in
the order in Q (If negative, we
have only to Invert the order in
G). Therefore, by the property of
linearly ordered group the condition
3) Is satisfied.

Sufficiency. Since the topolo-
gical consideration is not neces-
sary by the condition 1), it fol-
lows from Lemma 5 in [1} .

Using Iwasawa's result for an
abstract gx*oup, we immediately see
that a zero-dimensional topological
group G can be linearized, if G
satisfies the conditions of Theo-
rem 2 In C1] and every element of
the family of subgroups {** \ *L}
of G indexed by the linearly or-
dered set L in that theorem is open
and {GΓΛ.} is a base of the neigh-

bourhoods of unit. (This is a
necessary and sufficient condition).

2. Ordered rings.

Definition. A set G is called
an ordered ring If

1) G is a ring with the unit ele-
ment e with respect to the
multiplication,

2) G is a linearly ordered group
with respect to the addition,

3) CL>O , (

the unit in the addition).
is



In particular, if G is commutative,
it is called a commutative ordered
ring. An ordered ring G is called
an ordered field il it is a field*
We have the following properties
for an ordered ring G £cf

 L4
]"]

i G has no null-factor*

ii e >o

ill. has the left inverse
x is also the right

d l

If -I
oc , then

inverse of 4- and conversely.
( x. is called the inverse of -£-
and denoted by Λ

M
 )

v. (An element α of G is cal-
led positive atomic if

oθ 0. > 0,

p ) α *-& 2LO > -ί = 0 <** α»-0

If G has a positive atomic element
Ct , then α. e

Theorem 2. If an ordered ring
G with a strong unit (Cf C 3 ] ) has
a positive atomic element, G is
isomorphic to the ring of integers.

Proof. Since e is at once a
strong unit arid a positive atomic
element, G is archimedean. If
•f̂e 4*. x ^-Cfe+Oe where fo.

is any positive integer, then we
have o-ai^e σy χ^= cfe.-*-i.)e
Therefore any element oc can be
written In the form foe , thus
our assertion is proved.

Remark. The assertion of Theo-
rem, ϋ is not true when G has not
a strong unit. Let G be the ring
of polynomials with integral coef-
ficients (In one variable x and
with the usual rule of the addition
and multiplication). The order
in G is defined in the following
manner: f <χ^ °^o

(ίiXC
' % o cα^^cO

< > OUΉ %.(> .* Then I is a
unit but not a strong unit and G
is not isomorphic to the ring of
integers

Next we consider an ordered' ring
G as a topological group with the
intrinsic topology CCf. ί'έl ~\ .

Proof. The component G of G
is an open invariant subgroup iso-
morphic to the additive group of
real numbers with the usual topo-
logy. Moreover C is an ideal.
To prove this, we consider $Λ. ,
9 e CT, α e c, if we take an
element A-e C, sufficiently
near to 0 small, we have 3- S- c- u(0)
for some neighbourhood U(0) of
0( since $α. is continuous with
respect to α. ) and U(θ) CL C.
Since C is connected, α is writ-
ten in the form α.=*=. ̂

ι +
 - - + ̂  ,

ΛU e- U(0), ' -is ι,i, ,n .
Hence ^ ^ $4»-v %%x+ -»-^neU(())
^utO-Λ •+ ϋ(C) c c. Thus
C is an ideal. Next we consider
the mapping ^ : %~^ αx for a
fixed element α e c, Λ > O ,
x e C. First of all, ί is

1-1 mapping. For α.χ«c*y implies
α. (-3L— ̂  =; o , i.e. we have
χ = ^ by i), f preserves

the order (by iv)). Moreover,
since f is continuous, f (G) is
connected and contained in G. Next
we shall prove that f Is a mapping
from C onto itself. For assume
that ipeC and * ή f C C )

f
 then

f < t implies % * * c θ ,
because if te ίCC) fCC) is not
connected, but it is impossible.
Thus the mapping is "onto". There-
fore there exists such an element
•x that α. x « K , x e C.

