ON DISCRETE HOMOGENEOUS CHAINS

By Tadashi OHKUMA

Introduction, The object or
the present paper is to determine
some types of discrete homogeneous
chains.

Because all discrete homogene-
ous chains correspond one-to-one
to all homogeneous chains, as will
be shown later, it is impossible
to classify and determine the
types or all descrete homogencous
chains, unless the types of all
homogeneous chains are determined.
So the author only determined the
special type ol discrete homogene-
ous chains, that is, absolutely
discrete homogeneous chains, which
will be detfined later on.

The same definitions and nota-
tions as in (1] are employea,
but concerning the ordinal power,
those in the author's paper (27
are employed.

In §1, general hormogeneous
chains are investigated.

In §2, the construction ot ge-
neral discrete homogeneous chains
is studied, and later the absolute
discretoness 1s defined.

In §3, some examples ol abso-
lutely discrete homogeneous chains
are investigated.

In § 4, we shall see that every
absolutely discrete homogeneous
chain 1s at'ter all one of examples
mentioned in § 3, and then the
type 1s determined.

Finally, the author should be
graterul to Prot. H.Toyama and
Mr. N.Ximura for their kind assi-
stance and lnstructive suggestions
on this article.

1. On homogeneous chains.

(1.1) We use the same defini-
tions and notations as in (1] ,
unless otherwise mentioned, but
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concerning the definition of ordi-
nal power, we use the rollowing
one, on which the author has stu-
died in a previous paper (2) .

Deilnition I. Let X and Y be
posets, and yo be a fixed element
of Y. The ordinal power *Y «<y.»
consists ol all functions f(x)= y’
trem X to Y, such that 'the sct

{x ] r(x) # yo}satisties the de-
scending chain condition', where

1 ¢ g means that for each xe€ X
such that {(x) % g(x), there exi-
sts an x'<x such that r(x') <(g(x' ).

Based on this der'inition, we
get a poset *Y <y.> without any
restriction on the original po-
sets, such as the descending chain
condition on X,

It Y is homogeneous, then the
structure or *Y <y.»> does not
depend on the cholce of y. , and
the sign < y.> can ve omltted.

In the case when Y 1s homogeneous,
the resultant set *Y is also
homogeneous., In the case when
both X and Y are chains, the sat
*Y(y.y is also a chain,

About those fact, see the preo-
vious paper (2 .

(1.2) Definition 2. I1 a
chain X haS a transitlve automor-
phism group, we call X homogeneous.

Theorem 1, If X and Y are
homogeneous chains, then X° Y
(ordinal product, ctf'. (1) , p.9)
is a hormogeneous chain. Ir X is
a chain, and ¥ is a homogeneous
chain, then-*Y is a homogeneous
chain.

These propositions are corel-
laries o1i Theorem II and III of
23 .,

Note I. et Z = XoV, The
homogeneIty of X and Y implies
that of 2. But neither the homo-
geneity of Z and X nor that ot 2
and Y implies that or the rest.

2 may be horiogeneous when neither
X nor Y is hemogeneous. Il Z and



Y are homogeneous, then Y is a
homogeneous interval (which will
be detined later on) oi Z. But
the existence of & homogeneous
interval Y ol a homogeneous chain
7 does not imply the existence of
a chain X such that Z= XoY.

Example I. Let S be the ho-
mogéneous chain or all real num-
bers, J be that ol all integers,
and ST be the chain or all real
numbers, which are equsl to or
greater than zero. Then J o S7
is a homogeneous chain isomorpaic
to S, but 8* is not homogeneous.

Let 2 be the 2nd ordinal num-
ber, and R be the homogeneous chain
of all rational numbers, then
20 R 1s a homogeneous chain iso-
morphic to R, But 2 is not homo-
geneous.

We_denote the dual of' a poset
X by X and the chain ol all posi-,
tive integers by «w , then & o§
is a homogeneous chain isomorphic
to S, but neithe:r & nor 8% is
homogeneous .

