COUSIN PROBLEMS FOR IDEALS AND THE DOMAIN OF REGULARITY

By Sin HITOTUMATU

(Communicated

§1l. Introduction,

The famous classical Cousin pro=-
blems in the theory of analytic
functions of several complex vari-
ables, i.e., to construct meromor-
phic functions with pre-assigned
singularities, or Pesﬂlif functions
with pre-assigned zeros™ , have re-
cently been extended to the cases
of 1deals by Messrs. K.Oka and H.
Cartan,® Their theories are excel-
lent and ilmportant, but I think,
they conslider chiefly the Cousin
distributions of regular functions.
In order to apply this theory to
the domain of regularity, we must
consider the Cousin distributions
of meromorphic functions.

In this note, we consider some
problems along this line, then ap~
plying to the theory of domain of
regularity, we state Theorem 4 in
section 7, which implies the so-
called Approximation Theorem of the
domain of regularity.

We treat here only the bounded
and univalent domains, which I be-
lieve, are the most modest case
imaginable.

We are now researching the pro=-
blem concerning the relation between
the pseudo-convexity and the regu-
larity of domains in the case of ®
variables, and I hope, this consi-
deration will be a preliminary lemma
of them.

§ 2. Definitions on ideals.

The family of all functions re-
gular in a domain D forms a do-
main of integrity, which we denote
by (D) . For a general set E
in the space, not necessarily open,
the notation ®(E) means the family
of all functions regular in some

neighborhood of . [Ej’?i'ilso
a domain of integrity.

An 1deal in E , Or more exact-
ly, an Ideal of functions regular
in EF means an ideal 1in the ring
™ &G (E), i.ei, a subset J

G- (E swith the property that f, aej
implies f+&e¢J , and {-Ej
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by Y. Komatu)

and @ €Q(E) 1implies afe T .
For a subset QL of ¥(E) , the

set
ULE«{Z}f | e0CE),

{-aeot,l (§ =1,...,m);
m=1,2,...}

is the least ideal containing QU ,
which is called the ideal generated
by Ol . 1If there exist finite
number of functions L secey

€ @ (E) which generaste the ideal

g in E , we say that J has
finite bases 1 s--sfst in E .

ere we do not assume the linearly
independence, 1.e., the uniqueness
of the representation of any element
of J as a linear combination of

f' yrcey s e

§ 3. Cousin problem for ideals.

Of all the imaginable extensions
of the classical Cousin problems,
the following two seem most conve-
nient in their applications,

First Cousin problem fo
idéal: Suppose that there is given
an 1deal J with fipite bases in
E . If to every point ae¢FE ,
there correspond a neighborhood
(a }and a function <, mero-
morphic in lf (&) , such that
o — Ve € U’(a, &) u;xless
[y Ula) é s empty,
we gaigz}'ﬁt the s?stem Ula), Yo, T}
is a first Cousin distributiog for
an iaeal in E If there exi-
sts a funézion ¥ meromorphic on E
(i.e., meromorphic in some neighbor-
hood of E ) such that ¥ —Y, € Ja
for every point a € E , We say
that ¥ 1is a solution of the given
distribution. If for any given
first Cousin distributlon for an
ideal in E , there exists its
solution, we say that the first

Cousin roblem for an ideal 1S sol-
vable in E

When JT=0(F ) , this problem
is nothing but the classical first
Cousin problem!



Second Cousin problem for ideals:
Suppose that to every point A€E ,
there correspond a neighborhood U (&)
2%ﬁ‘{initev§2??er of runctiﬁgs( ;

s ey Yom, regular in [0 N
such that o0 g,‘,:l} andi¥ . .. ¥
generate the same ideal inU{a,$),
unless U (a ,8)EU(x)aV (L) 1is empty.
Such a system is called a second
Cousin distribution ror ideals in

E . If there exists an ideal ¥
in E , which generate the ideal

{,\km) Ca)
1 ' Imaja
aeE , we say that the JF 1s
the golution-ideal of the given
distribution. We say that the se-
cond Cousin problem for ideals is
solvable in E , if for any given
second Cousin distribution for
ideals in E , there exists its
solution-ideal.

for every pcint

This does not imply, as the spe-
cial case, the classical second
Cousin problem which corresponds
to the case Ma= 1 , because in
the classical case the solution is
not an ideal, but must be a function

or a principal ideal.

