LINEARIZATION OF TOPOLOGICAL GROUPS AND ORDERED RINGS

By Takesl ISIWATA

It has recently been solved by
K.Iwasawa [1] the problem of line-
arization of an abstract groups.
In this note we shall investigate
the probler: of linearization of
topological groups. We say that
a topclogical group G can be line-
arized, if we can introduce such a
linear order in G that G becomes
a linearly ordered group and that
the topology of G is equivalent
to the intrinsic topology by this
order. Then, using the concept
of an ordered ring we characterize
the field of real numbers and the
ring of integers.

1. Since the linearly ordered
groups are at most one-dimensional,
we restrict ourselves to topolo-
gical groups whose dimensions are
at riost one.

Theorem 1, A one-dimensional
topological group G can be line-
arized if and only if G satisfles
the following conditions:

1) the component C of the unit
..1s open and isomorphic to the ad-
" ditive group of real numbers with
the ugual topology,

2) the set corresponding to
the positive numbers in C is self-
conjugate in G,

3) G/C. can be linearized as
an abstract group.

Remark. In the above conditions
we can replace 1) by the following:
G is a non-compact, locally con-
nected, locally compact and con-
nected topological group satisfing
the rirst countability axiom (Cf.,
(2] Theorem 3.3] . If G satisfies
the condition 1) and G is an abe-
lian group without elements of
finite order, then G/C satisfies
the condition 3). In fact it is
sufficient to prove that G/C has no
element of tinite order (3] and if
thiere exists sorme integer n such
that mX=g for an element X,
where E is a unit element and X
an element of G/C, then, since X

1s a coset of G by C, any element
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of X can be represented in the
form = +¢ sy «u&C
and o e (. By the assumption,
we have mx, +mna € C, l.e.,
mx € C. On the other hand C
i1s isomorphic to the aacditive group
of real numbers and so for any
integer w and any element x
there exists always only one ele-
ment % such that =ny=o2 ,
Hence by the assumption that G has
no elenent of finite order, =
belongs tc C. This is a contra-
diction.

Proot of Theorem 1. Necessity.
The condition 1) and 2) follows
from Theorem 3.3 in (2] and C is
isororphic to the additive group
R of real numbers. Hence all ele~-
ments corresponding to the posi-
tive numbers of R are positive in
the order in G (1f negative, we
have only to invert the order in
G). Therefore, by the property of
linearly ordered group the condition
3) is satisfied.

Sufficiency. Since the topolo-
glcal consideration is not neces-
sary by the condition 1), 1t fol-
lows from Lermma 5 in [11 .

Using Iwasawa's result for an
abstract group, we irmedliately see
that a zero-dimensional topological
group G can be linearized, ir G
satlisfies the conditions of Theo-
rem 2 in (1] and every element of
the family of subgroups {&ax ; A «L]
of G indexed by theé linearly or-
dered set L in that theorer is open
and {G»} 1is a base of the neigh-
bourhoods of unit. (This is u
necessary and sufficlent condition).

2. Ordered rings,

Definition. A set G is called
an ordered ring 1if

1) G is a ring with the unit ele-
ment € with respect to the
multiplication,

2) G is a linearly ordered group
with respect to the addition,

3) a>0 , 4>0 — ad>0 ( 0 1is
the unit in the addition).



In particular, if G is commutative,
it is called a commutative ordered
ring. An ordered ring G is called
an ordered field i1 it is a field.
We have the following properties
for an ordered ring G {Crf. [41] .

1. G has no null-lactor.

ii. e>o

It 4 has the left inverse
x , then x 1is also the right

inverse or 4 and conversely.

( > 1is called the inverse of 4

and denoted by 4~' )

111,

ive AvC, B>d —> od > cd

ve (An element & of G is cal-

led positive atomic ir

&) a >0,

B)

If G has a positive atomic element
@ , tken o =e .

Lz820—>8=0ora=b)

If an ordered ring

Theorem 2. )
has

G with a strong unit (Cf. C3]
a positive atomic element, G is
isomorphic to the ring of integers.

Proof. Since € 1is at once a
strong unit and a positive atomic
element, G is archimedean. If

e « X £'Ch+lde where &
is any positive integer, then we

have x=fRe or x=(k+11C .
Therefore any element o can be
written in the torm Re , thus

our assertion is proved.

Theo -
not
ring

Remark. The assertion of
rern £ 1s not true when G has
a strong unit. Let G be the
of polynomials with integral coef-
ficlents (in one variable x and
with the usual rule of the addition
and nmultiplication). The order
in G is detined in the following
manner: #¢x) = Z a1 20 (Anko)
—> &kn %0 . Then 4 1is a
unit but not a strong unit and G
1s not isomorphic to the ring of
integers.

Next we consider an ordered ring
G as a topological group with the
intrinsic topology [CL. (21 7] .

