By Masato UENO
(Communicated by Y. Komatu)

We know that any quadratic form can be normalized by an orthogonal transformation. We now investigate whether a bi-quadratic form may be normalized or not, and if it is possible we attempt to lind out what are conditions necessary and suificient.

Let a bi-quadratic form be given:

$$
f(x, y)=\sum_{l}^{n} c_{i j k \ell} x_{i} x_{j} y_{k} y_{e}
$$

summation being taken with respect vo c, j, k and l and

$$
c_{i j k \ell}=c_{j i k \ell}=c_{i j l k}=c_{j i l k}
$$

being real numbers.
Our present problem is to see that the above form can be transformed into

$$
g\left(x^{\prime}, y^{\prime}\right)=\sum_{i, k=1}^{n} e_{i k} x_{i}^{\prime 2} y_{k}^{\prime 2}
$$

by transformations

$$
\begin{aligned}
& x_{i}=\sum_{1}^{n} p_{t \nu} x_{2}^{\prime} \\
& y_{k}=\sum_{1}^{n} q_{i \mu} y_{\mu}^{\prime} \quad(e, k=1 \quad n)
\end{aligned}
$$

where the determinants $\left|t_{i v}\right|$ and $\left|q_{n_{\mu}}\right|$ are both different from zero.

We take the matrix of degree n^{2} of coefficients, of transformation and of the normalized form respectively

$$
\begin{aligned}
& R=\left(\begin{array}{llll}
p_{11} q_{11} \cdot & p_{1 n} q_{11} & p_{11} q_{1 n} & p_{1 m} q_{m n} \\
p_{n 1} q_{11} & p_{m n} q_{11} & p_{n 1} q_{1 n} & p_{n n} q_{1 n} \\
p_{11} q_{n 1} & p_{i n} q_{n,} & p_{11} q_{n n} & p_{1 n} q_{n n} \\
p_{n, 1} q_{n 1} & p_{n n} q_{n 1} & p_{n,} q_{n n} & p_{m n} q_{m n}
\end{array}\right)
\end{aligned}
$$

where $\quad x_{1} y_{k}=\sum_{\nu, \mu} p_{\nu \nu} q_{n \mu} x_{\nu}^{\prime} y_{\mu}^{\prime}$,

$$
D=\left(\begin{array}{cccc}
e_{n} & & & \\
& e_{n} & & 0 \\
& & \ddots & \\
& 0 & & e_{n n} \\
& & & \\
& & & \\
e_{n n}
\end{array}\right]
$$

then it must be

$$
R^{*} C R=D
$$

R^{*} denoting the complementary matrix of R. In this case R is the Kronecker products of P and Q where $P=\left(P_{i \nu}\right)$ and $Q={ }_{x}\left(q_{\text {a }}\right)$ and are respectively mation matrices, i.e. $R=P \times Q$.

Therefore, the problem of normalization of bi-quadratic form is reduced to normalization of matrix.

We next consider that the matrices are devided into n^{2} small matrices of degree n :

$$
\begin{aligned}
& =p q_{k t}, \quad D_{i}=\left[\begin{array}{ll}
e_{1} & 0 \\
0 & e_{n i}
\end{array}\right] \text {, }
\end{aligned}
$$

so that

$$
\begin{aligned}
& C=\left[\begin{array}{lll}
C_{11} & C_{1 n} \\
C_{n 1} & \cdot & C_{n n}
\end{array}\right], \quad R=\left[\begin{array}{ll}
R_{11} & R_{1 n} \\
R_{n 1} \cdot & R_{n n}
\end{array}\right], \\
& R^{*}=\left[\begin{array}{lll}
R_{11}^{*} & R_{n 1}^{*} \\
R_{1 n}^{*} & \cdot & R_{n n}^{*}
\end{array}\right], \quad D=\left[\begin{array}{cc}
D_{1} & 0 \\
0 & D_{n}
\end{array}\right] ;
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[\begin{array}{cc}
R_{1 \prime}^{*} & R_{n \prime}^{*} \\
R_{1 n}^{*} & R_{n n}^{*}
\end{array}\right]\left[\begin{array}{ll}
C_{11} & C_{1 n} \\
C_{n 1} & C_{n n}
\end{array}\right]\left[\begin{array}{ll}
R_{11} & R_{1 n} \\
R_{n 1} & R_{n n}
\end{array}\right]} \\
& =\left[\begin{array}{cc}
D_{1} \cdot & 0 \\
0 & D_{n}
\end{array}\right] \cdot
\end{aligned}
$$