4. Cousin problem in a poly-
§ Cousin problem in & poly:
cylinder.

In this section we consider the
space ol' M complex variables Zi,
soey Zm « A polycylinder means
the topological proguct of domains

3 seees s, Where each Gj"
is on the 2Zj -plane and 1is called
the + -th component of the poly=-
cylinder. A polycylinder is called
compact i1 each component is a boun-
ded closed domain; simply-connected
if each component and 1Ts complement
for the plane are both connected;3
and circular if each component 1is a
closed circular disk.

In order to solve the above
Cousin problems 1or ideals, we in-
troduce the following notions:

Detinition 1. A domain D is
said to be functionally decompos-
able if to every palr of compact/
simply-connected polycylinders Z
and Z" whose components coincide
except one and such that Da Z2'n 2/
is not empt§5 every function %?(Z )

regular on DnZ2/An2” is decom-
posed into the formf(2)= ‘f/(z)“f”(z:;‘,

where £/(z) and £7(z) are re-
gular in D Z’ and DaZ” re-
spectively.

Lemma 1, Suppose that D is
functionally decomposable, and we
use the notations in Definition 1.

Let J be an ideal with finite

baseg 1¥,..., %} in D , and
let 4/ and # be two functions,
meromorphic on Dna Z and Dn 2

respectively, satisfying +/—”
€Jp,2z'~AZ" ,» Then there exists
a function meromorphic in

DA (27V2Y) satisf,ying 1}'—'\{'/
<Tp.z’ and ¥-V"€ Jp 27

Proof. We have, by assumption
/ " _ S
where

. 7
0;€0(DAZhZ)
Then we can take functions a;
and af , =1,...,5s regular
in DA 27 and D, Z” respec-
tively, such that a4 —a? = as
The function given bya & ¢

s
‘Pi’% 0; ?} in Da Z/
= S »
Y45 G DAz

satisfies our conclusion.

Lemma 2, (Cousin's Lemma) A
compact polycylinder is functionally
decomposable.

This can easily be proved by the
Cauchy's integral formula.

Also we introduce the following
definition:

Definition 2. A domain D is
safi o Dbe eally decomposable 1if
for every palir of compact simply- p
connected polycylinders Z’ and 27
whose components coincide except
one and such that Da 2/A 27  is
not empty, every square-matrix A
consisting of functions regular on
DA Z’AZ% with the determinant
never vanishing there, is decomposed
into the form A:A"‘LA” , Where

A’ and A” are square-matrices
both with the same dimensions as A
consisting of functions regular in
DaZ” and DaZ” respectively
and that, their determinants never
vanish there.

’

Lemma 3?9 Suppose that D 1is
1deaIIy decomposable, and we use
the notations in Definition 2. If

J’ and J7 are two ideals with
finite bases in Da Z/ and DaZ”/
respectively, which generate the
same ideals in Dan Z’A Z” , there
exists an 1deal J in Da(z’vz¥)
with the finite bases which gene-
rates 7/ in DaZ’ and Y7 in
DAZ” respectively.



/ ’
Proof. Let”{'f. ,...,‘fs’} and
se-ss $s#) be bases of T7
and g” respectively./ By assump-
tion we h:xe on DaZ'AZ”

/ A v
f& =,,,_.Z, %ia o

and
P s’ ;
ﬁ:% buj £
where
U » 44j €0(Da /A2 ;
j': ’»-‘-,S/;« = ’;'-~,Sll

where
s’
C«p E ‘3.22' "eda' aj B + &(,g

/ /
is non-singular in D, Z N 2”7 anda
satisfying
- =
:_f_l/}bh !"f’ '{l
Al ' i P

there. By /assumption there exist
and A" satisfying A=A A"

Put o~ -
' r{"

'fl ] 173
Ih=-

| /
ltA: ' in DI'\Z-
' >

1

]

‘: =A: | "
:"A boecl ir DaZ
! ‘;s'fs’f.

e R -
The ideal J generated by{fi,...,
fsr4g7} satisfies our conclusion.