We denote the r'irst uncountable
ordinal by w., . Then the set
S @ (e, 098S*) = T is a homogeneous
chain, and contains a homogeneous
interval isomorphic to S, but
there 1s no chain X such that T
=Xo S, (The last ract can be pro-
ved f'rom the conditional comple-
teness of T.) The last example
shows the existence of & homoge-
neous chain which is not self-dual.

We shall use the notations in
Example I throughout the present
paper.

(1.3) A void set, and the set
which consists of only ocne element
are homogeneous chains. We shall
call them the trivial hormogeneous
chains.

A non-trivial homogeneous chain
contains a subchain which is iso-
morphic to the chain J o1 all
integers,

A non~trivial, dence-in-itself
and hormogeneous chain contains a
subchain isomorphic to the chain
R of all rational numbers.

A non-trivial, dense-in-itself,
conditionally complete and horo-
geneous chain must contain a ‘sub-
chain isomorphic to the chain S
of all real numbers,

These propositions are oovious.

.(1.4) Definition 3. A sub-
chain I or"a chaln X Is called
an interval of X, il and only ir

a,beI and a ¢c¢b implies cel.

The fact that I 1s an interval
of X, 1s denoted by I & X.

Especially, tor any pair ol
a,b ¢eX, the set ol clements between
(properly, a and b is an interval,
We call it an open interval and
denote it by (a,b).  When two
elements a and b are adjoined to
the open interval (a,b;, we call
it a closed interval and denote
it by (a,bJ .

(1.5) We define the rollowing
three kinds of orders in a family
of intervals of X,

i) We say that I, gontains I,,
if and only ir I, 1is 'a subset of
I,, and denote the fact by I, & I,.

ii) We say that I, 1s less
than I,, if and only iT a< b for
every pair of aeI, and be I,,
and denote the fact by I, < I,.

I, and I, are comparable ir
and only ir either they are dis-
joint or they coincide entirely
with each other.

iil) Ir and only if 1or any
a ¢I, there exists a be I, such
that a¢ b, and for any be I, there
exists an ael, such that a<b,
we say that I, is lower than I,
and denote the Tact by I, < I,.

A necessary and sufricient
condition that I, is comparable
with I,, is that, if one of thenm
contains the other, either their
upper bounds or their lower bounds
conncide entirely with each other.
(Of cause, this condition admits
the case when neither I, nor I,
contains the other.).

The adequacy of' those orderings
and the conditions of comparablity
can easily be proved.

(1.6) If neither of two in-
tervals contains the other, there
are two cases.

1) They are disjoint.

2) One is lower than the other,
but their intersection is non-
void.



In the case 2), let I,< I,, and

it we denote the complement of I
by I'y I, AL}, I, Alg, IY, A I,

are also 1ntervals which are dis-
Joint with one another, and I, A Iy
K I/Alzg<IY AI, in the meaning
of the order 1i) (1.8).

Prool's are evident.

(1.7) Let X be a homogeneous
chain. Let @#x be the automor-
phism group of X, and let I be a
homogeneous interval ol X.

It a,beI, then there is an
automorphism ¢ of I such that
9(a) = b, Consider the follow-

ing inner mapping @ of X:
6 (x)= 9 (x)
0 (x) x ror all x4&1I.

Then, obviously © 1is an auto-
morphism of X.

ror all xe1I,

i

The set ct automorphisms of X
such as 6 , that 1is,

{0egx]o(x) =

is a subgroup of Yx , which is
isomorphic tc the automorphism
group of I. We denote this sub-
group ol ¢x by %1 , and call it
the characterlstic group of I.

x Tlor any x & I}

(1.8) Let X be a homogeneous
chaln, and I, and I, be its homo-
geneous intervals whose intersec-
tion 1is non-vold. Then both
I~ I, and I, A I, are homogeneous
intervals of X.

Proof's 1If one contains the
other, this proposition is ob-~
vious.

Now, let I,< I,(l.6). Then
both [,~ I, and I, ~ I, are inter-
vals, We shall only prove that
they are homogeneous.,

Let a,beI,~ I,. I these two
elements are contalned together
in I, , then the automorphism

Pe G, , wnhich maps a to b,
¢isplaces no element outside of
I, 1I,. The case when both ele-
ments are contained together in
I,, is similar.