Theorem 3. If in a one-dimen-
sional ordered ring G, the product
operation is continuous in each
of variables, then G is (topole-
gically) isomorphic to the field
of real numbers with the usual
topology.
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Proot's The component C ol G

1s an open invariant subgroup iso-
morphic to the additive group of
real numbers with the usual topo-
logy. Moreover C is an ideal.
To prove this, we consider ga |,

3 € G, o€ C, If we take an
element £ e C, sufficiently
near to O small, we have 3% € U(0)
for some neighbourhood U(0) of
O(since ga 1s continuous with
respect to a ) and U(0) < ¢,
Since C is connected, & 1is writ-
ten in the form a= g+ - +8n ,

4. ¢ U(O), L= 1,2, ,m,
Hence ga= 981+ 382t -~ +38,€ U(0)
+ Uloy+ - ~- + U(C) € C. Thus
C is an 1deal., Next we consider
the mapping + : x—> axX for a
fixed element o € ¢, a>o
X & C. First orf all, ¥ is
1-1 mapping. For ax=ay implies

QA (x— %) =0 , 1.e. we have

x=y by 1), ¥ preserves

the order (by iv)). Moreover,
since ¥ 1is continuous, # (C) is
connected and contained in C. Next
we shall prove that & 1s a mapping
from C onto itself. For assume

b

that peC and +$ 4 $¢C) , then
? <9 implies 9 & F¢C) ,
because if (e $(C) $fC)is not

connected, but it is impossible.
Thus the mapping is "onto". There-
fore there exlsts such an element
% that ax=a , z e C.
On the other hand ae =a N
hence ax—ae=amx~-e)=o 1{,e.,
by 1) x=e, « Thus C con-
tains the unit e , 80 C > G and
G 1s a field. Thus G is a connec-
ted, locally compact and metric
separable topological field, and
by the Pontrjagin's Theorem G is
(topologically) isomorphic to the
field of real numbers L5] . (The
continuity or the product xy in
both variables =< and y , and of
x~' follows from [6] ),

Since a commutative ordered
ring has no null-factor, we can
consider the quotient field G*
of G. Now we shall introduce a
linear order in it. First, we
define the symbol gf |, teG,
in the tollowing way:

E?ﬂ,= o f P>o e
{‘Q fon (aeer)

p<o

Pefinition,

(a,8)>(c,d) e qumllotl >E“llcll@l

Inéthis_a(%gﬁ‘)inition, sincea e
gab_g¢ and &*¢=128% ",



we can assure, without the loss
of generality, that & >o and
d >o . Hence we have
a.g)>ccdyes e*ald >l £ .
This order relation satisties
the transitivity. For if
tab)>ccd) and <. > C(p.g)
then ca.8) > <P, ¢) , since
eclely, > 2fitpld and gleld >Elcld
imply €*laie > gP(p|8 . More-
over, 1f ca,8) > cp. 1) , We have
for any element ce, d) of an
equivalent class to <, ) B
€.d) ><CpP. ) and <¢a,8)=<0d)
(the latter part is obvious). For
since g%laly > £°\1P| 6 and od =4B¢
(4>0, d>o), we have € * = 2 ,
lold = ®lcl and g°lcly b= e*clbY
= >1aldy, > &PPld&  therefore
eclely > eftpid . By this
order G™ becomes'a commutative
ordered field. 1In fact, for
ta.$)>(cdrand any element ¢x-9) of
G, we shall have (a,g)— cc.d)
= (0, 4)~(x%,9)~ . d)+xy) >0 1f the fol-
lowing relation can be proved:

(a,8) >CC.d) «——>

)
- cd)= 2d=A¢
(q, )~ ) T

>0

Next, for (&« 4)=>0 and
te.4) >0 , We have o

o 8Xe dy=lac 800y in Lact, & (alé>o0

and © e¢1cld >0 imply
g%laclbd=2%Clallcidd >0,

The proof of (#* ). It is suf-
ficient to prove that 2£e4=3¢jad
— 4c|>0 1is equivalent to
¢*lald >e5idb.  IT g2 % lad- kel >0
then ad > 4bc and 8> o,

d >0 ., Hence the following
cases are consldered:

1) 1f a0 , ¢>o , then
gtald >¢tle] &
2) if a<o , ¢>0 , then
since jatd > Blc| we have
e%lald » £|c1B,
3) if a%>0 , c<o0 , then we
have  g®(ajd > eclc| & -

Conversely, if e%ald > £%lcl & ,
we have the following cases:

1) a< o , c<o and
ad > 44e

2) a >0, ¢c>0 and
laatd =~ leld

3) a>0 , ¢c<0 and
ad>H6¢C «

Ve can easily prove for each case
that ad— #c>0 . Thus we have
the rollowing theorem

Theorem 4. A corrutative or-
dered ring G is embedded in the
ordered field G¥, the order rela-
tion being presefved.

Corollary. A cormmutative or-
dered ring G 1s archimedean, if
and only if G* has a strong unit.

Proof. I the unit ce,e)d
of G*¥1s a strong unit, then for
any <¢a, ¢) »o0 , there exists
an integer m such that .o
<mn(e, er=me,e) . This shows that
me-c >ae , 1.e. me>a .
Hence G 1s archimedean. Converse-
ly, if G is archimedean, for any
element & and ¢ , asc>0 ,
there exlsts an integer m such
that me >a , this shows that
(a, ¢)>o0 and Ca, ¢) < Mm(ee).
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