The following lemma due to H.
Cartan plays the fundamental role
in our theory.

6)
Lemma 4, ° Every compact simply~
connected polycylinder is ideally
decomposable.

Definition 3. A domain D 1is
sa o be perlect for ideals it a
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function < (z) regular in D
and an ideal J with finite bases
in D , satisfy that fe J, for
every point ae€ D , then f be-~
longs to J 1itself.

One of the most important results
in the ideal~theory of regular func-
tions is the rollowing due to K.
Oka,

Lemma 57) Every compact simply-
connected polycylinder is perfect
for ideals.

Since we may choose circular
polycylinders for the neighborhocds
in the Cousin distributions, we can
easily verify?®

Lemma 6. If a bounded closed
domaIn D 18 functionally aecom-
posable, and i DA Z is perrect
lror ideals to every compact simply-
connected polycylinder 2Z , the
first Cousin problem for an ideal
is solvable in D .

Lemma 7. If a bounded closed
domain D 1is ideally decomposable,
and 1f DA 2 is perfect for ideals
to every compact simply-connected
polycylinder Z , the second Ccusin
problem for ideals is solvable in

; the solution-ideal has finite
bases anc 1s uniquely determined,

The uniqueness of the solution-
ideal is a direct conseguence of
the perfectness of the domain,

Therefore we obtain:

Theorem 1. The 1irst Cousin
problem for an ideal is solvable
in a compact simply-connected poly-
cylinder,

Theorem 2, The second Cousin

problem for ideals is solvable in
a compact simply-connected polycy-
linder; the solution-ideal has fi-
nite bases and is uniquely deter-
mined.

§5. Functions in a polyhedral

domain.

Suppose that 4 1is a family of
functions regular in a domain .

Definition 4. Let a hounded
closed domaln P in D satisty
the condition that there exist fi-
nite number o1 1unctions 1
eovy Pm or , such that
\‘P*f< 1 (k=1,...,m) at every in-
ner point of P , while at each
boundary=-point of P , at least
one of them takes absolute value

»



la In this case P is said to be Especiallv we can choose 2 as

¥olxhedra1 domain or an analytical circular polycylinder, and in this
polyhedron regroduced by <, ,..., ¢ase, F(z,w) is regular in s
Pm of £ circular polycylinder A . 3uch

. function is eapanded into pcwer se-

Take a polyhedral domain P re- ries which converges uniiormly and
produced by @ ,..., Pm of £ ., absolutely in A . Then we have

Because of its boundedness, P is the following theorem known as Oka-

contained in the interior oi a com- Weil's approximation theorem®

pact simply-connected polycylinder

o We introduce new variables
Wi ,000, Wy , and denote by W
the circular polycylinder{iw,| € 1}
X .. x{Wnity . Put EXz ExwW
for any set E 1in the previous (z)-

Theorem 3, Suppose that the fa-
mily 4§~ forms a ring, containing
24 40405 Z94 and constants. If

{=z) is regular in a polyhedral
domain P reproduced by iunctions

;g:c‘e,;r:ggyGSPGCially put AE Z* . of £ , =2z s approxir_nated uni-
. Tormiy in P oy the functions of
Ve{tz,wiiwg = (2, £ -
, . 6. Ccusin problem for poly-
R=1,...,m); (21""'2"’GP} d hedrajr, domains., =L
X
which 1s contained in P , 1s For the first Cousin problem,
called the %ragh of P in A . we see:
Let us construct a distribution in
A as follows: If a€eV , we Lemma 5a. The pclyhedral do-
take a neighborhood Udla ) in main 1Is perlect for ideals,
which all the ¢,(z ) (l‘fém)are re-
gular, and put ‘\}'{ —Wi (z) , Prcof. Let :F‘\Z) be regular
kR =1, ,m (= 1‘& V ’ on~ P , and J be an ideal with
we choose & neighborhood U(a)so finite bases {v¥; ,...,Ve} in P .
small that it does no;: intersect By Lemma 8, there exist functions
, and put = This F(z,w) ; ! W isess,
system {U {'\l"“’} Y torms (; w)v?rhic}?ireduce to the origi-
a second Cousin distribution for ;F(z.) ; '\yl Z ' geees ¥ 20
ideals in A , and then we have respectively on~ VvV , For eveéry
its solution-ideal W with finite peint & of A W
bases {®, ,---, @} in A . V belongs to the 1deal g_ .
coincides with the common zeros of g, .9, , 5} where §1 yeeesy
the ideal 20 . 3 ) tre the bases of the ldeal
1(' of V . Then by Lemma 5,

