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The purpose of this paper is to
give a new proof of the known theo-
rem that any (infinite dimensional)
unitary representation of a compact
group is contained in the regular
‘representation of the group, and
using this result, to show that any
irreducible unitary representation
of a compact subgroup in a locally
compact group is extensible to the
same kind of representation of the
full group.Y

DEFINITIONS. A unitary repre-
sentation U; g»Utg) , geG s Of
a locally compact group on a

Hilbert space # 1s a continuous
homomorphism of G 1into the weakly
topologized group of unitary opera-
tors in # and it is called cyclic
(simple, or normal) if there exists
an element ¢ c¢# such that
{U®s; geG} span the whole space

# -« Moreover it is said to be
contained in another unitary repre-
sentation U’ on g’ , if #  con-
tains a closgd linear subspace 14
such that %#: 1s invariant under
U, geG and that the unitary
representation on ¥ induced by

g’ is unitarily equivalent with

The regular representation of a
group G with left-invariant Haar

measure 1s the unitary representa-
tion which 1is obtained by assigning
to each element a the unitary ope=~
rator U, 1in the Hilbert space L,G)
defined by

VX8 = X(3'g)  for X eLyG).

THEOREM l. Any cyclic unitary
representation U of a compact
group K 1s contalned in the regu-
lar representation of K .

PROOF. By the Gelfand~Ralkov's
theory of unitary representation
of locally compact group,? we may
assume that U 1is constructed by
a continuous ‘positive definite
function Y(g) (with ¢(er=1)
on K 1in the following manner,
The representation space ¥ 1is
obtained by completing the factor
space LK)/ 1 with respect
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to the inner product $(X,y)
where $(X,y) 1s defined for
any X,Y e Li(K) by the formula

e§(x,y)=i£v(g“h)xm)7?§‘)¢gdh
=5 Wg)y*xcg)dg
X

yUg) =yig™)

the multiplica-
tion in L; be-
ing convolution

and where 1 1is the ideal consi-
sting of all X such that
3$(X,x)= 0 . The unitary represen-
tation U on this Hilbert space
# 1is introduced in the natural
way by procjecting ontc # the
isometric transformations Ta (2€G)
in LK) defined by

Tox(g) = X(at'g) tor xe LK),

Now we note that in this theory the
réle of Li(K) can be replaced
by any (algebraie) subring R of

LK) which satisfies the fol-
lowing conditions: 1) R 1s dense
in LK) , and 2) R 1is closed

with repsect to the operations, T,
and taking * (xX"g)=X(ghH ) .
Thus in our case we can take L,(K)
as R and discuss with respect to
Li(K) instead of L;(K) °

On the other hand, by the theory
of integral equations (especially
applying Mercer's theorem), the
positive definite function ¢(g)
can be expressed by the rollowing
absolutely and uniformly convergent
series

- Ut
) wg)-g f:A ui(g)

where  W(g) denotes the (i,j) -
coefficient of the matrix of irre-
ducible unitary representation U
of K with degree d. and where

Nzo and z%‘:‘lx‘;wr(e)ﬂ
%3

(we use for convenience the complex
conjugate uj;(g) instead of
‘tij(g) ):)



Now, using (1), we compute $(xY)
as follows

$xy)= Th) x(h)y(g) dgdh
@ oy f| etg hr 2 Y o
=% ?1 )f,;j Unit k)l(h)ihj W.(9) Yig)dg
L3 LS

A pzl ke

tor x,yeL, (K.

We denote by J the closed linear
subspace of L,(K) which 1s
spanned by U3, for all k=12,.---d»
and &, 3 with »%>o0 .

Then (2) shows that the subspace I
which consists or elements with

P(x, x)=0 s coincides with
the ortho-complement of J and
thereiore the factor space
J=bLaKY/1 can be identified as a
linear space with J . Consider-
ing J, as a space with the inner
product @(x,y) , we see in virtue
of (2) that u§; with A%t »>o,
k=1,2,----d. are orthogonal to each
other and the set D of tfinite
linear combinations of such Wy
are dense in J; . Let us now de-
fine for such W§,