Let ael,~ I% and bel} ~ I,.
Take an element ¢ from I, A I;.
Then there exist a ®ed1, which
maps & to ¢, and a YHyz which
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maps ¢ to b. The automorphism

¥ ¢ oi X does not displace
any element outside of I,~ I,,
and maps a to b, Thils Qhows that
any two elements of I,™~ I, are
mutually transitive within I, ¥ I,.

Let a,bé¢ I, AI,. Then there
is a Qe %1, , which maps a to

b, and a ¥Yegi, which maps
a to b. Consider the tollowing
mapping © of X:

O (x) = )ﬁ (x) tor x¢ a,

6 (x)= @ (x) for x> a.

Then 6 1s an automorphism

of X, and maps a tc b, and moves
no element outside cf I, A I,
(remember that I, is lower than
I;). This means that any two
elements of I, A I, are mutually
transitive within I, A I,.

We state this tact in the tol-
lowing form.

Theorem 2. Let 3 be a maxi-~
mal subset of the set or homoge-
neous intervals of a homogeneous
chain X such that any two inter-
vals in J have' thelr non-void
intersection, then ¢ 1s a sub-
lattice of the Boolean algebra
of all subset of X.

(It we make use of Zorn's
lemma, we see that such a maximal
subset always exists, out the
axiom of cholce is not assumed
throughout this paper.)

2. The discrete homogeneous
chains.

(2.1) Derinition 4. A homoge-
neous chain X Is called discrete,
if and only it there existis a
pair of elements of X which have
the covering relation (cf. (17

p.8)

This delinition requires only
the existence of some pair or
elements which have the covering
relation, but on account of the
homogenelty of' X, this condition
is equivalent to the fact that
any element of X has an element
which covers it and an element
which 1s covered by it.

A non-discrete homogeneous chain
is dense-in-itselr.



(2.2) Let X be a non-trivial
descrete homogeneous chain. We
define an equivalence relation in
X such that a~b in X means that
there exists only finite elements
between a and b.

Then this equivalence relation
induces a classification of X,
and each class is isonmorphic to
the chain J o. all integers.
These classes are mutually dis-
Joint intervals. So, i1 we intro-
duce the order in the meaning
of 11) (1.5) into the set of
classes, then the set is a chailn.

Now, let 77U be the set ot all
classes. we shall see that the
chain 7L is homogeneous.

In ftact, an automorphism §
of X, which maps an element a in
a class I, to an element b Iin a
class I,, maps any element c¢ iun
I, into I,, for, if @& (c)=4d,
then the number ol the elements
between b and 4 1s equal tc that
of the elements between a and c,
which is finite.

So an autcmorphism ¢ of X
induces an inner mapping of 7L ,
which is an automorphism of %t
as easily seen, and the transiti-
vity of ¢fx 1lmplies the transiti-
vity of ¢fge , that is, 9T 1s a
homogeneous chain.

The previous ract implies that

X = qe J.

On the other hand, 7(°J is
always a discrete homogeneous
chain for sny homogeneous chain

97 . So we obtaln the following
theorem.

Theorem $. All discrete homo-
geneous chalns correspond one-to-
one to all general homogeneous
chains, and a necessary and sufri-
cient condition that X 1s a dis-
crete homogeneous chain is that
there exists a homogeneous chain

M. such that

X = GNoJ.

By this theorem, the type of
discrete homogeneous chains is
determined to some extent. But,
unless the type of general homo-
geneous thains ts determined, we

can't yet establish cdmplete de -
termination theorem for discrete
homogeneous chains.
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However, if WL 1is also dis-
crete in the previous identity,
then %t is decomposed into 29t,0 J
samely, and if 477, 1s discrete,
it is all the same, and so on.
What type or dilscrete chains ad-
mits such transfinite cdecomposi-
tions without any non-discrete
multiplier set? What about fy
where i1s a dual set or an
ordinal number? (See Det'inition
1.) To answer these guestions,
we introduce the rollowing deri-
nition,

(2.3) Definition 5. A homo-
geneous chaln 3 called abso-
lutely discrete, it and only ir
there exists no non-discrete homo-
geneous subchain (including the
non-proper one also), except the
interval consisting of only one
point.

