NOTE ON DIRICHLET SERIES

(VIIL)

ON THE SINGULARITIES OF DIRICHLET SERIES. (V)

By Chuji TANAKA

(1) INTRODUCTION. In the
previous Note tli Theorem 3),
we have established the tollowing

THEOREM Let us put
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where o@) 1s of bounded varia-
tion in any finite interval o= X

<X , X beiling an arbitrary
positive constant. If (1.1, has
the finlte simple convergence-
abscissa d3j , then the neces-
sary and sufficlient condition for

= ¢4 + it to be the singular
point of (1.1) is that

T { bl 1gorits] +} = o,
00

o
P = [ otp (%) ap 0,

1
@(1l= _/‘ m—)- Ad¥)
In this present Note, applying
tils theorem to Dirichlet serles,
we shall give a new proof of next

where

G.Polya's theorem. ( (21 p.22,
(31 pp.85-86, 41 )
G.POLYA'S THEOREM. Let Diri-

chlet ser'ies Fid = ): Qn 02p (-And)
with Anpy =An) = 3’ >0 have
the finite simple convergence-
gbscissa o7 « Then, #)
has at least one singular point
on_every closed segment on

R4 = with length 2ma ,
where 4 (= %/§) 1is the maximal

density of {A.} , which is
defined as follows:
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(2) LEMMAS. For 1its proof,
we need some Lermas:

LEMMA 1. Under the assump-

tions of the t eorenn AL Lim . by téal =0,
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Z. o 28 (And)

#h = Z:J F‘-‘(’;—rjfr 2ip(“And)

are both absolutelv convergent
in the whole plane, and they have
the same order and type in the
whole plane, where the order /.

and the type %&; of %8 =72
are defined as follows:
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s From dim (la-Aa) =§>0
we have eviaentlv
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Hence, by G.Valiron's theorem

( ¢21 p.3), the simple (= absolu-
te) convergence-abscissa g, or
¢ (4) 1s determinec respec-

tively by
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so that 4w =rx2) {s ab-
svlutely convergent everywhere.

Thus the first part ot Lemma is
proved.
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By (2.1) and J.Ritt's theorem
( t51 ), the order £, ol %£u)

( ¢i=1,2 ) 1s given respectively
by
"T =,,{jz /l,,[,,,\ '['ll i)
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so that !
(2-2) fr=fHh =1

Taking account of (2.1), (2.2)
and S.Izumi's theorem ( (61 ),
the type #. of %) (.=1,2)
is determined respectively by

1 Qn
i l’”rrur/lw) *‘&7’{"&
- Tm L an
;:Z}—: A Aoy 14
) 1 1
* ﬁ;’: {5 rtrian | tAat
i+l , e #o=e2

Loy (ets) =-1I {F 1y |25 2n $n | +LogAn}

T (ItAn)

fq(elz:) =£—z|,

= lm £ bogiaa1 + dom £ Log1#n
s 1 7
+ Aoy ey | At

=d; +0+21, 8 k;—e”j,

so that
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By (2.2), (2.3), the second part
of Lemma is established. q.e.d.

LEMMA II. Let us put
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where the horizontal strip 2
lgc| =1t = s
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Then we have
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REMARK, By (2.3), we have
evidently
o(t) } < e < oo
£,(?)
PROOF. Since |4 @rit!l=

!9’,(0‘+.,tn = (07;%) we have
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oty = R(P),

so that
(24) max g-tt) 2 £, (D)
(A28
Since ¢ ) is ot exponen-

tial type on account of (2. 5),
by well-known Phragmén-Lindeldr's
theorem, for any gliven £(>0) we
have

gt | < mple (it +ef
for o't > K(E)

unitormly with respect to t (iti=d)

Hence, for lol > K(€)
Mo, P =] Lot et
< Wf”{ e"f (T(tr)ri)k
-7 (max o(t) +6)
< oxpie? (mer |

so that

R, (P) = max ot) + &

Letting €0 s
= max: o-(t),
tisa

By (2.4), (2.5) Lemma 2 is esta-
blished. Qee.de

(2-5) £, (?)

LEMMA III. In the horizontal
strip » : |gu)|l = A+ & (E>0) ,

$i(4) has the same tvpe as
in the whole plane, 1l.e.