It then follows that

$$
\sum_{r, 2} R_{\mu i}^{*} C_{\mu \nu} R_{\mu *}=D_{* k} \begin{cases}=D_{i} & (t=c) \\ =0 & (k \neq c)\end{cases}
$$

consequently

$$
\left\{\begin{array}{l}
\sum_{\mu, \nu} P^{*} C_{\mu \nu} P q_{\mu c} q_{\nu k}=0 \quad(k \neq c) \\
\sum_{\mu, \nu} P^{*} C_{\mu \nu} P q_{\mu c} q_{\nu c}=D_{c}
\end{array}\right.
$$

Moreover, it becomes

$$
\begin{equation*}
P^{*} C_{\mu \nu} P=F_{\mu \nu} \tag{/}
\end{equation*}
$$

where $F_{\mu \nu}$ is a diagonal matrix
for all μ and ν :

$$
F_{\mu_{2}}=\left[\begin{array}{cc}
f_{\mu_{2}}^{\prime \prime \prime} & 0 \\
0 & f_{\mu_{2}}^{(n)}
\end{array}\right] .
$$

Proof. Let the element of l th row and m th column of $P * C_{\mu 2} P$ be $x_{\mu \nu}^{(1, m)}$, then it follows that if $\quad \ell \neq m$

$$
\begin{aligned}
& \sum_{\mu, 2} q_{\mu \alpha} q_{\nu *} x_{\mu \nu}^{(l, m)}=0 \\
& \text { for all } i \text { and te ; }
\end{aligned}
$$

since the determinant of the coefficients $q_{\mu} q_{\nu}$ does not vanish, $x_{\mu,}^{\left(\varepsilon_{m}, \ldots\right)}$ must be zero for all μ and ν. In other words, it is necessary that all the $C_{\mu \nu}$ are transformed into diagonal matrices by the same matrix P

Corcllary. If several symmetric matrices A, B, C, of the same degree are transformed by the same orthogonal matrix into diagonal matrices simultaneously, then A, B,
C, are commutable.
Conversely, if matrices A
B, C,.... are commutable then there exists an orthogonal matrix P which transforms all the matrices into diagonal matrices.

Proof. Let P be an orthogonal matrix, $P^{*}=P^{-1}$, such that

$$
P^{-1} A P=\left[\begin{array}{ll}
\alpha_{1} & 0 \\
0 & \alpha_{n}
\end{array}\right), P^{-1} B P=\left(\begin{array}{ll}
\beta_{1} & 0 \\
0 & \beta_{n}
\end{array}\right)
$$

Then, we have

$$
P^{-1} A P P^{-1} B P=P^{-1} B P P^{-1} A P
$$

that is

$$
A B=B A
$$

and so on.

Conversely, if
$A B=B A, A C=C A, \quad, B C=C B$,
then there exists an orthogonal matrix P transiorming A into a diagonal matrix:

$$
P^{-1} A P=(\alpha .)
$$

From the assumption, it must be
$\left(\alpha_{i}\right) P^{-1} B P=P^{-1} B P\left(\alpha_{i}\right)$.
Without loss of generality we may assume $\quad \alpha_{1}=\alpha_{2}=\cdots=\alpha_{1}, \alpha_{t+1}=$ and hence $=\alpha_{r+s}$,
must be of the form

$$
\left[\begin{array}{ccc}
B_{1} & & 0 \\
& B_{2} & \\
0 & & \\
0 & &
\end{array}\right],
$$

B_{1}, B_{2}, \ldots. being of degree $t, S, \ldots .$. respective -
1y. Since $B_{1}, B_{2}, \ldots .$.
are also symmetric, we can take orthogonal matrices P_{1}, P_{2},
..... such that

$$
P_{1}^{-1} B_{1} P_{1}=\left[\begin{array}{ll}
\beta_{1} & 0 \\
0 & \beta_{t}
\end{array}\right], P_{2}^{-1} B_{2} P_{2}=\left[\begin{array}{cc}
\beta_{t+1} . & 0 \\
0 & \beta_{t+3}
\end{array}\right]
$$