On the other hand α.e ^=CL ,
hence α. -x— q, e =s α. r ac— e ̂  ̂. o i.e.,
by i) x ^ e . . Thus C con-
tains the unit e , so C i> G and
G is a field. Thus G is a connec-
ted, locally compact and metric
separable topological field, and
by the Pontrjagin's Theorem G is
(topologically) isomorphic to the
field of real numbers C53 . (The
continuity or the product κ% in
both variables oc and # , and of
χ-

f
 follows from ίβl ).

Since a commutative ordered
ring has no null-factor, we can
consider the quotient field G*
of G. Now we shall introduce a
linear order in it. First, we
define the symbol £

p
 , -f e G,

in the following way:

))<o

Theorem 3. If in a one-dimen-
sional ordered ring G, the product
operation is continuous in each
of variables, then G is (topolo-
gically) isomorphic to the field
of real numbers with the usual
topology.

Definition*

In this definition, since



we can assume, without the loss
of generality, that 4~ ^> o and

Ji > o Hence we have

This order relation satisfies
the transitivity* For if

cα,4)>cc<l) and* c c ^ ^ x p . i ) ,
then C α 4 ) > <P, t ) , since

£fticl%> fchPl* and εαlα(cί >e Iφg-
imply e^lαlt > ep{p)-6 More-
over, i f t cu-6") > C M ) , we have
for any element c cv <*.} of an
equivalent class to <:&> -6) ,

(Cά) >cf> - £ ) and ζα.,-6)- CC>cC)
(the l a t t e r part i s obvious) For
since εΛlMfs-εclPI-6- and o^JL^^c

c-G> o , ά>©> , we have ε Λ ~ ε" ,
lα-lcL -*le-l and £ & | c l<t^« ε V i H

^iPlP|d-β-> therefore
t > ap(plcl . By this

order G* becomes* a commutative
ordered f i e l d . In fact , for
(α,4)>Cc.cD'and any element C^K) of

G, we shal l have c α , ^ - cc. cθ
= C α ^ - o ^ - c c . oCHc*,̂  >o i f the fo l-
lowing re lat ion can be proved:

cα.-β) > c c,

Next, for cft -*)->o and
c c <*,) •> o , we have

(tt.ΛκcβOβίαcAc)̂ ;1 in fact , £ [A\4»O
and e c ι c K > o imply

α c 4 l

The proof of ( * ). It is suf-
ficient to prove that g**-*

0
!**

-^^<L|>O is equivalent to
a.

A
kW>£*lc|*. If Z^^ML-Mlx?

then αdL > -βc and -β > o ,
ol>o . Hence the following

cases are considered;

1) if α.>o , o o , then

2) if C L < o , c > o , then
since |cu <̂L •> -β ici we have

3) i f α.>o ,, c <. o , then we
have 8 α |αl<* >

Conversely, i f ε α | α | d > ε^lcl
we have the fol lowing c a s e s :

1) <κ < o 9 c **- o and
cc dL •> 4 c

2) <c τ> o , c *> o and

3) < o and

We can e a s i l y prove for each case
that (λ. dL— &'c >̂ o . Thus we have
the following theorem

Theorem 4. A comrutative or-
dered »ing G is embedded in the
ordered field G*, the order rela-
tion being preserved.

Corollary, A commutative or-
dered ring G is archimedean, if
and only if G*" has a strong unit.

Proof, If the unit ce.e)
of G ^ is a strong unit, then for
any < α, c> > o , there exists
an integer -K. such that £α,o
<s.'h(e

J
 <e)=.( ne,e) . This shows that

'ne t >αe , i e Ύ\ c •> CL ,
Hence G is archimedean. Converse-
ly, if G is archimedean, for any
element α~ and c- , <χ> oo ,
there exists an integer ix such
that ΎLC *><κ

 f
 this shows that

(α, c > > o and cβ., c) <. -yι(ee).
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