KERNEL FUNCTIONS ON RIEMANN SURFACES

By Shohei NAGURA

(Communi cated by Y.Komatu)

1. Bergman kernel function!’on
a Riemann surface. Let F° be an
abstract Riemann surface. We con-.
sider an exhaustion, of usual man-
ner, FCF,c - CF,Cc~ ., F.1F,
whose boundaries are closed analy-
tic curves [, . We denote by
L» (n=1,2,-- ) the families of
functions f(=z) which are regu-
lar, one-valued and have finite
Dirichlet integrals

H lf'(z)lzi"(z < v (n=t, 2z, )

in the sense of Lebesgue, where
dT; denotes an areal element.

By the well-known theory, L.
constructs a separable Hilbert
space in the following sense: there
exists a complete system

which is orthonormal
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for any function §(z) in L,. °
We construct a kernel function®

w Ken=2 5w m,

L 3e B, .

For a fixed & , by the well~
known theory on kernel functions,
Kalz, 3) is regular in %z and
has the reproducing property

@ §'m=ﬁ forK, (z o dr, |
F". 2
f(x) e L

n .

In particular, taking Fio= K, (o)
with m> n , we have

® Kazt)= S[ Kals,z) Koz, 2347,
P
especlally

w Kazos= “ 1K, (z, 0] 4, .
Fn

By this property, Ka.(z,$) is
determined uniquely. From (3) and
Schwarz's inequality, we have

(5) Kotz z) £ K, (2,2),

By Schwarz's inequality, we have
from (3) and (4)

Kozt =] £ Ka(s.t) K, (22 d T, |’"

nn

g iK..(!»UPi";gIK..(U’rdQ

¢ K, lte) K“(z,z).

Hence, i Km(lnt)k is uniformly
bounded for fixed t . By the
theory of normal framilies, ther
exists a subsequence of \K.\(z,-t)?;
which converges uniformly. We de-
note its limit functions by K(z,t) .
We can easily prove that K(z.t)

is uniquely determined independent-
ly of the choice of subsequences
and also of the choice of 'exhaus-
tions of F . Then, we define
K(z,t) the Bergman kernel function

of F
From (3) and (2), we have
6  Kizgy= Sﬂ Ki.x) Kz, 2T

F

and

@ Fo = | FO KD
1

provided that {(2) 1is a one-valued
regular function with a finite
Dirichlet integral.

2. Null-boundary of Riemann
surfaces. We shall state some
applications of the above results.
Let & Dbe a class of functions
F) which are regular and one-
valued on F and have bounded
Dirichlet integrals

 Ifw <
F

From (7), (6) and Schwarz's inequali-
ty, we have, for any fixed point z,
on FF ,

(f’(z.)r': ’ ﬂ f,(_() K(z‘,JS)A'(x r
F
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ﬂlf'(s)l"hs “ lK(za,é)lz"‘"’s
F ¥
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T K (2., z,) ,
hence,

lfiza] ¢ Y T K (2., 2,

where the equallty holds only if

z
[ ,
fiz) = Koy S K(5,2.)4T

Arter L.Ahlfors and A.Béurling’),
we define

Mo, F)= sup |§(za]
8 fed
Then we have

® Mp@ (2,.F) =,/E K x..z.)

for any point z, on [ .
Hence, we have the following

Theorem 1. Mg = o is equi-~

valent to K(z,gz)=o0

For a domain on the complex-
plane, Mg = o ir Mg vani-
shes at an inner point of the do-
main. Then we have the following

Corollary. Bergman kernel [func-
tions on a plane domain vanishes
identically if it does at an inner
point.

We shall define a null-boundary
of class NG for the ideal boun-
dary of F' . By definition, this
means that, if Bergman kernel func-
tion of F° vanishes identically
on ' , F has a null-boundary
of class Ng , otherwise F ' has
a positive boundary. Then we have

Theorem 2., There exists a func-
tion which is regular, one-valued,
non-constant and has a finite
Dirichlet integral if and only if

£ has a positive boundary.

Theorem 3. If a simply-connec~
ted Riemann surface F 1s parabo-
lic, K(z-3%) vanishes ldentically
and vice versa.

Remark, Let D be a domain
extended over the complex =z =-plane.
Ne map this domain conformally onto
the domains with slits parallel to
the real and to the imaginary axis.,
Suppose that P(z) and 942 are
the corresponding mapping tunctions
normalized at a point 2, such
that

plz) = T—}Z_ + 0 (7~ Z,) 4

and
Q@ = i ¢ bmmEde

Then, using Ahlfors-Beurling's
result *’, we have the relation

a~-4%
Kz, z) = ==
M.Schiffer ™ has called it the
span of D and this quantity is
real and non-negative. By Theorem
2, if D has a positive boundary,
the span is positive. However,
the mapping functions will degene-
rate into linear functions as soon
as the span vanishes, that is, D

has a null-boundary of class ﬂs".