If we put

$$
\left[\begin{array}{lll}
P_{1} & & 0 \\
& P_{2} & \\
0 & &
\end{array}\right]=Q
$$

then

$$
Q^{-1} P^{-1} B P Q=\left(\beta_{i}\right)
$$

and, of course, $Q^{-1} P A P Q=(\alpha$,$) .$
If' we assume

$$
\begin{aligned}
& \beta_{1}==\beta_{t_{1},}, \beta_{t_{1}+1}==\beta_{t,+t_{e}}, \\
& \beta_{t+1}=
\end{aligned}
$$

then $Q^{-1} P^{-1} C P Q$ must be of the form

$$
\left[\begin{array}{cccc}
C_{11} & & & 0 \\
& C_{1 \rho} & & \\
& & C_{21} & \\
0 & & &
\end{array}\right]
$$

By continuing this operation, all the matrices can be transiormed, by the matrix $\quad R=P Q$, into diagonal matrices.

Theorem. A necessary and sufficient condition that the bi-
quadratic form $f(x, y)$ can be normalized by two orthogonal transformations of x and y is
i) $\quad C_{\mu \nu}$ are mutually commutable;
and
ii) $\begin{aligned} & C_{\text {M }}^{\prime} \text { are alsc mutually } \\ & \text { commutable, }\end{aligned}$
$C_{\mu \nu}$ being a small matrix of degree n in the μ th row and 2 th column contained in the coefficient matrix C, and $C_{m \nu}^{\prime}$ the corresponding one contained in the coefficient matrix C^{\prime} whose constitution is as follows:

Proof. It is evident that the condition is necessary. We shall show that it is also surficient. In view of i) there exists a matrix P such that

$$
\begin{aligned}
& P^{-1} C_{i *} P=F_{i k} \quad(i, k=1, \quad n), \\
& P=\left(P_{i k}\right), \quad F_{i k}=\left(f_{i *}^{(\prime \prime}\right),
\end{aligned}
$$

where the $F_{i *}$ are all diagonal matrices. Now,

$$
F=\left[\begin{array}{ll}
F_{n} & F_{n n} \\
F_{n,} & F_{n n}
\end{array}\right]
$$

can be transformed by a proper orthogonal matrix R into a matrix of the form

$$
G=\left(\begin{array}{lll}
G_{1} & & 0 \\
& \ddots & \\
0 & & G_{n}
\end{array}\right)
$$

where $G_{\text {c are all symmetric. Let }}$ $G_{j}=\left(f_{i *}^{\psi^{\prime}}\right) \quad ; \quad f_{i *}^{y^{\prime}}$ representing the element of ${ }^{{ }^{i *}} i$ th row and t th column.

If all the G_{j} could not be transformed simultaneously by an orthogonal matrix into diagonal matrices, then there exist a pair of matrices G_{j} and G_{j} being not commutable:

$$
G_{j} G_{j^{\prime}} \neq G_{j}, G_{j}
$$

It follows

$$
\begin{aligned}
& \sum_{\lambda} f_{i \lambda}^{(y)} f_{\lambda i}^{\left(j^{\prime}\right)} \neq \sum_{\lambda} f_{i \lambda}^{i^{\prime \prime}} f_{\lambda k}^{(j)} \\
& \\
& \text { for some } \quad, \quad k \quad .
\end{aligned}
$$

Since

$$
\begin{gathered}
f_{i \lambda}^{(j)}=\sum_{\nu, \mu} p_{\nu,} c_{\nu \mu \text { is }} p_{\mu s} \\
\text { and so on; }
\end{gathered}
$$

$$
\begin{aligned}
& \neq \sum_{\lambda}\left(\sum_{p, \sigma} p_{p j} c_{p \sigma i \lambda} p_{j j^{\prime}}\right)\left(\sum_{j p h} p_{j} c_{x \mu+\infty} p_{\mu j}\right),
\end{aligned}
$$

that is

$$
\begin{aligned}
& \sum_{\nu \mu \rho \sigma} p_{\nu j} p_{\mu j} p_{p j}, p_{j,} \sum_{i} c_{2 \mu i \lambda} c_{p o \lambda i} \\
& \neq \sum_{\nu \mu \rho \sigma} p_{\nu j} p_{\mu j} p_{p,}, p_{\sigma j} \sum_{\lambda} c_{p \sigma i A} c_{\nu \mu \alpha k}
\end{aligned}
$$

