1. Bergman kernel function ${ }^{1)}$ on a Riemann surface. Let F be an abstract Riemann surface. We consider an exhaustion, of usual manner, $F_{1} \subset F_{2} \subset \cdots \subset F_{n} \subset \cdots, F_{n} \uparrow F$, whose boundaries are closed analytic curves Γ_{n}. We denote by $L_{n}^{2}(n=1,2, \ldots)^{n}$ the families of functions $f(z)$ which are regular, one-valued and have finite Dirichlet integrals

$$
\iint_{F_{n}}\left|f^{\prime}(z)\right|^{2} d \tau_{z}<\infty \quad(n=1,2, \cdots)
$$

in the sense of Lebesgue, where d_{z} denotes an areal element. By the well-known theory, L_{n}^{2} constructs a separable Hilbert space in the following sense: there exists a complete system which is orthonormal

$$
\iint_{F_{n}} \varphi_{n, v}^{\prime}(z) \overline{\varphi_{n, \mu}^{\prime}(z)} d \tau_{z}= \begin{cases}1 & v=\mu \\ 0 & v \neq \mu\end{cases}
$$

and

$$
\begin{aligned}
& f^{\prime}(z)=\sum_{v=1}^{\infty} a_{n, v} \varphi_{n, v}^{\prime}(z) \\
& a_{n, v}=\iint_{F_{n}} f^{\prime}(\zeta) \varphi_{n, v}^{\prime}(\zeta) d^{\tau} r_{\zeta}
\end{aligned}
$$

for any function $f(x)$ in L_{n}^{2}, We construct a kernel function ${ }^{\circ}$
(1) $K_{n}(z, \zeta)=\sum_{v=1}^{\infty} \varphi_{n, v}^{\prime}(z) \overline{\varphi_{n, v}^{\prime}(\zeta)}$,

$$
z, \zeta \in F_{n} .
$$

For a fixed ζ, by the wellknown theory on kernel functions, $K_{n}(z, 3)$ is regular in z and has the reproducing property
(2) $f^{\prime}(z)=\iint_{F_{n}} f^{\prime}(\zeta) K_{n}(z, \zeta) d r_{\xi}$,

$$
-f(z) \in L_{n}^{2} .
$$

In particular, taking $f^{\prime}(5)=K_{m}(\zeta, t)$ with $m>n$, we have

$$
\text { (3) } K_{m}(z, t)=\iiint_{F_{n}} K_{m}(s, t) K_{n}(z, \zeta) d r_{5} \text {, }
$$

especially
(4) $\quad K_{n}(z, z)=\iint_{F_{n}}\left|K_{n}(z, y)\right|^{2} d r_{s}$.

By this property, $K_{n}(z, 5)$ is determined uniquely. From (3) and Schwarz's inequality, we have
(5) $\quad K_{m}(z, \dot{z}) \leqq K_{n}(z, z)$.

By Schwarz's inequality, we have from (3) and (4)

$$
\begin{aligned}
\left|K_{m}(z, t)\right|^{2} & =\left|\iint_{F_{n}} K_{m}(s, t) K_{n}(z, \zeta) d r_{s}\right|^{2} \\
& \leqq \iint_{F_{m}}\left|K_{m}(s, t)\right|^{2} d r_{s} \iint_{F_{n}}\left|K_{n}(x, s)\right|^{2} d r_{s}
\end{aligned}
$$

$$
\leqq K_{m}(t, t) K_{n}(z, z)
$$

Hence, $\left\{K_{m}(z, t)\right\}$ is uniformly bounded for fixed t. By the theory of normal families, there exists a subsequence of $\left\{\mathcal{K}_{m}(x, t)\right\}$ which converges uniformly. We denote its limit functions by $K(x, t)$. We can easily prove that $K(z, t)$ is uniquely determined independently of the choice of subsequences and also of the choice of exhaustions of F. Then, we define $K(z, t)$ the Bergman kernel function of F .