2,7 = & = %

= max | ¥, 0+ it))

PROOE.
- itiamate - w)’

Since Mo, p)=
,,%m 1P rit)|

we have evid
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Since %= ZaTvT/r—,r- orp (~And)
has evidently the same order and
type in the whole plane as %di=
g b (And) either
1/2.( v4) + 7)) or 1/2. ( 4w

- 74 ) has the same order
and type in the whole plane as
#4d) . Without any loss of ge-
nerality, we can assume that 1/2.
( W + F4) ) has the same

order and type as ¢u) . Put-
ting am =odn +ifn (n=z2...), WE
have -
$ (9 + 7 W)
] ol
= ZI:, W Wf’('/ln/”

Then, without any restriction
of generality, we can assume



(2-7) o >0

Now we classify (Aa, Aaw) Im=z2..)
in two classes as tollows:

(8) If  dndan >0, A Aaw)
belongs to Z-class.

(B) 1f dndan <0, s dap)
belongs to l-class.

(c) when day #0  , dy=octy, =

se s e cae

=d Y1l =0 0
1L iy oy >0, (A: i) "_”’*
belongs "fo 22 Elagq,tamf i

Ay oy <0, (AL Aipt) (C=np, - =)
belongs to 2-class, but

(An. Ax,) belongs to 1-
class.

Then, by G.Pclya's theorem ( (71
p.610), there exlists an integral
function G(z) of exponential
type such that

(a) GW) >o , GUa)
( n= 1,2,...)

s real

.

(b) 11 (An Aam ) belongs
to v =-class, then

@8 4 €Y G GUhy ) >0 o
c ; 1 =
(e) ﬁ’"j 4 fe|Gha| =0

(d) the indicator-diagram
or G(z) 1is the seg-
ment: -A = giz/&mwa.

Then we have evidently
(2:9) oAy G Un) =0

(nm7 2 o)

By Cramer-Ostrowskl's theorenm
( t31 pp.51-52), and (d) of (2.8),
we have
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where (a) Gz = X Cn x™
3
Fu) = ﬁ m!Cm S U™

(b) the path’or integration
L is any closed curve
surrounding the segment
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Hence, putting #¢) = 2;3 ﬂ%},—'-

Zp(~And)
(2.9), (2.10) we get ’
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Now by the definition of %,(?) ,
for any glven £ (>0) , we have

@r2) Lt 10, P) < el {4 ref
for -d > cle),

Let us take the contour of the
rectangle: gu)==x¢’ , gJwui=

*, (A TE”) (€ >¢">0) as
the path of integration L. Then
since RCor-u)=0-mw) = cte’ on
L, for -¢>¢”+e1uy » by (2.12)
we have

Lof" | prta-u))

< otp (-R-wy) (RP)+E")

< exp (-atg”) (R(P)tE)

Eence, by (2.11)

«-13) % o)
< mop{ (e}
¢1§uun¢u
On the other hand, E- m/rx.

- oxp (<A 4) haq the same
order and type in the whole plane
as fid) = z, Ax [PUtAS) - 0xpe(-Aad),
so that by “(¢) of (2.8) and Lerma
1, it 1s true of % (4 -).'_'.d. Gl )

T ‘plAad).  Hence, taking
account or ¢ = Jup ([ f(r+it)]
and (2.13) we nave "¥W<«™®

£ =Ry = lwm m—f” [oJ %w’}

= (Ri(P)rET exp(e)

Letting ¢, €"=0,

(Q2-14) R, = R (P)

Thus, by (2.6) and (2.14), Lerma
3 is established. g.e.d.

() PROOF OF G.POLYA'S THEOREM.
Let us denote by » the horlzon-
tal strip: (gl =mare  (E>0)
Then, by Lerma 2,3, we have

mex it = K (P o=k, = e
|t1&ware

so that there exlsts at least
one T such that

i) Ifl = worE
Gt o(F) me”

Hence,

Loy ()
= Im {tgte g riti| vt = o7
"y



Accordingly, by the theorem

mentioned in (1), 4 = o3 +.F
(IF1l&mare) » 18 the sin-
gular point ftor ‘FM):): an
wp(-And) . Letting ’‘gwo0 #mU)

has at least one singular point
on the segment: ®4) =0i ,
1§ < TTA .

By the transformation: 4 =
&+ oa+ct) , and the similar
arguments as above, We can prove
the existence of the singular
point on the segment: ®Rw) =05 ,
[ g -t | = » Q.e.d.
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