NOTE ON DIRICHLET SERIES. (VIII)

ON THE SINGULARITIES OF DIRICHLET SERIES. (V)

By Chυji TANAKA

(1) INTRODUCTION. In the previous Note (fli Theorem 3), e have established the following

THEOREM.. Let us put 1.1) $F(\lambda) = \int$ $($ $\lambda = \sigma + it$, $\sigma(0) =$

where $d(x)$ is of bounded varia tion in any finite interval $o \leq x$ ≤ X *>* X being an arbitrary positive constant. If (1.1) has the finite simple convergenceabscissa σ ^{*i*}, then the neces sary and sufficient condition for $j = q_i + it$ to be the singular point of (1.1) is that

$$
\overline{\lim}_{\sigma\to-\infty}\left\{\log\log^+\left|\mathcal{G}(\sigma+it)\right|~+~\sigma~\right\}~=~\sigma_A
$$

where $\theta(\beta) = \int_{a}^{\infty} \theta \, d\phi \, (\beta \, \beta) \, d\beta \, (\alpha)$,
 $\beta(\alpha) = \int_{a}^{\infty} \frac{1}{\pi(\ln \beta)} \, d\phi(\beta)$

In this present Note, applying this theorem to Dirichlet series, we shall give a new proof of next G.Polya's theorem. (121 p.22, *ίδi* pp.85-86, Γ41)

G.POLYA'S THEOREM. Let Diri chlet series $F(J) = \sum a_n exp(-\lambda_n J)$ with $\frac{1}{2}m \left(\lambda_{n+1} - \lambda_n\right) = \frac{1}{2}$ o have the flnίΐe simple convergence abscissa σ *(nen,* τ *U)* has at least one singular point on every closed segment on $p(b) = \sigma_A$ with length $2 \pi \Delta$, where Δ (\leq ¹/ $\frac{1}{2}$) is the maximal density of $\{ \lambda_n \}$, which is defined as follows;

 $A = \lim_{f \to 1} \frac{\overline{I}(m)}{r \to r} \frac{f'(r) - f'(r)}{r - r}$, $f'(r) = \sum_{\lambda \in \mathcal{X}} 1$

(2) LEMMAS. For its proof, we need some Lemmas:

LEMMA I. Under the assump tions of the theorem. if $\lim_{n \to \infty} \frac{1}{n} \log |f_n| = C$ and \overline{f}

are both absolutely convergent in the whole plane, and they have the same order and type in the whole plane, where the order f_ν
and the type κ_i of $f_\nu(s)$ $(\nu = r \lambda)$ are defined as follows:

$$
\begin{array}{lll}\n\text{(a)} & \int_{L} & = \overline{\lim}_{d \to \infty} \frac{4}{(d\sigma)} \log^{2} \log^{2} \mathcal{H}_{1}(d\sigma) \\
& \text{where} \\
\mathcal{H}_{2}(d) = \lim_{d \to \infty} \frac{4}{(d\sigma)^{2}} \log \frac{4}{(d\sigma)^{2}} \int_{L} \left[\frac{d\sigma}{d\sigma} \right] \log \frac{4}{(d\sigma)^{2}} \\
\text{(b)} & \hat{R}_{L} & = \overline{\lim}_{d \to \infty} \frac{4}{\exp \left((\sigma \sigma)^{2}_{L} \right)} \log^{2} \mathcal{H}_{1}(d)\n\end{array}
$$

PROOF. From *Ib PROOF*, From *4_{<i>im*} (λ_{ηη} λ_η)
we have evidently

$$
(3.1) \quad \lim_{n \to \infty} \frac{1}{\lambda_n} \log n = 0
$$

Hence, by G.Valiron's theorem $($ $(21 \nvert p.3)$, the simple $($ = absolute) convergence-abscissa $\sigma_{\rm L}$ of \mathcal{G}_i (λ) is determined respectively by