From (3) and (2), we have
(6)

$$
K\left(z, t i=\iint_{F} K(\zeta, t) K(z, \zeta) d \tau_{5}\right.
$$

and
(7) $\quad f^{\prime}(z)=\iint_{F} f^{\prime}(5) K(z, \zeta) d \tau_{5}$,
provided that $f(x)$ is a one-valued regular function with a finite Dirichlet integral。
2. Nuli-boundary of Riemann surfaces. We shall state some applications of the above results. Let \mathcal{A} be a class of functions
$f(x)$ which are regular and onevalued on F and have bounded Dirichlet integrals

$$
\iint_{F}\left|f^{\prime}(z)\right|^{2} d r_{z} \leqq \pi
$$

From (7), (6) and Schwarz's inequality, we have, for any fixed point z 。 on F,

$$
\left|f^{\prime}\left(z_{0}\right)\right|^{2}=\left|\iint_{F} f^{\prime}(\jmath) K\left(z_{0}, \zeta\right) d r_{\zeta}\right|^{2}
$$

$$
\begin{aligned}
& \leqq \iint_{F}\left|f^{\prime}(s)\right|^{2} d \tau_{s} \iint_{F}\left|K\left(z_{0}, \zeta\right)\right|^{2} d \tau_{5} \\
& \leqq \pi K\left(z_{0}, z_{0}\right)
\end{aligned}
$$

hence,

$$
\left|f^{\prime}\left(z_{0}\right)\right|_{\#} \leqq \sqrt{\pi K\left(z_{0}, z_{0}\right)}
$$

where the equality holds only if

$$
f(z)=\sqrt{\frac{\pi}{K\left(z_{0}, z_{0}\right)}} \int^{z} K\left(s, z_{0}\right) d \zeta
$$

Arter L.Ahlfors and A.Beurling ${ }^{3}$, we define

$$
M_{Q}\left(z_{0}, F\right)=\sup _{f \in \infty}\left|f^{\prime}\left(z_{0}\right)\right|
$$

Then we have
(8)

$$
M_{\Delta}\left(z_{0}, F\right)=\sqrt{\pi K\left(z_{0}, z_{0}\right)}
$$

for any point $z_{\text {。 }}$ on F. Hence, we have the following

Theorem 1. $M_{\infty}=0$ is equivalent to $K(z, \zeta) \equiv 0$ -

For a domain on the complexplane, $M_{\otimes} \equiv 0$ if $M_{\&}$ vanishes at an inner point of the domain. Then we have the following

Corollary. Bergman kernel functions on a plane domain vanishes identically if it does at an inner point.

We shall define a null-boundary of class N_{∞} for the ideal boundary of F. By definition, this means that, if Bergman kernel function of F vanishes identically on F, F has a null-boundary of class N_{∞}, otherwise E has a positive boundary. Then we have

Theorem 2. There exists a function winich is regular, one-valued, non-constant and has a finite Dirichlet integral if and only if F has a positive boundary.

Theorem 3. If a simply-connected Riemann surface F is parabolic, $K(z, \zeta)$ vanishes identically and vice versa.

Remark. Let D be a domain extended over the complex z-plane. We map this domain conformally onto the domains with slits parallel to the real and to the imaginary axis. Suppose that $p(z)$ and $q(z)$ are the corresponding mapping tunctions normalized at a point z_{0} such that

$$
p(z)=\frac{1}{z-z_{0}}+a\left(z-z_{0}\right)+\cdots
$$

and

$$
q(z)=\frac{1}{z-z_{0}}+b \cdot\left(z-x_{0}\right)+\cdots .
$$

Then, using Ahlfors-Beurling's result ${ }^{4)}$, we have the relation

$$
K\left(z_{0}, z_{0}\right)=\frac{a-b}{2 \pi}
$$

M.Schiffer ${ }^{5)}$ has called it the span of D and this quantity is real and non-negative. By Theorem 2, if D has a positive boundary, the span is positive. However, the mapping functions will degenerate into linear functions as soon as the span vanishes, that is, ${ }^{\text {d }}{ }^{D_{6}}$.
3. Conformally invariant metric. Ne shall introduce a metric on F which has a positive boundary. The differential
(9) $d s^{2}=K(z, z)|d z|^{2}$,
where z is a local parameter, is conformally invariant. In fact, if we transform the local parameters z_{1} and 3_{1} into z_{2} and ζ_{2}, we have

$$
K\left(z_{1}, \zeta\right)=K\left(z_{2}, \zeta\right) \frac{d z_{2}}{d z_{1}}
$$

and

$$
K\left(z, \zeta_{1}\right)=K\left(z, s_{z}\right) \frac{\overline{d \zeta_{2}}}{d \zeta_{1}}
$$