(A homogeneous chein consisting
of only one point 1s regarded as
a non-discrete chain in the pre-
sent paper (see Definition 4 ).)

A discrete homogeneous chain
X 1s absolutely discrete if and
only it the 47 1is absolutely
discrete, when we decompose X into
M oJ in the form of Theorem 3.

This is a corollary of the
next proposition.

(2.4) Let X= Yo 2, Yand Z
being homogeneous chains. X is
an absolutely discrete homogeneous
chain, if and only it both Y and
Z are absolutely discrete (except
the case when Y or Z is trivial).

Proot', The necessity is ob-
vious. Hence, we now give a proof
for sufficiency.

We consider that U is a non-
trivial, non-discrete homogenecus
subchain of Yo Z., Especially, U
can be regarded as a chain isomor-
rhic to the chain R ot 8ll rational
numbers (l1.3). An element of
Yo Z has the rorm (y, 2), where
yé¢Y and ze 2. e call y the Y-
coordinate and z the Z-coordinate.

Any two elements of U must

nave the different Y-coordinates.
Indeed, if both u = (y, z,) and

v = (y, z;) have the same Y-coor-
dinates, then the open interval
V= (u, v) in U is also isomorphic
te R, and each its element has the
same Y-coordinate. So V can be
imbedded in 7, This contradicts
the absolute discreteness of Z.



So any two elements of U have
the different Y-coordinate, and
U is isomorphic to the subchain
of Y, whose element are the Y-
coordinates of the elements of U,
But this contradicts the absolute
discreteness of Y.

Example <, J is an absolutely
discreéte homogeneous chain, then
also is J ¢ J, In general, *J,
where n is a finite ordinal, is
absolutely discrete.

R o J, and S o J are discrete
but not absolutely discrete.

3. Examples of absolutely dis-
crete homogeneous chains.

We shall show an important se-
ries of absolutely discrete homo-
geneous chains. It is remserkable
that these examples exhaust all
ol absolutely discrete homogeneous
chains, as we shall see later on.

(3.1) Example 3. let [’ be
an ordinal numger.—‘

~
set Hp =] ( P implies the
dual of " )
(see Derinition 1).

That is, an element of Hpis a
serles of 1lntegers arranged in
the form of a dually well-ordered
set F , such that only a finite
nunber of these integers are not
zero, where the order 1s defined
in the meaning of Derinition 1.

Hp is a homogeneous chain
by the note on Definition 1. Hp
is an absolutely descrete homoge-
neous chain. To prove the fact,
we shall study the construction
of Hn .

(3.2, 1If he Hp , then for a

e , h(r)eJ. We say the
value of h(r), the 7 -coordinate
of h, and denote it by hy . For
only a finlite number of r , the
¥ ~coordinates of h are not zero.

-

The set of elements o1 Hp )
whose Y -coodinates are zero for
any ordinal ¥ equal to or larger
than some ordinal & <[ , is an
Interval ot Hr , We denote the
intervals by Isyp , but Is,p
is isomorphic to Ha regardiess
of the ordinal [7 . So we may
omit the subscript [ from Iap o

When [7 1s a discrete ordinal
and [?=A4@&1, then obviously

Hr,= J e HA

When [7 is a limit ordinel,
then

Hp = L&<r Tas

But becausc¢ each I, is iscrwr-
phic to H., we can write

H[" = UA([’ Ha
in the above meaning.

(3.,3) Let all H,, & <[
be absolutely discrete.

When Hp = J o Ha, then the
absolute discreteness or Hp fol-
lows from the proposition {Z.4).

Let Hp = U.yHs (when /7 13
a limit ordinal).

If Hp should contain a sub-
chain U isomorphic to R (see
(1.3),, and &, b&U, then the open
interval V = (a, b) of U would
also be isomorphic to R. But
there exists & A& < |7 such that
a, b ¢ Ha, and so VCH, ; this
contradicts the absolute discrete-
ness cf Hy » *

So, every H, 1ls absolutely
discrete.

(3.4) We aefine an additive
operation on Hp .