$$
\sigma_1 = \underbrace{Im}_{\pi + \infty} \frac{4}{\lambda_n} \log \left| \frac{a_n}{\pi (i\pi\lambda_n)} \right|
$$
\n
$$
= \underbrace{Im}_{\pi + \infty} \frac{4}{\lambda_n} \log |a_n| + \lim_{\pi \to \infty} \frac{4}{\lambda_n} \log \left| \frac{4}{\pi (i\pi\lambda_n)} \right|
$$
\n
$$
= \sigma_4 - \infty = -\infty,
$$
\n
$$
\sigma_2 = \underbrace{Im}_{\pi + \infty} \frac{4}{\lambda_n} \log \left| \frac{a_n \delta_n}{\pi (i\pi\lambda_n)} \right|
$$
\n
$$
= \underbrace{Im}_{\pi + \infty} \frac{4}{\lambda_n} \log |a_n| + \lim_{\pi \to \infty} \frac{4}{\lambda_n} \log |a_n|
$$
\n
$$
+ \lim_{\pi \to \infty} \frac{4}{\lambda_n} \log \left| \frac{1}{\pi (i\pi\lambda_n)} \right|
$$
\n
$$
= \sigma_4 + 0 - \infty = -\infty
$$

so that $f_i(d)$ $(i = z, 2)$ **is ab**solutely convergent everywhere. Thus the first part or Lemma is proved.

By *(2*1)* and J.Ritt's theorem (*cδi),* the order *fc oϊ ftcJ)* (*ι=-* 1,2) is given respectively by

$$
-\frac{1}{f_i} = \frac{Im}{\lambda n \log \lambda n} \log \left| \frac{q_n}{r^{(rt)}(x_n)} \right|
$$

= $\frac{Im}{\lambda n} \frac{1}{\lambda n \log \lambda n} \log |a_n| + \lim_{n \to \infty} \frac{1}{\lambda n \log \lambda n} \log \left| \frac{1}{r^{(rt)}(x_n)} \right|$
= $0 - I = -I$

$$
-\frac{1}{\int s} = \frac{1}{\lim_{n \to \infty}} \frac{1}{\lambda_n \log \lambda_n} \log \left| \frac{a_n \delta_n}{f(f/\lambda_n)} \right|
$$

\n
$$
= \frac{1}{\lim_{n \to \infty}} \frac{1}{\lambda_n \log \lambda_n} \log |a_n|
$$

\n
$$
+ \lim_{n \to \infty} \frac{1}{\lambda_n \log \lambda_n} \log |a_n|
$$

\n
$$
+ \lim_{n \to \infty} \frac{1}{\lambda_n \log \lambda_n} \log \left| \frac{1}{f(f/\lambda_n)} \right|
$$

\n
$$
+ \lim_{n \to \infty} \frac{1}{\lambda_n \log \lambda_n} \log \left| \frac{1}{f(f/\lambda_n)} \right|
$$

\nthat

 so th

 $f_1 = f_2 = 1$ (2.2)

Taking account of (2.1) , (2.2) and S.Izumi's theorem ((61) , the type κ of $\ell_i(d)$ ($i=1,2$) is determined respectively by
 $\ell_{\mathcal{G}}(ek_i) = \frac{\ell_{im}}{n_{max}} \left\{ \frac{1}{\lambda_n} \log \left| \frac{a_n}{\Gamma(\ell_{im})} \right| + \ell_{\mathcal{G}} \lambda_n \right\}$

$$
= \overline{\lim}_{n+m} \overline{\lim}_{\Delta n} \log |a_n|
$$

+ $\lim_{n \to \infty} \overline{\lim}_{\Delta n} \{g_{\frac{1}{2}}\|_{\mathcal{F}(|f_{\Delta n}|)} + \lambda_n\}$
= $\sigma_A + 1$, i.e. $k_1 = e^{\sigma_A}$

 $\lim_{\Delta n \to 0} \left\{\frac{1}{\lambda_n} \log \left| \frac{a_n \phi_n}{\mathcal{F}(|f_{\Delta n}|)} \right| + \log \lambda_n\right\}$
= $\overline{\lim}_{\Delta n \to 0} \frac{1}{\lambda_n} \log |a_n| + \lim_{\Delta n \to \infty} \frac{1}{\lambda_n} \log |\phi_n|$
+ $\lim_{\Delta n \to 0} \left\{\frac{1}{\lambda_n} \log \left| \frac{1}{\mathcal{F}(|f_{\Delta n}|)} \right| + \log \lambda_n\right\}$
= $\sigma_A + 0 + 1$, i.e. $k_1 = e^{\sigma_A}$

so that

$$
(2.3) \t\t k_1 = k_2 = e^{\sigma_2}.
$$

By (2.2) , (2.3) , the second part of Lemma is established. q.e.d.