¢(IA:‘)= \,::?_: Mti

and extend linearly onto D . Then,
again by (2), is a one-to-one
inner product preserving mapping
defined on the dense subset D 1in
Ji onto the same kind of subset in
J, . Theretore we can extend
to a one-to-one inner product pre-
serving mapping defined on J; onto
J . Since J 1is complete with
respect to its proper inner product,
it follows that Ji 1s also complete
with respect to the inner product
i, y) . Therefore there is
no necessity to complete it. Clear-

ly
Ua #cl‘:i) = ?‘(Ua“:a)

where VaX(g)= X (a" g) for

Z ¢ L(K) . Hence the unitary
representation constructed by Gel-
rand-Raikov's method 1s equivalent
to the one on J 1induced by the
regular representation of K ,
Qe€ode

For any 4 and i , we denote
by Ji the finite dimensional
(closed) linear subspace in Lz(K)
which 1s spanned by U}y, k= 1,2, ,da

. It is obvious that J}
is invariant under regular repre-
sentation and the representation
induced by it in J{ 1is equiva-
lent to Ux . Now, by the ortho-
gonallity relation between the coe-
I'ficients of irreducible represen=-
tations, we see that the above de-
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fined J decomposes into the di-
rect product of J¢ with d , i

such that XN, >0 . Thus
we have incidentally proved the
following

THEOREM 1'. The cyclic unitary
representation of K corresponding
to the positive definite function
with expansion (1) is equivalent
to the direct product representa-
tion of W in which an U: oc~
curs as same times as the number
of 1 for which AL>0 °

COROLLARY 1. In the above direct
product representation a U, 1is con-
tained 1f and only if f ¢(g9) X*(gr1ag#0

, Wwhere X* 1is the charac~-
ter of U, e

COROLLARY 2., Any irreducible
unitary representation of a compact
group 1s finite dimentional. ’

Now we shall prove the second
statement,

DEFINITIONS. Let G be a local-
ly compact group and K a compact
subgroup of G . When a unitary
representation U of G 1is given,
we denote by Uy the unitary re-
presentation of K which is obtain-
ed by restricting the domain of de-
finition of U onto K . A uni-
tary representation U of K is
sald to be extensible to a unitary
representation U of G , if Ux
contains a unitary representation
equivalent to Ui .

THEOREM 2. Any irreducible uni-
tary representation of a compact
subgroup K 1is extensible to an
1rreéiucible unitary representation
of .

PROOF. We denote by P(G) the
set of all positive definite funé-
tions with bound 1 on & . For
a Ye P(G) we denote by ¥g
the positive definite function on
K which is obtained by restrict-
ing the domain of definition of ¢
to K . Now, by the theory of
Gelfand«Raikov if U 1is the cyclic
unitary representation correspond-
ing to a ¢eP(&), Y(g)=(U(9 %, 5 )
where % 1is an element of the re-
presentation space 4 such that
{vepe, geaG} span the whole
space # . For an element a € G
we denote by ¥#. the closed linear
subspace of ¥ spanned by { U(ka)$;

R e K} which is obviously
invariant under U¢ .« The uni-
tary representation Ux of K
onto #a 1induced by Ux 1s cyclic
and the corresponding positive de-



finite function is Ygx  where
$2g) = P(a'ga) ., Now, since
Ha tae &) span the whole
space H , if U(k) 1is not the
identity operator, the operator
Uk (k) on Ha 18 not the
identity cperator for some a € G .

By Theorem 1 the unitary repre-
sentation Ugx 1is the direct pro-
duct of finite dimensional irredu-
cibles unitary representations U,
wnich, by the abcve remark and by
corollary 1, is such that
SnPa )X (h1dk# 0 . We denote by UL
the set of all such irreducible
components of Ux  where U va-
ries over all cyclic representation
of G and &« runs over G .
According to the theorem of Gelfand-
Raikov on the existence of suffi-
clently many cyclic representations
of G , it fcllows from what we
have mentioned above that VUL con-
tains sufficiently many irreducible
representations., We shall prove
that, if U« and U; belong to UL,

U. and all the irreducible compo-
nent of Usx Up (Kronecker produ-
ct) also belong to Ul . Since

Us«s€ L is equivalent to the exi-
stence of ¥ € P(G) such that

Su (R X k)dR#O0 , the first
part is obvious, Let ¢ and V¥
be the positive definite functions
on G such that