ILet h, ke Hp , then the sum of
h and k, h 4+ k, is such an elenment
o' Hr that its every 7 -ccordinate
is the arithmetic sum of the v -
coordinates of h and k.

Based on this definition, Hp
becomes a group. Furthermore, it
is an ordered group as easily
seen, The mapping

$(h) = h f k

is order preserving and one-to=-
one, that is, ¢, 18 an auto-
morphism of Hp .

We make use of this group cha-
racter ot Hp , only r'or aenoting
the automorphism ¢x ol tnis
type by + k, and do not use it
essentially in the tollowing,

(3.4) Ia 1is an interval of
Hp . For any ké¢ Hp , the set



I.+k={1]1=h+tk, he 1.}

'is also an interval of H, , which
1s isomorpnic to Ha , and contalns
k. The elements of I.+ k have
fixed 7 ~coordinates tor any 7v)»
which are equal to the Y -coordi-
nate ol' k. So the interval I, +

k has upper bounds and lower bounds
in Hp o

Lemma

1) Every proper homogeneous
interval (non ~trivial) I of Hp
is I.+ k for some a <]7 and
a keHp .

2) Hp can not be isomorphic
to its proper interval,

Proof. Those are obvious for
H,=J . Let the above two sta-
tement be proved for lia for all

a7 .
The proof of 1l).

7 41s a
HA &

1) The case that the
discrete ordinal, and Hp = J o

Let I be a homogeneous, non-
trivial, proper interval of Hp ,
and I sk Then, I intersects
with Io + k. and so, the rollow-
ing three cases are conceivable.

case 1) I contains I + k.
Case 2) L\{ k contains I.
Case 3) Neither of them con-

tains the other.

But, the last case is impossible.
Because, if I does not contain
IAn + k, then thelr Intersection
is a proper interval of IA + k,
which is homogeneous by (1.8).
Since IA + Kk is isomorphic to H, ,
its proper homogeneous interval

has the term I o2 4+ h + k, where

A €A, and h ¢ I4o , but such
an interval has its upper bound
and lower bound in IA + k (3.4).
Sc I is contained in Ia + Kk,
because T is an interval.

In the case 2), I has the form
Ipo+ h+ k, A <¢A , he Ip
by the assumption.

In the case 1), if I = IA+ k,
then the proposition is true.

The interval I, + ¥k consists
of all] elements whose [7 ~coordi-
nates are equal to the [” -coordi-
nate kp of k. So, if I has an
element h outside Ia 4 k, then
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the [? -coordinate hp of h is not
equal to kp , and I contains

Ir + h all the same, because I

18 not contained in I, + h. Still
more, I contains all the elements
whose [? ~-coordinates are between
hpr and kp , since I is an inter-
val,

I{ the I’ -coordlinates of the
elements of I have neither their
upper bound nor their lower bound,
then the intervel 1s not proper.

Consider tnat the [7 -coodinates
ol the elements ol I have thelir
upper bound, tor instance, then
some k € I has the least upper
bound m as its [T -coodinate, since
the values of [T -coodinates ol I
are integers. If another element
h € I has not the [7 -cocdinate m,
then the automorpnism @ of I,
which mags h to k, maps Ia + k
into I, + k itself as a proper
interval of Ia + k. But this
contradicts the assumption of
induction 2).

30, if the [7 -coordinates of
the elements of I ranges at least
over two Integers, then they ranges
over all J, ana so I is not proper
in Hp »

So, 1f I is proper anc contains
k, then either . <€ I, + K, and so
I=1Isa+4 h tor some ALCA , Or
I coincides with I, + K.

11) The case that [7 is a
limit ordinal,

Consider that I i1s a homogensous
interval of Hp , and contains k.

If I contains I, <+ k for any
& <7 , then T contains all
elements of Hp , that is, I is

non-proper interval.

Now, assurie that I does not
contain Iy + k for some A'<[7,
then we see that I is contained
in ITa 4+ k, quite similarly as
in the prevlious proot, So I has
the form I+ h + k where a<a’,
he In'and ke I by the assumption
of induction.

The proot ot 2).