LEMMA II. Let us put
\n
$$
\sigma(t) = \lim_{\sigma \to -\infty} \frac{1}{e^{\alpha} \rho((\sigma))} \log^+ |\varphi| (\sigma + it)|,
$$
\n
$$
\hat{\kappa}(t) = \lim_{\sigma \to -\infty} \frac{1}{e^{\alpha} \rho((\sigma))} \log^+ M_+(\sigma^+, p).
$$

where the horizontal strip p : $|f(x)| = |t|$ $\leq \alpha$, $J(r(\sigma;\mathcal{P}) = max |\mathcal{G}_1(\sigma + it)|)$ $|t| \leq d$

Then we have

$$
\max_{|t| \leq d} \sigma(t) = \mathcal{R}, \, (P)
$$

REMARK. By (2.3), we have evidently $\begin{cases} \sigma(t) \\ k_1(t) \end{cases} \leq e^{\sigma t} < +\infty$. $\frac{PROOF.}{\mathcal{G}_{\mathcal{E}}(\sigma+i\epsilon)}$ Since $\frac{|\mathcal{G}_{\mathcal{E}}(\sigma+i\epsilon)|}{i\epsilon}$ we have "basily

 $r(t) \leqslant R_{1}(P)$, **so that** (2.4) max $\sigma(t) \leq R_1(p)$ $|t| \leq \alpha$ Since $\mathscr{G}(\mathscr{A})$ is of exponen tial type on account of (2.3) . by well-known Phragmén-Lindelõf's theorem, for any given ε ($>$ 0) we have $|\varphi_{i}(\sigma+it)| < \exp\{e^{-\sigma^{\prime}}(\sigma(t)+e)\}\$ *for* $|\sigma| > X(\epsilon)$ uniformly with respect to t ($|t| \leq \alpha$). Hence, for $|\sigma| > K(\ell)$ $M_1(\sigma, p) = |\varrho_1(\sigma + \iota t_{\sigma})|$ $\langle exp\{e^{-\sigma}(\sigma(t_{\sigma})+\epsilon)\}\rangle$ $\langle e^{\gamma} \phi \{ e^{-\sigma'} \left(\max_{|t| \le d} \sigma(t) + \epsilon \right) \}$ $\ddot{}$

so that

$$
\mathcal{R}_{\iota}(\mathcal{P}) \leq \max_{|t| \leq \alpha} \sigma(t) + \mathcal{E}
$$

Letting $\varepsilon \to o$,

$$
(2.5) \qquad k,(\mathfrak{P}) \leq \max_{\substack{\mathfrak{h} \text{ is odd}}} \sigma(\mathfrak{t}).
$$

By (2.4), (2.5) Lemma 2 is esta b lished.

LEMMA III . In the horizontal $strip \rightarrow : |j\omega| \leq \pi\Delta + \varepsilon$ ($\varepsilon > 0$), *ft (A)* **has the same type as** in the whole plane, i.e.

$$
R_i(2) = R_i = e^{\sigma A}
$$

 $PROOF.$ Since $M_1(\sigma, p) = max |\mathcal{G}_i(\sigma + it)|$ we have evidently

$$
(2.6) \qquad \mathcal{R}_1(\mathcal{P}) \leq \mathcal{R}_1 = e^{\mathcal{Q}_1}
$$

Since $\overline{\mathcal{G}}_l(\lambda) = \sum_i \overline{f(l\tau\lambda_n)}$ **has evidently the sane order and** \mathbf{type} in the whole plane as $\mathcal{G}(d) =$ $\sum_{r}^{q_n} \frac{q_n}{r(r\lambda_n)}$ $\exp(-\lambda_n \lambda)$, either $1/2.$ ($\cancel{9,1}$ + $\cancel{7,1}$) or $1/2.$ ($\cancel{9,1}$ $\overline{g}(J)$) has the same order **and type in the whole plane as** *?,(J)* **. Without any loss of ge nerality, wo can assume that 1/2.** $($ $\frac{9}{4}$ $($ *d*) $+$ $\frac{7}{4}$ $($ *d*) $)$ has the same order and type as $\varphi_i(t)$. Put $\lim_{n \to \infty} a_n = a_n + b_n \quad (n = 7, 2, ...);$ have \downarrow ($\mathcal{G}(d) + \overline{\mathcal{G}}(d)$)

$$
=\sum_{i}^{\infty}\frac{d\pi}{\sqrt{r(i\tau\lambda_{n})}}e\chi_{p}(\tau\lambda_{n},\lambda)
$$