Now suppose that + (Z) € 0’“’)- E’z ,w) belongs to W *tself,
Let us construct a distribution as Substituting wg = {'ﬁ‘ z),
following: If QA €V we take reduces to the previous ideal J
a neighborhood U(a) in’ which $(z) which contains 4 (2) .
is regular, and put Y, =F 1)

If a¢V , We choose U (t)so Lemma 28. A polyhedral domain
small that it does not intersect is runctionally decomposable.
, and ut ‘I’ ,  This
system{V(ﬂr o,, W) forms a Frocof. We use the notations as
first Cousin distribution for an in PDefInition 1 and in section 5.
ideal 9 in A , and we have its By Lemma 8, there exlsts a function
solution F (z ,w) which is re- F (z w) regular on ' Za2"”)¥
gular in A and which colncides with {-(z) on
VA (B2 Y R and
F (z,,.-., Zn ‘Pi (z),.. 3 %‘(z )) Zz” )X are two simply-connected
compact polycylinders whose compo-
® -f- ' Zyye e Zn). nents coincide with each other ex-
cept one, and so we can de;ompose

Theretore we have F (2 ,w) into the form F'(z w)-F{z w)

wherex F’ and F” are regular in

Lemms 8, If $(Z) 1s regular (2 and in (g")% respecti-
on & polyhedral domain P _, there vely. Then f (z )FF(Z ¢ 'z
exists a function F (Z ,wW]J regular and £'{ z)z Y’ satis-
on A , which coincides with §(z ) fy our conc usiono

on th h of in o
e graph of P A Summing up Lemmas 6, 5a and Za,

Here f(z) need not be regu- we obtaln .
lar in the projection into (2Z) =~
space of A &
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Theorem la, The first Cousin
problem for an ideal is solvable
in a polyhedral domain.

In the case of second Cousin
problem, it 1s hard to show that
the polyhedral dcmain is ideally
decomposable, because of the diffi-
culity of choosing a matrix

such that A coincides with on
Va (22AN2” )  and never vani-
shes all over (Z277n27) . Of

course we can prove that the con~
clusion of Lemma 3 is alio valid
for a polyhedral domain'), but we
will proceed along another way.

Let {U(a. ) 1v®} 5} is a
given second Cousin distribution
for ideals in a polyhedral domain
P , and let &, ,..., P5 are
bases of the ideal W of the graph
vV . To p=(a,4) eV , we
take a neighborhoodW(P) U (a)xN )
where U (o) is the given nei-
ghborhood of o in the pre-assigned
distribution in P , and N (€ )is
a sufficiently small neighborhood
oI‘ € 1in (w)-space. We also at-
Pute the system of functions
¥ Py={y®. B .. 23 mwcr)
To pe A—-V' , we’ chooge W(p)
so small that it has no point in
m3 n with , and attribute

(MP;V!’} there. The system
formsP

thus obtained,
second Cousin distribution
in A
ideal Flx w),..., Tz
there. The ideal T =1(¥,(z, ?(z 'Y,
eeey, Pu(z (z 1s then the
éeal

solution—i of ‘our previous di-
stribution in P . Then we have:

Theorem 2a. The second Cousin
problem Ior 1deal is solvable in a
polyhedral domain, and the solution-
ideal with finite bases 1is uniquely
determined.

The above method by the construc-
tion of Cousin distribution in A
may be adopted for the case of the
Sfirst Cousin distribution, if the
distributed functicns are all regu-
1ar;'2) but for meromorphic disErﬁ-

on, it is dirficult to proceed
along this line, because we cannot
enclose the singularities in the
neighborhood of |/ . And this is
the reason why we have introduced
the notion of decomposability.