Since $\quad c_{\nu \mu / \lambda}-c_{i \lambda / 2,}^{\prime}$, where
row and C^{\prime} is an element of $c^{\text {i }}$ th

$$
\begin{aligned}
& \sum_{i} c_{i \lambda \mu \mu}^{\prime} c_{\lambda \& \rho \sigma}^{\prime}=\sum_{\lambda} c_{i i_{\rho \rho}}^{\prime} c_{\lambda * \nu \mu}^{\prime} \\
& \text { for all } \quad i, k, 2, \mu, \rho \\
& \text { and } \sigma, *
\end{aligned}
$$

This contradicts to the above inequality, and the proof is completed.

Example.

$$
\begin{aligned}
f(x, y) & =4 x_{1}^{2} y_{1}^{2}+19 x_{2}^{2} y_{1}^{2}+13 x_{3}^{2} y_{1}^{2} \\
& +20 x_{1}^{2} y_{2}^{2}+11 x_{3}^{2} y_{2}^{2}+14 x_{3}^{2} y_{2}^{2} \\
& +12 x_{1}^{2} y_{3}^{2}+27 x_{2}^{2} y_{3}^{2}+15 x_{3}^{2} y_{3}^{2} \\
& +4 x_{1} x_{2} y_{1}^{2}-28 x_{1} x_{3} y_{1}^{2}-32 x_{2} x_{3} y_{1}^{2} \\
& -4 x_{1} x_{2} y_{2}^{2}+16 x_{1} x_{3} y_{2}^{2}+20 x_{3} x_{3} y_{2}^{2} \\
& -12 x_{1} x_{2} y_{3}^{2}-36 x_{1} x_{3} y_{3}^{2}-24 x_{3} x_{3} y_{3}^{2} \\
& -2 x_{1}^{2} y_{1} y_{2}-14 x_{2}^{2} y_{1} y_{2}-2 x_{3}^{2} y_{1} y_{2} \\
& -10 x_{1}^{2} y_{1} y_{2}-22 x_{3}^{2} y_{1} y_{2}-4 x_{3}^{2} y_{3} y_{1} \\
& -10 x_{1}^{2} y_{2} y_{3}+26 x_{2}^{2} y_{2} y_{3}+2 x_{3}^{2} y_{2} y_{3} \\
& +16 x_{1} x_{2} y_{1} y_{2}+32 x_{1} x_{3} y_{1} y_{2}+16 x_{2} x_{3} y_{1} y_{2} \\
+ & 32 x_{1} x_{2} y_{1} y_{3}+40 x_{1} x_{3} y_{1} y_{3}+8 x_{3} x_{3} y_{1} y_{3} \\
& -16 x_{1} x_{2} y_{2} y_{3}-80 x_{1} x_{3} y_{2} y_{3}-64 x_{2} x_{3} y_{2} y_{3}
\end{aligned}
$$

$$
\begin{aligned}
& C_{11}=\left[\begin{array}{ccc}
4 & 2 & -14 \\
2 & 19 & -16 \\
-14 & -16 & 13
\end{array}\right], \quad C_{22}=\left[\begin{array}{ccc}
20 & -2 & 8 \\
-2 & 11 & 10 \\
8 & 10 & 14
\end{array}\right), \\
& C_{33}=\left[\begin{array}{ccc}
12 & -6 & -18 \\
-6 & 27 & -12 \\
-18 & -12 & 15
\end{array}\right], \\
& C_{12}=C_{31}=\left[\begin{array}{ccc}
-1 & 4 & 8 \\
4 & -7 & 4 \\
8 & 4 & -1
\end{array}\right], \\
& C_{13}=C_{31}=\left[\begin{array}{ccc}
-5 & 8 & 10 \\
8 & -11 & 2 \\
10 & 2 & -2
\end{array}\right], \\
& C_{23}=C_{32}=\left[\begin{array}{ccc}
-5 & -4 & -20 \\
-4 & 13 & -16 \\
-20 & -16 & 1
\end{array}\right] .
\end{aligned}
$$