Then, without any restriction of generality, we can assume

 (2.7) $d_2 0$

Now we classify $(\lambda_n, \lambda_{n+1})$ $(n-z, 2, ...)$ in two classes as rollows:

- (a) if $d_n d_{n+1} > 0$, (h_n, λ_{n+1})
belongs to 2-class.
- (D) If $dn \, dm \, <0$, (l_n, λ_{nn}) belongs to 1-class.
- (c) when $d_{n+1} \neq 0$, $d_n = d_{n-1} =$ $\begin{array}{ll}\n\cdots & \cdots & = \alpha_{n-r} = 0, & \cdots, \\
\text{if} \quad d_{n-r} d_{n-r} > 0, & (\lambda_i, \lambda_{n-r}) & (\cdots, n-r) \\
\text{belongs to } 2-\text{class, and if} \\
\end{array}$ $d_n \psi d_{n+1} \langle 0, \lambda_1, \lambda_{n+1} \rangle$ $(i = \pi \gamma, \dots \pi - 1)$
belongs to 2-class, but $(\lambda_n, \lambda_{n+1})$ belongs to 1class.

Then, by G.Polya's theorem (171 p.610), there exists an integral function $G(z)$ of exponential type such that

$$
(2.8)
$$
\n
$$
\begin{pmatrix}\n(a) & f(\lambda_1) > 0 & f(\lambda_1) & \text{real} \\
(& n = 1, 2, \ldots) & & \text{real} \\
(b) & \text{if } (\lambda_1, \lambda_{n+1}) \text{ belongs} & & \text{then} \\
(b) & \text{if } (\lambda_2, \lambda_{n+1}) \text{ belongs} & & \text{then} \\
(b) & \text{if } (\lambda_3, \lambda_{n+1}) > 0 \\
(c) & \text{if } (\lambda_4, \lambda_{n+1}) > 0\n\end{pmatrix}
$$

 \langle (d) the indicator-diagram of $\mathfrak{c}(z)$ is the segment: $-\tau \Delta \leq \mathcal{J}(\mathbf{z}) \leq \tau \Delta$.

Then we have evidently

 d_n $G(\lambda_n) \ge 0$ (2.9)

 $(n = 7, 2, \dots)$ By Cramer-Ostrowski's theorem $(5i pp.51-52)$, and (d) of (2.8) , we have

$$
\begin{array}{lll}\n\text{(a.70)} & \beta_1(\lambda) = \sum_{j=1}^{\infty} a_n \mathcal{L}(\lambda_n) & \frac{1}{\mathcal{L}(\mathbb{F}\lambda_n)} \exp(\lambda_n) \\
& = \frac{1}{2\pi \iota} \oint \varphi_i (\lambda - \mu) \mathcal{L}(\mu) \, d\mu, \\
\text{where (a)} & \mathcal{L}(\mathbf{x}) = \sum_{j=1}^{\infty} c_m \mathcal{L}^m, \\
& \bar{\mathcal{L}}(\mu) = \sum_{j=1}^{\infty} m/c_m / \mu^{m/2} \\
\text{(b) the path of integration} & \text{L is any closed curve} \\
& \text{surrounding the segment} \\
& -\pi \iota \preceq \oint \mu \mu) \preceq \pi^2 \mathcal{L}^m.\n\end{array}
$$
\nHence, putting $\beta_j(\lambda) = \sum_{j=1}^{\infty} \frac{c_m \Phi(\lambda_n)}{\mathcal{L}(\mathbb{F}\lambda_n)}.$

\n
$$
\begin{array}{lll}\n(\lambda - \lambda) & \text{by} \\
(\lambda - \lambda) &
$$