§7. Fundamental theoren. for the
domain of regularity.

Definition 4., Let 'P‘ be a sub-
family o &> (D). A domain
is said to be convex with respect
to § , if to every closed sel

, and 8o we have its solution-
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in D , there corresponds a clo-~
ses set (¥ satisfying ¢ccC¥ (D
and_such  that to every point P

D -¢c”, there exlsts a Iunct*on
fp e & satisfying |f(P )] >
SélpH'—[ . ‘When 4 contains the

derivatives and the powers with the
original function, C~ _may be chon-
sen as the set consis ing of all
points whose distancé?frcm the boun-
dary of D is not less than the mi-
nimum distance between C and the
boundary of D .

Definition 5. We say that D
is @approximable by , i1 to every
closed set" ¢ 1In , to every
€> 0 , and to every function
regular in D _, there exists a
Iunction X3 such that
-3] <& in .

Now we state the following™ Fun-
damental theorem for the domain of

regularity®
Let 'F'

o (D containing 23 yeeaey
Z-n, and constants. Then the
following three conditions are equi-
valent:

Theorem 4,

be a subring

@ D is a domain of regularity,
and is approximable by £ .

@. D 1is convex with respect to
©. There exists a sequence P,
of polyhedral domains re-
produced by functions of
, Such_that P CcInth
and Unh = . We say
that such sequence {P,} is
an increasing sequence of
domains to D

Proof. ®—>
a domalin of regularity, it is Son-
vex with respect to (D)
Therefore to every closed ¢ in D,
there corresponds a C* ,such that
to every point pe D -C~ there exi-
sts a function §{ regular in D ,

satisfying |/ p)|> su {|£],mCY.
Applying the approximab lity to a

closed set (’/ containinpg
C , and to £=% laf(P)r gﬂ'ﬂ 1)1(:})
in C’

then there exists a functio
aurfld], inC} . This

such that <Eg
is convex with re-

: Since D is

and so |3 (p )| >-
means that D
spect to f .

g : We have only to pro=-
at iT € 1s a closed set in

, there exists a polyhedral
domain P reproduced by functions
of 4 satisfying ¢ ¢ Int P

€P <D . By the convexity as-

ve t



sumption, there exists (C* and a
domaln D7 such that C € ¢*<c D’
cD’cD . To every boundary
point p of D’/ there exists a
function fp of £ satisfying
IfpeC P> 1>suplfy| . In a neigh-
borhood U {p J; also takes abso-
lute value greater than 1. By com-
pactness of the boundary of D’ ,
we can cover it by the union of
finite number of neighborhoods
UCp)seess U (Py) . The con-
nected component P of the set

{ (z)(1 Vp (2 )€ 1,4 =1,...om}
containing ¢ satisfies our condi-
tions.

- : The regularity of D
is implied in the theorem proved
in my previous paper.'S) The appro-
ximability is implied in Theorem 3.

The theorem in my previous notJS)
is a special case of .this theorem
where § is O'D) . The equi-
valence of (@ and are sometimes
called the gpproximation theorem
for dcmain of regularity.

Theorem 537)(Behnke-Ste1n)
If each ol an increasing sequence
of domains {Dy} to D 1is a do-
main of regularity, so is their
union D .

Proof. From Dy , We can
conStruct another_ increasing sequen-
ce of domain 1Py such that B,_4
is a polyhedral domain reproduced
by functions regular in P, .1
Therefore P, is approximable by

(Pyv+1 ) , and so we can easily
show that P, is also approximable
by & (D) itself, Then there is
a polyhedral domain @y repro-
duced by functions regular in D
satisfying B-, €Q, C | , and
then D 1s the union of @, .
Therefore D 1is a domain of regu-
larity.

Corollary. If to every closed
set C n and to every bound-
ary point p of D , there exists
a function regular in C and hav-
ing a pole at P , then D 1is a
domain of regularity.

This 1s an extension of the
“Thullen's theorem",1
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