J o X (k0 and [y, (X (R1dk?0.
K

Then the series (1) ror Yk and
¥« __ contain_the diagonal elements

of Us and Vs respectively with

positive coefficients. Define

Fgr=f ¢ k'gh)dk, \Tf(gniwh"ghm k.
K

Then it 1s easily seen that ¥ and
are positive_definite_func-
tions and that « and Yx have
X* and X° vrespectively in their
expansion (1) with positive coeffi=-
clents. Since the series (1) is
absolutely convergent, the expan-
sion for (¥ ¥Xx=¥% ¥
obtained by multiplying term by
term the expanslons ror _¢, and
e « Therefore (§ ¥), con~-
tains in its expansion *X? with
a positive coefficients. " X°*
being the character of U,x U, ,
it follows that

is

.'{(‘7 ¥ (k) X (R)dk# O,

where X' 1is the character of any
irreducible component U, of
UxUs « Thus, the cyclic unitary
representation corresponding to FY¥
contalns any irreducible component

of Uusx U which proves the second
statement about VUL . Applying

to WM , a theorem of E. R, van
Kampen? we see that Ul 1is the set
of all irreducible unitary represen-
tations of K , which shows that
any irreducible unitary representa-
tion of K 1is extensible to a cy-
clic representation of G .

At last we shall prove that the
extended representation may be cho-
sen to be irreducible. We note that
the irreducible representations of

G correspond to the extreme po-
ints cf P(G) . Suppose our as-
sertion be false. Then there 1is
an irreducible unitary representa- °
tion Ux of K which is exten-
sible to no irreducible representa-
tion of G . Since Y* 1s ex-
treme if ¥ is so, it follows that

3 i'fk(h)X"(k)dk#'o

for any extreme ‘)‘4’) . By a theorem
of a R.Godement, any poslitive
definite function in P(G) can be
approximated by linear combinations
of extreme functions arbitrarily
and uniformly near on any compact
set. Then, because K 1s compact,
the above rormula (3) is valid for
any Ye P(G) , which contradicts

to what we have proved above, g.s.d.
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{6) Added in Proof. The theorem

of R.Godement reads in our
case in the following some-
what weaker form:

Any function @& P(G) can be

approximated arbitrarily and
uniformly near on any compact
set by linear combinatlions of
extreme functions in P(&) .
proof which 1s suggested by
Mr, S.Ito is as follows.
The weak topology in P(G) is
the one as a subset of the
conjugate space of L, (G) .
By Krein-Milman's theorem any
¥ e P(G) can be weakly ap-
proximated arbitrarily near
by convex combinations of.ex-
treme functions of P(G) .
On the other hand, a theorem
of H.Yoshizawa (Cf. On some
types ol convergence of posi=-
tive definite functions.
Osaka Math. Jour. Vol.l
(1949)) states that in the
part P(G) which consist of
all Y€ P(G) such that y(e)=1
the weak convergence
is equivalent to the uniform
convergence on any compact
set. Now, combining these
two theorems and the inequali-

?(9) ful9) X( )d \
u--—w Hopds - (50 2949

~

4-.—1———-I‘?(‘-‘> (e)ljw(gwuﬂs’!ds
= p(e)Y.le)

T -, (g)xtgd
Wo%(e)”(‘f“l’ vu(gipdg|

fOY XE ‘-‘I(G)) 9, ‘f.(*o, GP(G)
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we See that to prove the theo-
rem it is suificient tc show
that, ir Y, weakly converges
to ¢ with w(er=1 in P(&)
then Y (e) converges to Y(e).
Suppose this assertion be
false. Then, since L(%(e)+%i®)

—9L(¢) does not converge
$(9@+3% ) = peer,

there exists a §>o0 such

that

L+R@)< L (P 0+7@) -5

for any o . Since Y«

and ¢ are continuous, there
exists a compact neighbourhocd
vV of the identity such that

%(&(3)1’%)(%(?(9)&?@)—%

for any ¢ and geV .
Let  Cy(9) aenote the cha-

racteristic tunction of V .
Then

| 5“9‘9”?‘9’)&‘9"9
—-J L(g+ %@)Cy9dg
>—— meas. (V)

This contradicts to the fact

that +(4.+T,) weakly conver-

ges to 1(9¢§) as well as
to

o