3. Conformally invariant metric.
Ne shall introduce a metric on [
which has a positive boundary. The
differential

M as*= Kizz) azt¥,

where 2 1s & local parameter, is

conformally invariant. 1In fact,

if we transform the local parame-

ters 2, and 5, into 2, and
-8 , we have

Kiz.3) = Kiz,3) %:ﬁ‘

and

dg.
K(z. S,) = K (z; gx.) dgl

by (1) and the uniform convergence
of K,(z,3) , whence follows that
(9) is conformally invariant. Now,
we shall define the distance be-
tween two points on F© . Let P
and @ be arbitrary points on F .
We put

(o0 $(P,R)= in} “K(z,z) ldz|,
¢ ¢

where C 1s an arbitrary curve

on F° joining P with Q . We

call P(P, Q) the distance from

P and @ -

P(P,@) satisfies the three axioms
of distance:
W §(P.Q)zo. P(PQ)=0
if and only if P=Q .

i () =$5(Q P,

@ P(PRQ)+F@ R) = F(PR),

4, In the present section, we
consider a Lfamily of regular
functions on [, whose real parts
are one-valued and have finite
Dirichlet integrals. Then, La is
a sub-family of &, . As 1s



shown in the section 1, we_const-
ruct the kernel function K. l(z.§%)
with respect to & . The se-
quence {l(,(z,;)} converges

formly on F . We denote by

(%, %) the limit function of
it. Corresponding to Theorem 2,
we have

Theorem 4., There exists a har-
monic and one-valued function W(%)
or ' which has a finite Dirichlet
integral

[ (e ) axsy
F'

if and only ir the kernel function
K(z,2)¥0 on F .

Since Ki(z.2)s Ki(z.2) we have
‘e
Corollary., If K(z3%) =o,
then K(z,3)= o .

5. Szegd kernel function. For
bounded functions, it is convenient
to consider Szegd kernel function”.
In the following two sections, we
shazll deal with plane domains. Let

n be a family of functions
which are one-valued and regular
on Fo+IMw . In LS , there,

exists a complete orthonormal system

such that

{ ¥, (2]

1ov=p
(z) ds, =
Sr_ Iyn,v(z) Y“'}‘ z io vép
where 45, is a line element,
Szegd kernel tunction of F, is

defined by the expression

koGior= )0, 00 You ),

vsi
which is uniquely determined.

For any function f(z) in

2
L, , we have

fo = j for ®,(=,3) as,

n

In particulary

un R,z = Sﬁ.\(l,t)fe,,(z.z)ds; (m2n)
rﬂ

on F, , we consider the family

&, of functions f=) which are

regular, one-valued and bounded:
1fz] <4 . We ceiine

(',Fn = Sw ! )
Mgnz ) fseggnlf(ml,

P.R.Garabedian 8 has obtained
that
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{12) Méﬂ..(z" VFa) =2k, (26,20,

Since &n C &, for any positive
integer w7 n, Mg, (2, Fa) is mono-
tone decreasing, that is,

R lz,z) € R (2,2), zeF,.

On the other hand, by 3chwarz's
inequality and (11), we have

'ﬁ,,(z,t),z—_- I i %,(5,1) &, (z.3)ds, Iz'

< S Ifk,.(s,t)lzdss I h’e“(z,:)l’ass
rﬂ rﬂ
o tt.t) Ralz,z) .

i}

Hence, for fixed t, iﬁ’,n(z,t)} is
uniformly bounded on F' . ‘There-
fore, we can obtain the linmit func-
tion of this sequence which is
uniquely determined. We denote it
by R(%,t) . Then, we have, from
(1l2),

Mz(Z,,F) = 2T 'k(zn, z,) .,

Theorem 5. The necessary and
sufficient condition that there
does not exist a bounded 1unction
which is regular, one-valued and
non-constant on F is that Szegi‘)
kernel function vanishes identical-
ly on F .

6. Relaticns between Bergman
and Szegd kernel functions on plane
domains, Since Szegd kernel func-
tion +,(2,3) are regular on

Fo+la (m>n) , we have

I}imm(z,;)l’ag <o

Hence,
o (%.8) = ﬁ ., =0 K, (5, 8)dT, (m>n)
Fa

By the uniform conver-
, we have

the relation

holds good.
gence of k,(z,t)

k(1) = ﬁ kEen K, t3d,

Furthermore, ir ﬂlﬁ =Dt <o ,
we have F
29 = ] ) Kl s) arg .
F

N.Aronszajn® has noticed that be-
tweern %, (2.35) and K,(z.%) the
relation

2 VT Py
4T %, (3)= K, (z.3) +Z fup W@ WE)
V)r



holds good, where ¢ is a posi-
tive delinite Hermitean rorm and

Wy (%) is the derivative ol the
tfunction Wy (2) whose real part
is the harmonic measure ©v(z) which
takes the value 1 on the Vv th
boundary component of I and va-
nishes on the remainder. Then, we
have

(13) 47 R (2,2,) 2 K, (20.20)

1or any point % in Fa . Here
the equality holds true in case
where the domain is simply-connec-
ted. By the monotoneity of k.lz.,%z,)
and K, (%0, %) , We have, as

n— «© 3

(14) «r&‘(z.,z.)z K (z.,z.),

yielding
D}
Mz, (%0,%,) 2, Mﬁ' (z,, zo)‘.

Theorem 6. f(z.%)so implies
Kz g)=o .

(¥) Received Aug. 19, 1951.
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