by (1) and the uniform convergence of $K_{n}(z, 5)$, whence follows that (9) is conformally invariant. Now, we shall define the distance between two points on F. Let P and Q be arbitrary points on F. We put
(10) $\rho(P, Q)=\inf _{C} \int_{C} \sqrt{K(z, z)}|d z|$,
where C is an arbitrary curve on F joining P with Q. We call $\rho(P, Q)$ the distance from P and $Q{ }^{\circ}$
$\rho(P, Q)$ satisfies the three axioms of distance:
(i) $\quad \rho(P, Q) \geqq 0 . \rho(P, Q)=0$ if and only if $P=Q$.
(ii) $\rho(P, Q)=\rho(Q, P)$.
(iii) $\quad \rho(P, Q)+\rho(Q, R) \geqq \rho(P, R)$.
4. In the present section, we consider a family \mathcal{L}^{2} of regular functions on F_{n} whose real parts are one-valued and have finite Dirichlet integrals. Then, L_{m} is a sub-family of $\mathcal{L}_{n}^{2} \quad \circ$ As I_{s}
shown in the section 1 , we construct the kernel function $\widetilde{K}_{n}(2,5)$ with respect to \mathcal{Z}_{n}^{2}. The sequence $\left\{\widehat{K}_{n}(z, \zeta)\right\} \quad$ converges uniformly on F. We denote by $K(z, \xi)$ the limit function of it. Corresponding to Theorem 2, we have

Theorem 4. There exists a harmonic and one-valued function $u(z)$ on F which has a finite Dirichlet integral

$$
\iint_{F}\left(\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right) d x d y
$$

if and only it the kernel function $\widetilde{K}(x, \zeta) \neq 0$ on F.

Since $K(z, z) \leqq \widetilde{K}(z, z)$, we have
Corollary. If $\widetilde{K}(z, \zeta) \equiv 0$,
then $K(z, \zeta) \equiv 0$
5. Szegö kernel function. For bounded functions, it is convenient to consider Szegö kernel function ${ }^{7}$. In the following two sections, we shall deal with plane domains. Let
l_{n}^{2} be a family of functions
which are one-valued and regular on $F_{n}+\Gamma_{n}$ o In ℓ_{n}^{2}, there exists a complete orthonormal system $\left\{\psi_{n, v}(z)\right\}$ such that

$$
\int_{\Gamma_{n}} \psi_{n, v}(z) \overline{\psi_{n, \mu}(z)} d s_{z}= \begin{cases}1 & v=\mu \\ 0 & v \neq \mu\end{cases}
$$

where $d s_{z}$ is a line element.
Szegö kernel tunction of F_{n} is defined by the expression

$$
k_{n}(x, \zeta)=\sum_{v=1}^{\infty} \psi_{n, v}(z) \overline{\psi_{n, v}(\zeta)},
$$

which is uniquely determined.

$$
\begin{aligned}
& \text { For any function } f(z) \quad \text { in } \\
& l_{n}^{2} \text {, we have } \\
& f(z)=\int_{\Gamma_{n}} f(\zeta) k_{n}(z, \zeta) d s_{\zeta} .
\end{aligned}
$$

In particular,
(II) $\quad k_{m}(x, t)=\int_{\Gamma_{n}} k_{m}(\zeta, t) k_{n}(x, \zeta) d s_{\zeta}(m \geq n)$.

On F_{n}, we consider the family \mathscr{B}_{n} of functions $f(w)$ which are regular, one-valued and bounded: $|f(z)| \leqq 1$ - We cierine

$$
M_{\mathscr{L}_{n}}\left(z_{0}, F_{n}\right)=\sup _{f \in \mathscr{S}_{n}}\left|f^{\prime}\left(z_{0}\right)\right| .
$$

[^0]\[

$$
\begin{equation*}
M_{\mathscr{O}_{n}}\left(z_{0}, F_{n}\right)=2 \pi k_{n}\left(z_{0}, z_{0}\right) \tag{12}
\end{equation*}
$$

\]

Since $\mathscr{F}_{m} \subset \mathscr{b}_{n}$ for any positive integer $m>n, M_{\mathscr{E}_{n}}\left(z_{0}, F_{n}\right)$ is monotone decreasing, that is,

$$
k_{m}(x, z) \leqq k_{n}(z, z), \quad z \in F_{n} .
$$

On the other hand, by schwarz's inequality and (ll), we have

$$
\begin{aligned}
\left|k_{n}(x, t)\right|^{2} & =\left|\int_{F_{n}} k_{n}(\zeta, t) k_{n}(z, \zeta) d s_{s}\right|^{2} \\
& \leqq \int_{\Gamma_{n}}\left|k_{n}(s, t)\right|^{2} d s_{s} \int_{\Gamma_{n}}\left|k_{n}(x, \zeta)\right|^{2} d s_{s} \\
& =k_{n}(t, t) k_{n}(z, x) .
\end{aligned}
$$