Now by the definition of k , (p) for any given ε (>0), we have (2.12) log^+ M_1 $(\sigma, \text{P}) < e^{-\sigma'} \{ k_1(\text{P}) + \varepsilon' \}$ $for -d > C(\ell')$ Let us take the contour of the rectangle: $\kappa(u) = \pm e^t$, $J(u) = \pm e^{u}$, $J(u) = \pm e^{u}$, $J(u) = \pm e^{u}$, $(\kappa A + \epsilon^2)$ ($\epsilon > \epsilon^2 > 0$) as $\pm \iota \overbrace{(rA + \xi^*)}^{(rA + \xi^*)}$ $(\xi > \xi^* > o)$ as
the path of integration L. Then
since $\mathcal{R}(\sigma - \mu) = \sigma - \mathcal{R}(\mu) \leq \sigma + \xi^*$ on L, for α β γ β γ β γ β γ (2.12)
we have $log^+ | f_1(\sigma_2 \mu)|$ $(404) (-R(0-L)) (R(0)+E')$ \leq exp $(-0+\epsilon^2)$ $(R,(P)+\epsilon^2)$ Hence, by (2.11) (2.13) (0.1) $\leq e^{\chi p} \{ e^{-6+\ell^*} (\kappa, (p)+\ell^{'}) \}$ $\frac{1}{2\pi}$ $\oint |\mathcal{F}(u)| |du|$ On the other hand, $\sum_{r} \frac{d_n}{r(r \lambda_n)}$
 $\therefore \exp(-\lambda_n \lambda)$ has the same

order and type in the whole plane

as $f_n(\lambda) = \sum_{r} a_n / r(1+\lambda_n) \cdot \exp(-\lambda_n \lambda)$,

so that by (c) of (2.8) and Lemma

1, it is true of $f_n(\lambda) = \sum_{r} d_n f(\lambda_n \lambda)$.
 $k_1 = k_3 = \frac{\overline{lim}}{\sigma_{+,\infty}} \frac{1}{e^{ik}h((-\sigma))} log^{-1} f_3(\sigma)$ \leq $(R_1(p) + E')$ exp(E) Letting ε' , $\varepsilon'' + o$, (2.44) $\&$ $\&$ $\&$ (7) Thus, by (2.6) and (2.14) , Lemma 3 is established. $q.e.d.$ (3) PROOF OF G. PÓLYA'S THEOREM. Let us denote by p the horizon-
tal strip: $|f(d)| \le \pi \Delta + \ell$, $(\ell > 0)$. Then, by Lemma 2,3, we have max $\sigma(t) = k_1(2) = k_1 = e^{\sigma t}$. $|t| \leq \pi \Delta t$ so that there exists at least one \overline{t} such that (4) $|\vec{t}|$ $\leq \pi A + B$ \int (ii) $\sigma(F) = e^{\sigma x}$ Hence,

 $log \sigma(\bar{t})$ = $\overline{\lim}$ { $\log \log^{+}$ | $\frac{\varphi}{\varphi}$ (σ + it) | + σ' | = σ > Accordingly, by the theorem

mentioned in (1), $A = \sigma_A + \nu_E^2$

($|F| \le \pi A + e$), is the sin-

gular point for $F(A) = \sum_{i=0}^{\infty} a_i$
 $\kappa \mu(-A_n A)$, Letting, $e \rightarrow o$, $F(A)$
 $\kappa \mu(-A_n A)$, Letting, $e \rightarrow o$, $F(A)$
 $\kappa \mu(-A_n A)$, Le has at least one singular point on the segment: $\chi(\lambda) = \sigma \lambda$, $|f(d)| \leq \pi A$

By the transformation: $\lambda =$ $f + (a^2 + t^2)$, and the similar
arguments as above, we can prove
the existence of the singular point on the segment: $\chi(\lambda) = \sigma\lambda$, $|f(\emptyset) - t| \leq \pi \Delta$, q.e.d.

- $(*)$ Received Oct. 4, 1951.
- (11 C.Tanaka: "Note on Laplacetransforms, (V) . On the determination of the regularity-abscissa, (II)" In the press.
- 121 G. Valiron: "Théorie générale des séries de Dirichlet," Memorial des sciences

- rigorie des séries de
Dirichlet, Paris, (1933).
141 G.Pólya: "Über die Existenz
- unendlich vielen singu-
larer Punkte auf der Konvergenzgerade gewisser Dirichletschen Reihen,"
- Berl. Sitz. (1923).

1971. Sitz. (1923).

1971. The certain points

in the theory of Dirichlet series," Amer. Journ.
Math. Vol.50 (1928).
- 161 S.Izumi: "Integral functions 164 S.12um: "Integral Tunctions
defined by Dirichlet's
series," Jap. Journ. Math.
Vol.6 (1929).
 $[3.7]$ G.Polya: "Untersuchungen
- űber Lúcken und Singularitaten von Potenzreihen,"
Math. Zeits. Bd. 29 (1929).

Mathematical Institute, Naseda University, Tokyo.