These are all commutable each other, and

$$
C_{11}^{\prime}=\left(\begin{array}{ccc}
4 & -1 & -5 \\
-1 & 20 & -5 \\
-5 & -5 & 12
\end{array}\right], \quad C_{25}^{\prime}=\left[\begin{array}{ccc}
-16 & 4 & 2 \\
4 & 10 & -16 \\
2 & -16 & -12
\end{array}\right)
$$

are also commutable. Therefore, the normalization must be possible. In fact, it takes place as follows: From

$$
\begin{aligned}
& \left|\begin{array}{ccc}
4-\lambda & 2 & -14 \\
2 & 19-\lambda & -16 \\
-14 & -16 & 13-\lambda
\end{array}\right|=0, \\
& \lambda= \pm 9,36 ; \\
& P=\left(\begin{array}{ccc}
\frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\
\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\
-\frac{2}{3} & \frac{1}{3} & \frac{2}{3}
\end{array}\right) .
\end{aligned}
$$

And from

$$
\begin{aligned}
& \left|\begin{array}{ccc}
4-\lambda & -1 & -5 \\
-1 & 20-\lambda & -5 \\
-5 & -5 & 12-\lambda
\end{array}\right|=0, \\
& \lambda=\lambda_{1}, \lambda_{2}, \lambda_{0} \quad\left(1<\lambda_{1}<2,12<\lambda_{2}<13,\right. \\
& \left.22<\lambda_{3}<23\right) ; \\
& Q=\left[\begin{array}{cc}
\frac{-5 \lambda_{1}+105}{\sqrt{5\left(7 \lambda_{1}^{2}-198 \lambda_{1}+2863\right)}} \frac{-5 \lambda_{2}+105}{\sqrt{5\left(7 \lambda_{2}^{2}-\cdots\right)}} \frac{-5 \lambda_{3}+105}{\sqrt{5\left(7 \lambda_{3}^{2}-\cdots\right)}} \\
\frac{-5 \lambda_{1}+25}{" 1} & \frac{-5 \lambda_{2}+25}{\prime \prime} \\
\frac{-5 \lambda_{3}+25}{\prime \prime}
\end{array}\right]
\end{aligned}
$$

C is really normalized by $P \times Q$ and its form becomes:
where

$$
\begin{aligned}
& \varphi_{1}(\lambda)=\frac{9}{20}\left(-\lambda^{2}+19 \lambda+46\right), \\
& \varphi_{2}(\lambda)=\frac{9}{80}\left(-3 \lambda^{2}+77 \lambda-102\right), \\
& \varphi_{3}(\lambda)=\frac{1}{20}\left(\lambda^{2}-19 \lambda+14\right) .
\end{aligned}
$$

Remarks.

1. We can apply the theorem to cases:
(1) n variables x and n^{\prime} variables y, n and n^{\prime} being different;
(2) poly-quadratic form, for example;
$\sum c_{i j * l s t} x_{i} x_{j} y_{*} y_{l} z_{s} z_{t} ;$
(3) Hermitiun form of complex coefficients satisfying

$$
c_{i j k l}=\bar{c}_{j i \not k \ell}=\bar{c}_{i j e k}=c_{j i<k} .
$$

2. It seems to be difi icult to find conditions for the case that the form may be normalized by non-orthogonal transformations whose determinants are not extinguished.
3. A condition for a form to be positive-definite, that is, all $e_{i *}>0$ is given by.

$$
c_{1,1,}>0,\left|\begin{array}{ll}
c_{1,1}, & c_{1211} \\
c_{2,1}, & c_{22,1}
\end{array}\right|>0, \quad,\left|c_{11}\right|>0,
$$

$$
,|C|>0 .
$$

(*) Received June 9, 1951.
Musashi University, Tokyo.