If Hp 13 isomorphlc to its
proper interval I, then I is homo~
geneous, and so I has the form
Ia 4+ k where Aa<[? , keHp o
Then the isomorphism which maps
Hp on I.+ k, maps the interval

I, + k onto its proper interval.



But I, -+ k is lsomorphic to
Ha, and this contradicts the
assumption ot induction,

(3.5) We cell the elerment of
Hp , whose every cucrdinate is
zero, the origiral element.

1t follows trom the previous
lerma that the interval o Hp ,
which 1s 1somorphic to Ha,

N <7 , and contains the ori-
ginal element, coincides with I, .
We say Ia , the 4 -original
interval.

But, on account ol the horioge-
neity ot Hp , neither the originsl
element nor the origiral intervals
have any distinguished character,
unless the group character ol‘IlP
is concerned,

4. General absolutely discrete
homogeneous chalns.

(4.1) Let K be an absolutely
discrete homogeneous chain. If K
has an interval H isororphic to
Hp, then it rollows from the
homogeneity oi' K that for any ele-
ment k ¢ K, there exlsts an inter-
val isomorphic tc Hp , which con-
tains the element k.

In general, 11 twc nomogensous
intervals, one of which is isomor-
peic to Hp for scme ordinal [
have thelr intersection, then one
of them must contain the other.
The proof 1s quite the same as in
the previous lemma.

Let 77 be the set ol intervals

of K, which are isomorphic to Hp .
Then the join or the intervals in

a1t covers K entirely, and these
intervals are putually disjoint,
because ol the above statement and
previous lermma. (Any interval of

fL can not contaln another as a
proper interval.)

So, 1f we define on 7T the order
in the meaning of ii) (1.5), then
M becomes a chain. Let $edy ,
and M ¢ 9 , then @ (M) is also
an interval of K, and is lsomor-
phic to Hp; that is, § (M)e W .
So an automorphisy. ol K inauces
an automorphism ot 4 , and the
transitivity ol the automorphlism
group of X implies the transitivity
ol automorphism group of 4 .

That is, T is a homogeneous cha-
in, and
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K = ’”'C"Hr'

(4.2) If an absolutely discrete
homogeneous cnain K contains an
interval iscnmorphic to Ha for any

a <[, wiaere [7 is a limlt
ordinal, then for an element k€ 4,
there exists an interval na 1iso-
morpnic to Ha wnicn has k as its
original element (ronsidering that
the same coordinates as those of
the corresponding elements in Ha ,
are introduced in the elements in
Xa)e Then, if A'c¢cA , Ka
is the original interval of Ka ,
because of the lerma and the nota-
tions in (4.1) and in (3.5).

It is seen thst the set Kp=
Uacr K is an interval ot K, and
further verified Ky 1s isomorphic
to Hp . So K containsg an interval
isomorphic to Hry.

Theorem $. (The main theorem).
Every absolutely discrete horio-
geneous cnaln is isororphic to Hp
for some ordinal [7 .

Prcof., TLet K be an absolutely
discrete horogencous chain. K
does not contain an interval iso-
morphic to Ha for an ordinal A
whose power (cardinal number) is
beyond that of K. So there exlists
a least ordinal [7 such that K
has not the proper interval iso-
morphic to Hp , that is, K has no
proper interval isomorphic to Hyp ,
but K contains a proper interval
lsomorphic to Ha for any ordinal

o<y,

1) The cass wnen [7 is a dis-
crete ordinal and 7= 4 @ |

It [nllows r'rom {(4.1l) that K
= 9 °Ha . But #¥{ is an absolu-
tely discrete homogeneous chain
(2.4). So M=%J, and K =

°J ¢ Ha= Mo H» . But K contains
no proper interval iscrorphic to
Hp, so 7 = .l, and K = Hp .

11) The case when [ 1is a
limit ordinal:

Then K must contain an interval
isomorphic to Hp (4.2). But such
an interval can not be proper.

So K = Hp .

Theorem 4. Any alscrete homo-
geneous chain K can be decomposed
into an ordinal product

K= %WoHp,



where H- = J, and M is a 'non-
discrete! homogensous chain (this
may consist of only one elerment).

The prool is similar as that
of the previous tneoren.
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