Hence, for fixed $t,\left\{k_{n}(x, t)\right\}$ is uniformly boundea on F. Inerefore, we can obtain the limit iunction of this sequence which is uniquely determined. We denote it by $k(z, t)$. Then, we have, from (12),

$$
M_{\mathscr{L}}\left(z_{0}, F\right)=2 \pi k\left(z_{0}, z_{0}\right) .
$$

Theorem 5. The necessary and sulficient condition that there does not exist a bounded iunction which is regular, one-valued and non-constant on F is that Szegoi kernel function vanishes identically on F 。
6. Kelations between Bergman and Szegö kernel functions on plane domains. Since Szegö kernel function $k_{n}(x, \zeta)$ are regular on $F_{n}+\Gamma_{n}(m>n)$, we have

$$
\iint_{F_{n}}\left|k_{m}(z, \dot{s})\right|^{2} d \tau_{s}<\infty
$$

Hence, the relation

$$
k_{m}(x, y)=\iint_{F_{n}} k_{m}(z, t) K_{n}(t, y) d \tau_{t}(m>n)
$$

holds good. By the uniform convergence of $k_{n}(z, t)$, we have

$$
k(z, \zeta)=\iint_{F_{n}} k(z, t) K_{n}(t, \zeta) d \tau_{t}
$$

Furthermore, ii $\iint_{F}|k(x, \zeta)|^{2} d \tau_{s}<\infty \quad$, \quad have
we

$$
k(z, \zeta)=\iint_{F} k(z, t) K(t, \zeta) d \tau_{s} .
$$

N.Aronszajn ${ }^{9)}$ has noticed that betweer $k_{n}(z, \zeta)$ and $K_{n}(z, \zeta)$ the relation

$$
4 \pi k_{n}^{2}(x, \zeta)=K_{n}(z, \zeta)+\sum_{v, \mu} \beta_{v \mu} w_{v}^{\prime}(z) \overline{w_{\mu}^{\prime}(\zeta)}
$$

nolds good, where $\sum_{\text {are }}$ is a positive delinite Hermitean form and $w_{v}^{\prime}(z)$ is the derivative of the function $w_{v}(z)$ whose real part is the harmonic measure $\omega_{\nu}(z)$ which takes the value l on the ν th bounciary cornponent of Γ_{n} and vanishes on the remainder. Then, we have

$$
\text { (13) } \quad 4 \pi k_{n}^{2}\left(z_{0}, z_{0}\right) \geqq K_{n}\left(z_{0}, z_{0}\right)
$$

Ior any point z_{0} in F_{n}. Here the equality holds true in case where the dornain is simply-connected. By the monotoneity of $k_{n}\left(z_{0}, z_{0}\right)$
and $K_{n}\left(x_{0}, z_{0}\right)$, we have, as
$n \rightarrow \infty \quad$,
(14) $4 \pi k^{2}\left(z_{0}, z_{0}\right) \geqq K\left(z_{0}, z_{0}\right)$,
yielding

$$
M_{\mathscr{E}}\left(z_{0}, z_{0}\right) \geq M_{\mathscr{A}}\left(z_{0}, z_{0}\right)^{(0)}
$$

Theorem 6. $k(z, \zeta) \equiv 0$ implies $K(x, 5) \equiv 0$
(*) Received Aug. 19, 1951.

1) S.Bergman: The kernel functions and conformal mappings, Amer. Math.Soc., Mathematical Survey, V, 1950.
2) K.I.Virtanen: Über eine Integraldarstellung von quadratisch integrierbaren analytischen Differentialen.
3) L.Ahlfors and A.Beurling: Conformal invariants and func-tion-theoretic null-sets. Acta Math., 83 (1950), pp. 101-129.
4) loc. cit.
5) MoSchiffer: The span of the multiply-connected domains. Duke Math. J., 10 (1943).
6) 0.Lehto: On the existence of analytic functions with a finite Dirichlet interral. Ann.Acad.Sci.Fenn., ser. AI, 67 (1949).
7) G.Szegö: Über orthogonale Polynome, die zu einer gegebenen Kurve der komplezen Ebene gehören. Math. Zeit., 9 (1921), pp.218-270.
8) P.R.Garabedian: Schwarz's lemma and Szegö kernel function. Trans.Amer.Math.Soc., 67 (1949), pp.1-35.
9) N.Aronszajn: Theory of repro-- ducing kernels. Trans.Amer. Math. Soc., 68 (1950), pp. 337-404. CI. also Ioc. cit. ${ }^{8)}$.
10) loc. cit. ${ }^{1) \text {. }}$

Nagoya University.

[^0]: P.R.Garabedian
 8) that

